JPS62160424A - Ferroelectric liquid crystal element - Google Patents

Ferroelectric liquid crystal element

Info

Publication number
JPS62160424A
JPS62160424A JP66686A JP66686A JPS62160424A JP S62160424 A JPS62160424 A JP S62160424A JP 66686 A JP66686 A JP 66686A JP 66686 A JP66686 A JP 66686A JP S62160424 A JPS62160424 A JP S62160424A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
crystal element
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP66686A
Other languages
Japanese (ja)
Inventor
Akira Tsuboyama
明 坪山
Kazuharu Katagiri
片桐 一春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP66686A priority Critical patent/JPS62160424A/en
Publication of JPS62160424A publication Critical patent/JPS62160424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To eliminate the stepping on a substrate surface by providing flattening films consisting of an insulator between adjacent transparent electrodes. CONSTITUTION:The flattening films 4 consisting of the insulators are provided between the transparent electrodes 2b contg. adjacent auxiliary conductive wires 3 formed on the substrate 1b to eliminate the stepping on the substrate 1b surface and to flatten said surface. As a result, a liquid crystal is oriented to a uniform monodomain and adequate driving characteristic is obtd. even if a ferroelectric liquid crystal 5 is used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶表示素子や液晶−光シヤツター等に用いら
れる液晶素子に関ル、さらに詳しくは、強誘電性液晶を
用いた液晶素子のセル基板上の電極構成に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to liquid crystal elements used in liquid crystal display elements, liquid crystal light shutters, etc., and more specifically, to liquid crystal element cells using ferroelectric liquid crystal. This relates to the electrode configuration on the substrate.

[開示の概要〕 本明細書及び図面は、強誘電性液晶を用いた液晶素子に
おいて、ストライプの長手方向に沿って導電体膜を電気
的に接続したストライプ形状の透明電極の、隣合う電極
間に絶縁体で形成した平坦化膜を配置することによって
、基板面の段差をなくすことができ、この結果液晶を均
一なモノドメイン配向とし、強誘電性液晶素子の適正な
駆動特性が得られるようにしたものである。
[Summary of the Disclosure] This specification and drawings describe the relationship between adjacent electrodes of a stripe-shaped transparent electrode in which a conductive film is electrically connected along the longitudinal direction of the stripe in a liquid crystal element using ferroelectric liquid crystal. By placing a flattening film made of an insulator on the substrate, it is possible to eliminate the level difference on the substrate surface, and as a result, the liquid crystal can be aligned in a uniform monodomain, and the proper driving characteristics of the ferroelectric liquid crystal element can be obtained. This is what I did.

[従来の技術] 近年、強誘電性液晶を用いた液晶素子は、その高速応答
性とメモリー性から、高精細大型ディスプレイへの応用
が考えられている。このようなディスプレイ装置の電極
構成としては、ストライプ状に形成された走査電極群と
信号電極群とを平面的に交差させ、その交差部を画素と
するいわゆる単純マトリクス方式が一般に用いられてい
る。
[Prior Art] In recent years, liquid crystal elements using ferroelectric liquid crystals have been considered for application to high-definition large displays because of their high-speed response and memory properties. As the electrode structure of such a display device, a so-called simple matrix method is generally used in which a group of scanning electrodes and a group of signal electrodes formed in a stripe shape intersect in a plane, and the intersections are used as pixels.

この単純マトリクス方式による液晶素子は、高精細化す
ると電極の幅が狭くなり、電極1ライン当りの抵抗値が
高くなってしまう、このため、1ライン中においても電
圧値にバラつきが生じ、駆動に必要な適正電圧が各画素
に印加されないという問題点があった。そこで、ストラ
イプ状透明電極上の一端に沿って金属などの導電体で形
成した補助導電線を設ける方法が考えられている。この
方法によれば、電極lライン当たりの抵抗値は下がり、
電圧のバラつきをなくすことができる。
In liquid crystal devices using this simple matrix method, as the resolution increases, the width of the electrodes becomes narrower and the resistance value per line of electrodes increases.As a result, variations occur in the voltage value even within one line, making it difficult to drive. There was a problem in that the necessary appropriate voltage was not applied to each pixel. Therefore, a method has been considered in which an auxiliary conductive line made of a conductor such as metal is provided along one end of the striped transparent electrode. According to this method, the resistance value per electrode line decreases,
Voltage variations can be eliminated.

