JPS62160149A - Crushing control of closed circuit tube mill - Google Patents

Crushing control of closed circuit tube mill

Info

Publication number
JPS62160149A
JPS62160149A JP223886A JP223886A JPS62160149A JP S62160149 A JPS62160149 A JP S62160149A JP 223886 A JP223886 A JP 223886A JP 223886 A JP223886 A JP 223886A JP S62160149 A JPS62160149 A JP S62160149A
Authority
JP
Japan
Prior art keywords
crushed
mill
temperature
vibration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP223886A
Other languages
Japanese (ja)
Inventor
正機 三隅
芦江 豊延
浅本 悟
昌宏 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP223886A priority Critical patent/JPS62160149A/en
Publication of JPS62160149A publication Critical patent/JPS62160149A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、閉回路粉砕系の制御方法、さらに言えば、セ
メント工業において用いられる閉回路チューブミルの制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for controlling a closed-circuit grinding system, and more particularly to a method for controlling a closed-circuit tube mill used in the cement industry.

[従来の技術] 第2図は、代表的な閉回路チューブミルの概略図である
。原料供給装置lにより供給される被粉砕原料は、エア
セパレータ4で分級された粒径の大きな被粉砕物(戻粉
)といっしょになり、ミル2に送入される。ミル2から
排出された被粉砕物は、パケットエレベータ3によって
エアセパレータ4に運ばれ、そこで系外に取り出される
精粉とふたたびミル2内に送入される粗粉(戻粉)とに
分級される。この粉砕系の制御に用いられる被制御変数
として、パケットエレベータ3の消費電力、戻粉量、サ
ーキュレーティングロード(=戻粉量/被粉砕原料供給
量)、ミル2の発生する振動や音響などが使用されてい
る。従来の制御方法は、これらの変数のどれかを単独で
あるいは組合わせて、そこから得られる信号を一定にす
るよう被粉砕原料供給量を制御する定値制御であった。
[Prior Art] FIG. 2 is a schematic diagram of a typical closed circuit tube mill. The raw material to be pulverized supplied by the raw material supply device 1 is sent to the mill 2 together with the pulverized material having a large particle size (return powder) that has been classified by the air separator 4 . The material to be crushed discharged from the mill 2 is transported by a packet elevator 3 to an air separator 4, where it is classified into fine powder to be taken out of the system and coarse powder (return powder) to be fed into the mill 2 again. Ru. The controlled variables used to control this grinding system include the power consumption of the packet elevator 3, the amount of returned powder, the circulating load (=the amount of returned powder/the amount of raw material supplied to be crushed), and the vibrations and sounds generated by the mill 2. It is used. Conventional control methods have been constant value control in which the feed rate of the raw material to be crushed is controlled by using any of these variables alone or in combination to keep the signal obtained therefrom constant.

また、ミル2内への散水は、供給セメントクリンカの温
度上昇などにより精粉温度が高くなるような場合に行な
われるが、この散水量の制御は、製品であるセメントの
品質を規定値内で管理する目的で、自動あるいは手動に
よって、前述の被粉砕原料供給量の制御とは別ループで
行なわれている。
In addition, water is sprinkled into Mill 2 when the temperature of the milled powder increases due to an increase in the temperature of the supplied cement clinker, etc., but the amount of water sprinkled is controlled in order to maintain the quality of the cement product within the specified value. For the purpose of control, this is performed automatically or manually in a separate loop from the aforementioned control of the supply amount of the raw material to be crushed.

[発明が解決しようとする問題点] 先に述べたパケットエレベータ消費電力、戻粉量、サー
キュレーティングロード、振動、音響の中で、応答性や
制御性の面で優れた特性を持つ被制御変数は、振動であ
ると言える。したがって、これまで多く用いられてきた
パケットエレベータ消費電力から振動やあるいは音響へ
と、被制御変数が移行する傾向が見られる。この被制御
変数としての振動は、ミルが2室にわかれている場合、
1室での粗粉砕状態を表わしている。1室のチャージ量
が多くなれば振動は小さくなり、チャージ量が・しなく
なれば振動は大きくなる。
[Problems to be solved by the invention] Controlled variables with excellent characteristics in terms of responsiveness and controllability among the aforementioned packet elevator power consumption, amount of returned powder, circulating load, vibration, and sound. can be said to be vibration. Therefore, there is a tendency for the controlled variable to shift from the power consumption of packet elevators, which have been widely used up until now, to vibration or sound. This vibration as a controlled variable is
This shows the state of coarse grinding in one chamber. As the amount of charge in one chamber increases, the vibration becomes smaller, and as the amount of charge decreases, the vibration increases.