[発明が解決しようとする問題点] 現在、強誘電性液晶のうちで最も実用性が高いと考えら
れているのは、カイラルスメクティックC相(Sac・
)、1相(Sm1つ、G相(S+eGつやH相(S層H
・)を持つものである。この液晶相は、液晶を保持する
基板に段差があると配向欠陥を生じやすく、均一なモノ
ドメインが得られない、すなわち前述した方法により透
明電極の一端部に、金属などの導電体で形成した補助導
電線を設けると、基板上に段差が生じ、強誘電性液晶を
用いた場合、均一なモノドメインとならず、適正な駆動
特性が得られないという欠点があった。
[Problems to be solved by the invention] Currently, the most practical ferroelectric liquid crystal is chiral smectic C phase (Sac-
), 1 phase (1 Sm, G phase (S+eG gloss, H phase (S layer H
・). This liquid crystal phase is likely to cause alignment defects if there are steps in the substrate holding the liquid crystal, making it impossible to obtain uniform monodomains. When auxiliary conductive lines are provided, steps are created on the substrate, and when ferroelectric liquid crystal is used, uniform monodomains are not formed, resulting in failure to obtain appropriate drive characteristics.

本発明は前述した従来技術の欠点を除去し、適正な駆動
特性を得ることのできる強誘電性液晶素子を提供するこ
とを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ferroelectric liquid crystal element that eliminates the drawbacks of the prior art described above and can obtain appropriate driving characteristics.

[問題点を解決するための手段] 本発明は、一対の基板と、該一対の基板にそれぞれ形成
したストライプ形状の透明電極と、前記一対の基板間に
配置した強誘電性液晶とを有する強誘電性液晶素子にお
いて、前記一対の基板のうち少なくとも一方の基板上に
形成したストライプ形状の透明電極が該ストライプ形状
の長手方向に沿って電気的に接続した導電体膜が配置さ
れているとともに、隣合うストライプ形状の透明電極間
に絶縁体で形成した平坦化膜を有していることを特徴と
する強誘電性液晶素子である。
[Means for Solving the Problems] The present invention provides a ferroelectric liquid crystal that has a pair of substrates, a striped transparent electrode formed on each of the pair of substrates, and a ferroelectric liquid crystal disposed between the pair of substrates. In the dielectric liquid crystal element, a conductive film in which a striped transparent electrode formed on at least one of the pair of substrates is electrically connected along the longitudinal direction of the striped shape is disposed, and This is a ferroelectric liquid crystal element characterized by having a flattening film formed of an insulator between adjacent stripe-shaped transparent electrodes.

本発明における補助導電線としては、アルミニウム、ク
ロム、銀等の金属膜を用いることができ、ストライプ形
状の透明電極の長手方向に沿って電気的に接続させて配
線することができる。
As the auxiliary conductive wire in the present invention, a metal film such as aluminum, chromium, silver, etc. can be used, and it can be electrically connected and wired along the longitudinal direction of the striped transparent electrode.

本発明における隣合うストライプ形状の透明電極間に配
置する平坦化膜としては、例えばポリビニルアルコール
、ポリイミド、発光性ポリイミドあるいは5i02等の
絶縁体を用いることができる。
In the present invention, as the flattening film disposed between adjacent striped transparent electrodes, for example, polyvinyl alcohol, polyimide, luminescent polyimide, or an insulator such as 5i02 can be used.

また、本発明における強誘電性液晶としては、少なくと
も2つの安定状態をもつカイラルスメクティック液晶、
好ましくは双安定性力イラルスメクティック液晶を用い
ることができる。
Further, the ferroelectric liquid crystal in the present invention includes a chiral smectic liquid crystal having at least two stable states,
Preferably, bistable smectic liquid crystals can be used.