粉砕効率や制御性から言えば、振動を被制御変。From the perspective of grinding efficiency and controllability, vibration can be controlled and varied.

数とし被粉砕原料供給量を操作変数とする制御方法では
、1室の粗粉砕領域の制御しか行なえず、2室での微粉
砕領域には制御が及ばない、そのため、供鮎ン(粉砕原
料の粉砕性などの変化によって2室の微粉砕状態に外乱
が生じた場合、その影響がまずエアセパレータへとおよ
び、精粉粒度のバラツキ、分級効率の変動を引き起こし
、さらには戻粉を通して1室の粗粉砕能力まで左右され
ることとなる。したがって、多室ミル、特に2室ミルに
おいて振動の定価制御を行なう場合、2室の変動、すな
わち微粉砕性の変動に対して何らかの対策を講じなけれ
ばならない、その対策の1つとして、振動とパケットエ
レベータ消費電力のある加重平均を振動のかわりに、被
制御変数とする方法がある。パケットエレベータ消費電
力は、ミルを通過する被粉砕物の量を反映しており、ミ
ル内の通風に乗ってパケットエレベータへ直接運ばれる
場合も含め、ミル全体の粉砕状態を表わすと言える。振
動とこのパケットエレベータ消費電力との組合わせから
できる1つの変数は、2室の粉砕状態を、ある程度表し
た被制御変数と言えないことはないが、振動とパケット
エレベータ消費電力が、応答性の面ではかなりの違いが
あるものの、同じような動きを示す変数であること、こ
れらを加重平均することによって、変数の数が1から2
に減り、情報量が減少することの理由で好ましくない。
In the control method that uses the amount of raw material to be crushed as the operational variable, it is possible to control only the coarse crushing area in one chamber, and the fine crushing area in the second chamber cannot be controlled. If a disturbance occurs in the fine pulverization state in the second chamber due to a change in the pulverization properties of Therefore, when performing fixed price control of vibration in a multi-chamber mill, especially a two-chamber mill, some measure must be taken against fluctuations in the two chambers, that is, fluctuations in fine grindability. One solution to this problem is to use a weighted average of vibration and packet elevator power consumption as the controlled variable instead of vibration.Packet elevator power consumption is the amount of material to be crushed passing through the mill. It can be said to reflect the crushing state of the entire mill, including the case where the powder is transported directly to the packet elevator by the ventilation inside the mill.One variable that can be created from the combination of vibration and this packet elevator power consumption is , it is possible to say that the pulverization state of the two chambers is a controlled variable that expresses it to some extent, but vibration and packet elevator power consumption are variables that exhibit similar behavior, although there are considerable differences in terms of responsiveness. By taking a weighted average of these, the number of variables can be reduced from 1 to 2.
This is not desirable because it reduces the amount of information.

以上のように、従来の制御方法の持つ第1の問題点は、
振動やパケットエレベータ消費電力、あるいは、それら
の組合わせによる変数の、1被制御変数と、被粉砕原料
供給量の1操作変数の1人力1出力制御系では、粉砕系
から得られる情報が1室だけの、あるいは粉砕系全体と
しての粉砕状態に関するものであって、1室と2室の粉
砕状態をそれぞれ1つの情報として、制御系に取り入れ
ることができないことである。
As mentioned above, the first problem with conventional control methods is that
In a one-man power, one-output control system with one controlled variable (variables such as vibration, packet elevator power consumption, or a combination thereof) and one manipulated variable (supply of raw material to be crushed), the information obtained from the crushing system is controlled by one room. This is related to the grinding state of the grinding system alone or of the whole grinding system, and the grinding states of the first chamber and the second chamber cannot be taken into the control system as one piece of information.

第2の問題点は、温度〜散水量の制御ループと上述の振
動〜被粉砕原料供給量の制御ループとが、それぞれ独立
した単独ループである点にある。
The second problem is that the temperature-water sprinkling amount control loop and the above-mentioned vibration-pulverization raw material supply amount control loop are independent and independent loops.

散水量は、ミル出口の被粉砕物温度を一定にするように
制御されるが、散水量の増減によって被粉砕物温度が変
化するように、被粉砕原料供給量の増減によって粉砕物
温度が変化する。すなわち、散水量も被粉砕原料供給量
も、ともにミル出口被粉砕物温度を一定にする操作変数
となりうる。また、散水は、その量を増やすと戻粉量が
減少するといった粉砕性の向上をもたらす助剤効果を持
ち。
The amount of water sprinkled is controlled to keep the temperature of the material to be crushed at the mill outlet constant, but just as the temperature of the material to be ground changes depending on the amount of water sprinkled, the temperature of the material to be ground changes depending on the amount of raw material supplied. do. In other words, both the water sprinkling amount and the supply amount of the raw material to be ground can be manipulated variables to keep the temperature of the material to be ground at the mill outlet constant. In addition, water sprinkling has an auxiliary effect that improves grindability, such as reducing the amount of returned powder when the amount is increased.