[作 用] 平坦化膜は、最大段差と実質的に等しい膜厚で形成され
ているため、最大段差が透明電極である場合、隣合うス
トライプ形状の透明電極間の段差はなくなり配向面は平
坦となる。このように、液晶分子の接する配向面を平坦
とすることにより、均一なモノドメイン配向を得ること
ができ・る。
[Function] Since the flattening film is formed with a thickness substantially equal to the maximum step difference, when the maximum step difference is a transparent electrode, the step difference between adjacent striped transparent electrodes disappears and the alignment surface becomes flat. becomes. In this way, by flattening the alignment plane in contact with liquid crystal molecules, uniform monodomain alignment can be obtained.

〔実施例] 本発明の基本構成を第1図及び第2図と共に説明する。〔Example] The basic configuration of the present invention will be explained with reference to FIGS. 1 and 2.

第1図は本発明による強誘電液晶素子の基板を平面的に
見た図、第2図はこの基板を組み合せて作製した素子の
断面図である。
FIG. 1 is a plan view of a substrate of a ferroelectric liquid crystal device according to the present invention, and FIG. 2 is a cross-sectional view of a device manufactured by combining the substrates.

第1図及び第2図において、laとlbはガラスやプラ
スチック等の基板、2a及び2bはITO(Indiu
+5−Tin−0xide)等で形成したストライプ状
透明電極で、互いに交差させて配置されている。3はア
ルミニウム、クロム、銀等の金属膜によって形成した低
抵抗の補助導電線、4は例えばポリビニルアルコール、
ポリイミド、感光性ポリイミドあるいは5i02等の絶
縁膜で形成した平坦化膜、5は強誘電性液晶、6はポリ
イミド、ポリビニルアルコール、ポリアミド等で形成し
た被膜にラビング処理などの一軸性配向処理を施して得
た配向制御膜である。
In Figures 1 and 2, la and lb are substrates made of glass or plastic, and 2a and 2b are ITO (Indium
The electrodes are striped transparent electrodes made of (+5-Tin-Oxide) or the like and are arranged to cross each other. 3 is a low-resistance auxiliary conductive wire formed of a metal film such as aluminum, chromium, silver, etc.; 4 is, for example, polyvinyl alcohol;
A flattening film made of an insulating film such as polyimide, photosensitive polyimide or 5i02, 5 is a ferroelectric liquid crystal, and 6 is a film made of polyimide, polyvinyl alcohol, polyamide, etc., which is subjected to uniaxial alignment treatment such as rubbing. This is the obtained orientation control film.

次に、本発明の実施例をさらに具体的に説明する。Next, examples of the present invention will be described in more detail.

実施例1 ガラス基板1上の全面に、EB蒸着法によりITOを膜
厚1000Aで形成した。このITOIliによって、
250 gtaピッチが幅220 graのストライプ
状電極2を形成するため、ITO膜上にフォトレジスト
剤を500OA塗布し、所望のパターニング露光後、エ
ツチングを行い″ストライプ状の透明電極2を形成した
。この時点では電極上には5000Aのレジスト剤が残
されている0次に、その上層にEB蒸着法によりアルミ
ニウムを100OA蒸着し、さらにエツチング液によっ
てレジスト剤をリフトオフして補助導電線3を形成した
0以上の工程により、透明電極2と補助導電線3との段
差はなくなる。
Example 1 ITO was formed to a thickness of 1000 Å on the entire surface of the glass substrate 1 by EB evaporation. With this ITOIli,
In order to form a striped electrode 2 with a pitch of 250 gta and a width of 220 gra, 500 OA of photoresist was applied onto the ITO film, and after exposure for desired patterning, etching was performed to form a striped transparent electrode 2. At this point, 5000A of resist agent remained on the electrode.Next, 100A of aluminum was deposited on the upper layer by EB evaporation method, and the resist agent was lifted off with an etching solution to form the auxiliary conductive wire 3. Through the above steps, the difference in level between the transparent electrode 2 and the auxiliary conductive wire 3 is eliminated.

次に、隣り合う電極間の導通をなくすため、第2図に示
すように電極間に絶縁体からなる平坦化膜4を形成した
。まず゛、基板lを再びフォトレジスト法によりパター
ニングし、補助導電393の一部を除去した。続いて各
電極上にレジスト剤が残されている状態でS i02を
蒸着し、再びレジスト剤をリフトオフした0以上の工程
によって、透明電極2、補助導電線3及び平坦化[i4
の膜厚の差はなくなり、基板上は平坦となる。この基板
の上層にスピナー塗布により液晶配向性のポリイミド被
膜を50OA形成した後、ラビング処理して、配向制御
膜6とした。
Next, in order to eliminate electrical conduction between adjacent electrodes, a flattening film 4 made of an insulator was formed between the electrodes as shown in FIG. First, the substrate 1 was patterned again using the photoresist method, and a portion of the auxiliary conductor 393 was removed. Subsequently, Si02 is vapor-deposited with the resist agent remaining on each electrode, and the resist agent is lifted off again in 0 or more steps to form the transparent electrode 2, the auxiliary conductive wire 3, and the flattening [i4
The difference in film thickness disappears, and the substrate becomes flat. A 50 OA polyimide film with liquid crystal orientation was formed on the upper layer of this substrate by spinner coating, and then subjected to rubbing treatment to form an alignment control film 6.

次に、この2枚の両基板の電極が互に平面的に直交し、
かつラビング方向が互いに平行となるようにセル組みし
た。なお、液晶層厚はビーズ状のアルミナスペーサーを
用い、均一に1.θILmの厚さに保った。このように
して作製された液晶セルに、以下に示す3次分からなる
強誘電性液晶を封入した。
Next, the electrodes of these two substrates are orthogonal to each other in a plane,
The cells were assembled so that the rubbing directions were parallel to each other. Note that the liquid crystal layer thickness is uniformly adjusted to 1.0 mm using bead-shaped alumina spacers. The thickness was maintained at θILm. A ferroelectric liquid crystal consisting of the following tertiary components was sealed in the liquid crystal cell thus prepared.

偏光顕微鏡による相観察から、上記3次分混合液晶のS
ac・相の温度範囲は4〜35℃であった。この3次分
混合液晶を前記液晶セルに封入、封止後、等吉相まで昇
温し、0.5℃ハで徐冷することにより、配向処理を行
った。液晶セルを顕微鏡で観察すると配向欠陥の非常に
少ないモノドメインが得られた。また、液晶はこのセル
厚で、第一と第二の安定状態を持つ双安定性を示した。
From phase observation using a polarizing microscope, the S
The temperature range of the ac phase was 4-35°C. After filling and sealing this tertiary mixed liquid crystal in the liquid crystal cell, the temperature was raised to the tokiyoshi phase, and the liquid crystal was slowly cooled at 0.5° C. to perform an alignment treatment. When the liquid crystal cell was observed under a microscope, monodomains with very few alignment defects were obtained. Furthermore, the liquid crystal exhibited bistability with a first and second stable state at this cell thickness.

さらに、このセルの基板端から導線を引き出し、各画素
にパルス電圧印加して前記二状態の反転を行ったところ
、l■secで±18Vの電圧で反転できた。
Further, when a conductive wire was drawn out from the end of the substrate of this cell and a pulse voltage was applied to each pixel to invert the two states, the inversion was achieved with a voltage of ±18 V in 1 sec.

このように、各画素は一定電圧で一様に反転し、1ライ
ン中での電圧のばらつきが実用上ないことが確認された
In this way, each pixel was uniformly inverted with a constant voltage, and it was confirmed that there was practically no variation in voltage within one line.