ミルの粉砕能力に大きく係わっていることや、サーキュ
レーティングロードが小さいときには、第3図のように
、被粉砕原料供給量の制御系の被制御変数である振動が
散水によっても変化する傾向が、我々の実験で確認され
ている。さらに、供給被粉砕原料と散水量が一定の場合
、振動と被粉砕物温度との間には、第4図(A)のよう
に振動が増大すると、被粉砕物温度は第4図(B)のよ
うに上昇する。一方、第5図(A)のように被粉砕物温
度が増大すると、振動は第5図CB)のように上昇する
といった傾向も確認されている。このように、前述の2
つの制御系のそれぞれの操作変数(被粉砕原料供給量、
散水量)は、他方の制御系の被制御変数(振動、被粉砕
物温度)と密接な関係を持っており、従来の制御方法で
は、これらの変数相互間の影響を全く無視することにな
る。
This is largely related to the grinding capacity of the mill, and when the circulating load is small, the vibration, which is a controlled variable in the control system for the amount of raw material to be ground, tends to change due to water sprinkling, as shown in Figure 3. This has been confirmed in our experiments. Furthermore, when the supplied raw material to be crushed and the amount of water sprinkled are constant, there is a difference between the vibration and the temperature of the crushed object, as shown in Figure 4 (A), when the vibration increases, the temperature of the crushed object increases as shown in Figure 4 (B). ) to rise like this. On the other hand, it has been confirmed that when the temperature of the material to be crushed increases as shown in FIG. 5(A), the vibration increases as shown in FIG. 5(CB). In this way, the above two
The operating variables of each control system (supply amount of raw material to be crushed,
The amount of water sprinkled) is closely related to the controlled variables of the other control system (vibration, temperature of the material to be crushed), and conventional control methods completely ignore the effects of these variables on each other. .

[問題点を解決するための手段] 先に、従来の制御方法の第1の4問題点は2室の粉砕状
態を考慮できず、粉砕状態を表す情報が少ないことであ
ると述べたが、我々の実機ミルに関する調査の結果、ミ
ル出口被粉砕物温度が高い時には、2室の微粉砕性が低
下し戻粉量が多くなり、逆にミル出口被粉砕物温度が低
い時には、2室の微粉砕性が向上し戻粉量が減ると言う
現象などにより、ミル出口の被粉砕物温度が微粉砕状態
、すなわち、2室の良好な粉砕状態を表していることが
判明した。したがって、制御系の被制御変数としては、
1室での粗粉砕状態を表す変数である振動と、2室での
被粉砕状態を表す変数であるミル出口被粉砕物温度の2
変数がもっとも優れており。
[Means for Solving the Problems] Earlier, it was stated that the first four problems of the conventional control method are that the grinding state of the two chambers cannot be taken into consideration, and there is little information representing the grinding state. As a result of our research on actual mills, we found that when the temperature of the material to be ground at the mill exit is high, the pulverization performance in the second chamber decreases and the amount of returned powder increases; It has been found that the temperature of the material to be crushed at the mill outlet indicates a finely pulverized state, that is, a good pulverized state in the two chambers, due to the phenomenon that the pulverization property is improved and the amount of returned powder is reduced. Therefore, the controlled variables of the control system are:
Vibration is a variable that represents the state of coarse pulverization in the first chamber, and temperature of the material to be crushed at the mill outlet is a variable that represents the state of the pulverized material in the second chamber.
Variables are the best.

これに、散水量と原料供給量という2つの操作変数を組
み合せて、制御方法を多入力多出力を多変数制御とする
ことが望ましい。
It is desirable to combine this with two operating variables, the amount of water sprinkling and the amount of raw material supplied, to make the control method a multi-input, multi-output, multivariable control.

振動とミル出口被粉砕物温度を、多変数制御系における
被制御変数として用いるならば、操作変数としてはそれ
ぞれの被制御変数の操作変数であった被粉砕原料供給量
と散水量の2つが考えられる。この時、散水量は製品の
品質管理にのみ寄与するのではなく、先に述べた2室で
の微粉砕性を反映する、ミル出口被粉砕物温度と密接に
関係しているため、粉砕制御系に対しても、大きく寄与
することとなる。これらの4変数によって多変数制御を
行なえば、従来の制御系における2つの制御ループは1
つに統合され、変数相互間の影響を考慮した制御を行な
うことが可能となるので、前述の2番目の問題点も解決
する。
If vibration and the temperature of the material to be ground at the mill outlet are used as controlled variables in a multivariable control system, the two possible operating variables are the amount of raw material supplied and the amount of water sprinkled, which are the operating variables for each controlled variable. It will be done. At this time, the amount of water sprinkled does not only contribute to the quality control of the product, but is also closely related to the temperature of the material to be crushed at the mill outlet, which reflects the pulverization properties in the two chambers mentioned earlier. It will also make a large contribution to the system. If multivariable control is performed using these four variables, the two control loops in a conventional control system can be reduced to one.
Since it is possible to perform control that takes into account the influence of variables on each other, the second problem mentioned above is also solved.