実施例2 液晶材料として以下に示すDOBAMBCH3 を封入し、それ以外はすべて前記実施例1と同様の実験
を行ったところ、十分均一なモノドメイン配向を得るこ
とができた。また1反転に必要な駆動電圧はl■5eC
で±16vであり、前記実施例1と同様に良好な駆動特
性が得られた。
Example 2 DOBAMBCH3 shown below was sealed as a liquid crystal material, and an experiment otherwise similar to that of Example 1 was conducted, and a sufficiently uniform monodomain alignment could be obtained. Also, the driving voltage required for one inversion is 15eC
The voltage was ±16 V, and good driving characteristics were obtained as in Example 1.

比較例 液晶セルの基板を次のように構成した。すなわち、ガラ
ス基板1上に透明電極2を形成し、この透明電極上の一
端に補助導電線3を形成した。前記実施例で用いた5i
02からなる平坦化膜4は構成から除き、電極上に配向
制御膜6を形成して、ラビング処理した。この比較例は
従来例に相当するものであり、このような構成にすると
基板面の段差が顕著となり、段差部分から液晶の配向欠
陥が起こりやすくなる。この比較例では、上記基板から
セルを作製し、前記した3成分混合液晶を封入した。こ
のセルを用いて前記実施例と同様な実験な行ったことろ
、段差からジグザグの配向欠陥が走り、この欠陥から双
安定性が崩れ1反転後、すぐに元の安定状態に戻ること
が観察された。
The substrate of the comparative liquid crystal cell was constructed as follows. That is, a transparent electrode 2 was formed on a glass substrate 1, and an auxiliary conductive wire 3 was formed at one end of the transparent electrode. 5i used in the above example
The planarization film 4 made of 02 was removed from the structure, and an alignment control film 6 was formed on the electrode and subjected to a rubbing treatment. This comparative example corresponds to the conventional example, and with such a configuration, the step difference on the substrate surface becomes noticeable, and alignment defects of liquid crystal tend to occur from the step portion. In this comparative example, a cell was fabricated from the above substrate, and the three-component mixed liquid crystal described above was sealed therein. Using this cell, we conducted an experiment similar to that of the previous example, and observed that a zigzag alignment defect ran from the step, and that the bistability collapsed from this defect and immediately returned to its original stable state after 1 reversal. It was done.

第3図は、本発明の強誘電性液晶素子の別の態様を表わ
している。第3図の素子では、補助導電線3とストライ
プ状透明電極2bとの電気的接続を確実なものとするた
めに、補助導電線3がストライプ状透明電極2bの一部
の面で積層部を形成し、そこで接続するように配線され
ている。このため、前述の第2図の素子に較べ段差が大
きくなって、配向欠陥が発生しやすくなっている。
FIG. 3 shows another embodiment of the ferroelectric liquid crystal element of the present invention. In the device shown in FIG. 3, in order to ensure electrical connection between the auxiliary conductive wire 3 and the striped transparent electrode 2b, the auxiliary conductive wire 3 forms a laminated portion on a part of the striped transparent electrode 2b. formed and wired to connect there. For this reason, the level difference is larger than in the element shown in FIG. 2 described above, and alignment defects are more likely to occur.

そこで、本発明は、透明電極2bの上に補助導電&a3
が積層形成されたことによる最大段差Aと実質的に等し
い膜厚で平坦化層4を形成することによって、基板lb
面内における段差を解消することができる。
Therefore, the present invention provides an auxiliary conductor &a3 on the transparent electrode 2b.
By forming the planarization layer 4 with a thickness substantially equal to the maximum step difference A due to the lamination of the substrate lb,
In-plane steps can be eliminated.

[発明の効果] 以上説明したように、本発明によれば補助導電線による
基板上の段差をなくシ、均一なモノドメイン配向とする
ことができ、強誘電性液晶を用いた場合でも適正な駆動
特性を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to eliminate the level difference on the substrate due to the auxiliary conductive wires, achieve uniform monodomain alignment, and achieve proper alignment even when using ferroelectric liquid crystal. drive characteristics can be obtained.

【図面の簡単な説明】 第1図は本発明の基本構成を示す基板平面図、第2図は
この基板により作製された素子の断面図、第3図は本発
明の別の強誘電性液晶素子の態様を表わす断面図である
。 l・・・基板、2・・・ストライプ状透明電極、3・・
・補助導電線、4・・・平坦化層、5・・・強誘電性液
晶、6・・・配向制御膜。 運4及の平面起 素子の防面囮 第2図 素子の断面口 第3図
[Brief Description of the Drawings] Fig. 1 is a plan view of a substrate showing the basic configuration of the present invention, Fig. 2 is a sectional view of an element manufactured using this substrate, and Fig. 3 is another ferroelectric liquid crystal of the present invention. FIG. 3 is a cross-sectional view showing an aspect of the element. l...Substrate, 2...Striped transparent electrode, 3...
- Auxiliary conductive line, 4... Flattening layer, 5... Ferroelectric liquid crystal, 6... Orientation control film. Figure 2: Cross section of the element Figure 3

Claims (7)

【特許請求の範囲】[Claims] (1)一対の基板と、該一対の基板にそれぞれ形成した
ストライプ形状の透明電極と、前記一対の基板間に配置
した強誘電性液晶とを有する強誘電性液晶素子において
、前記一対の基板のうち少なくとも一方の基板上に形成
したストライプ形状の透明電極が該ストライプ形状の長
手方向に沿って電気的に接続した導電体膜が配置されて
いるとともに、隣合うストライプ形状の透明電極間に絶
縁体で形成した平坦化膜を有していることを特徴とする
強誘電性液晶素子。
(1) In a ferroelectric liquid crystal element having a pair of substrates, a striped transparent electrode formed on each of the pair of substrates, and a ferroelectric liquid crystal disposed between the pair of substrates, A conductive film is arranged in which striped transparent electrodes formed on at least one of the substrates are electrically connected along the longitudinal direction of the striped shape, and an insulator is disposed between adjacent striped transparent electrodes. A ferroelectric liquid crystal element comprising a flattening film formed of.
(2)前記導電体膜が金属膜である特許請求の範囲第1
項記載の強誘電性液晶素子。
(2) Claim 1, wherein the conductive film is a metal film.
The ferroelectric liquid crystal element described in .
(3)前記平坦化膜の膜厚が前記基板面内に存在する最
大段差と実質的に等しい膜厚である特許請求の範囲第1
項記載の強誘電性液晶素子。
(3) The thickness of the planarization film is substantially equal to the maximum step difference existing within the plane of the substrate.
The ferroelectric liquid crystal element described in .
(4)前記平坦化膜の膜厚が、最大段差となっている前
記透明電極の膜厚と実質的に等しい膜厚である特許請求
の範囲第1項記載の強誘電性液晶素子。
(4) The ferroelectric liquid crystal element according to claim 1, wherein the thickness of the flattening film is substantially equal to the thickness of the transparent electrode having the largest step difference.
(5)前記平坦化膜の膜厚が最大段差となっている前記
導電体膜と透明電極との積層部での膜厚と実質的に等し
い膜厚である特許請求の範囲第1項記載の強誘電性液晶
素子。
(5) The thickness of the flattening film is substantially equal to the thickness of the layered portion of the conductive film and the transparent electrode having the maximum step difference. Ferroelectric liquid crystal element.
(6)前記強誘電性液晶が少なくとも2つの安定状態を
もつカイラルスメクティック液晶である特許請求の範囲
第1項記載の強誘電性液晶素子。
(6) The ferroelectric liquid crystal device according to claim 1, wherein the ferroelectric liquid crystal is a chiral smectic liquid crystal having at least two stable states.
(7)前記強誘電性液晶が双安定性カイラルスメクティ
ック液晶である特許請求の範囲第1項記載の強誘電性液
晶素子。
(7) The ferroelectric liquid crystal device according to claim 1, wherein the ferroelectric liquid crystal is a bistable chiral smectic liquid crystal.
JP66686A 1986-01-08 1986-01-08 Ferroelectric liquid crystal element Pending JPS62160424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP66686A JPS62160424A (en) 1986-01-08 1986-01-08 Ferroelectric liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP66686A JPS62160424A (en) 1986-01-08 1986-01-08 Ferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JPS62160424A true JPS62160424A (en) 1987-07-16

Family

ID=11480061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP66686A Pending JPS62160424A (en) 1986-01-08 1986-01-08 Ferroelectric liquid crystal element

Country Status (1)

Country Link
JP (1) JPS62160424A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168232A (en) * 1988-12-22 1990-06-28 Canon Inc Ferroelectric liquid crystal element
JPH02250211A (en) * 1989-03-23 1990-10-08 Matsushita Electric Ind Co Ltd Transparent conductive film wiring circuit board
JPH0333722A (en) * 1989-06-29 1991-02-14 Canon Inc Liquid crystal element
US5132816A (en) * 1989-02-02 1992-07-21 Sharp Kabushiki Kaisha Ferroelectric liquid crystal device and method of manufacturing the same
WO2011111650A1 (en) * 2010-03-09 2011-09-15 太陽誘電株式会社 Conductor structure, transparent device, and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168232A (en) * 1988-12-22 1990-06-28 Canon Inc Ferroelectric liquid crystal element
US5132816A (en) * 1989-02-02 1992-07-21 Sharp Kabushiki Kaisha Ferroelectric liquid crystal device and method of manufacturing the same
JPH02250211A (en) * 1989-03-23 1990-10-08 Matsushita Electric Ind Co Ltd Transparent conductive film wiring circuit board
JPH0333722A (en) * 1989-06-29 1991-02-14 Canon Inc Liquid crystal element
WO2011111650A1 (en) * 2010-03-09 2011-09-15 太陽誘電株式会社 Conductor structure, transparent device, and electronic device
JP5503729B2 (en) * 2010-03-09 2014-05-28 太陽誘電株式会社 Conductor structure, transparent device and electronic device
US8889998B2 (en) 2010-03-09 2014-11-18 Taiyo Yuden Co., Ltd. Conductor structure, transparent device, and electronic device

Similar Documents

Publication Publication Date Title
US4728176A (en) Ferroelectric liquid crystal device with metallic auxiliary electrodes provided adjacent to the transparent electrodes
US7227609B2 (en) In-plane switching mode thin film transistor liquid crystal display device with wide viewing angle
JPH0668589B2 (en) Ferroelectric liquid crystal element
GB2244860A (en) Fabricating mim type device array and display devices incorporating such arrays
JP2006086502A (en) Organic thin film transistor, substrates for liquid crystal display device, and method for manufacturing the same
KR102535073B1 (en) In-Plane Switching Liquid Crystal Display Backplane Using Amorphous Metal Nonlinear Resistors as Active Sub-Pixel Devices
JP2605382B2 (en) Active matrix substrate manufacturing method
JP2001527225A (en) Multipolar liquid crystal display device having alignment layer
US5847793A (en) Liquid crystal display apparatus and fabrication process thereof
JPS62160424A (en) Ferroelectric liquid crystal element
JPH04116620A (en) Liquid crystal display device
US5852486A (en) Liquid crystal display with alternative electrode structure
JPH08114814A (en) Active matrix array substrate and its production
JP2622033B2 (en) Liquid crystal display
JPH0337626A (en) Liquid crystal display device
JP2520604B2 (en) Liquid crystal element and manufacturing method thereof
KR100278695B1 (en) Liquid crystal display element and method of fabricating electrode substrate for use in the liquid crystal display element
JPH0120428B2 (en)
JPS63225224A (en) Electrooptic device
JP2794198B2 (en) Nonlinear resistance element and liquid crystal element using the same
JPH04362923A (en) Liquid crystal display element
JPH0331823A (en) Production of liquid crystal display device and electrode substrate
JP2654661B2 (en) Electro-optical display
JP3130759B2 (en) Flat panel display substrate, flat panel display element using the same, and method of manufacturing the display element
JPH05224218A (en) Liquid crystal device