したがって、本発明では、これらの4変数を多変数制御
系に組入れ、被粉砕原料供給量と散水量を、それぞれ振
動(または、振動と輸送装置の消費電力に、それぞれ所
定の荷重を掛け加算したもの)と被粉砕物温度に対する
操作変数として総合的に制御を行なうようにした。
Therefore, in the present invention, these four variables are incorporated into a multivariable control system, and the amount of raw material to be crushed and the amount of water sprinkled are controlled by vibration (or vibration and the power consumption of the transportation device, each multiplied by a predetermined load). The temperature of the material to be crushed and the temperature of the material to be crushed are controlled comprehensively as operating variables.

[作用] したがって、ミル操業時において、刻々、ミル入口軸受
メタルに取り付けられた振動計による信号と、ミル出口
の製品温度計からの信号と、原料供給系輸送機に設置さ
れる計量機からの信号、ならびに散水用流量計からの、
4つの情報をもとに、その時点における適性な原料供給
量と散水量を、予め与えられた計算式により算出し、原
料供給装置と散水用調節弁に指令を出すという動作が繰
り返えされる。
[Function] Therefore, during mill operation, the signal from the vibration meter attached to the bearing metal at the mill inlet, the signal from the product temperature meter at the mill outlet, and the signal from the weighing machine installed in the raw material supply system transport machine are transmitted every moment. signals, as well as water flowmeters,
Based on the four pieces of information, the appropriate raw material supply amount and water sprinkling amount at that point in time are calculated using pre-given calculation formulas, and commands are issued to the raw material supply device and water sprinkling control valve, and this process is repeated. .

[実施例] 本発明による制御方法をセメントタリンカ粉砕に適用し
た場合を第1図に示して、その詳細を述べる。
[Example] A case in which the control method according to the present invention is applied to cement tarinka crushing is shown in FIG. 1, and its details will be described.

被粉砕原料であるセメントクリンカおよび石膏は、原料
供給装置lによってミル2に送入される。
Cement clinker and gypsum, which are raw materials to be crushed, are sent to the mill 2 by a raw material supply device 1.

ミル2から排出された被粉砕物はパケットエレベータ3
で、エアセパレータ4に運ばれる。このエアセパレータ
4において、所定の粒度より小さい精粉とそれ以外の粗
粉とに分級され、精粉は経路5より粉砕系外に製品とし
て取り出される。一方、粗粉は経路6を経てミル2に戻
され、再粉砕される。このような粉砕系において、本発
明である制御方法を実施するために、ミル入口軸受メタ
ル7には振動計8が、ミル2出口には温度計9が。
The material to be crushed discharged from the mill 2 is sent to the packet elevator 3.
Then, it is transported to the air separator 4. In this air separator 4, the fine powder is classified into fine powder smaller than a predetermined particle size and other coarse powder, and the fine powder is taken out of the grinding system through a path 5 as a product. On the other hand, the coarse powder is returned to the mill 2 via path 6 and is ground again. In such a grinding system, in order to carry out the control method of the present invention, a vibration meter 8 is installed at the mill inlet bearing metal 7, and a thermometer 9 is installed at the mill 2 outlet.

原料供給装置1には計量装置10が、散水装置11には
流量計12が、それぞれ設置されている。
A metering device 10 is installed in the raw material supply device 1, and a flow meter 12 is installed in the water sprinkler device 11, respectively.

ミル入口軸受メタルに取り付けられた振動計8によって
検出された信号はフィルタ13を通り、不必要な周波数
成分が除去され、コントローラ14に送られる。同様に
、温度計9からの信号と、計量装置10からの信号と、
流量計12から検出された散水量の信号も、それぞれフ
ィルタ15.16.17を通って、コントローラ14に
送られる。コントローラ14内では、これら4変数をも
とに被粉砕原料供給量と散水量の操作量が計算され、こ
の操作量に従って原料供給装置lと散水量調節弁18が
制御される。
The signal detected by the vibration meter 8 attached to the mill inlet bearing metal passes through a filter 13 to remove unnecessary frequency components and is sent to a controller 14. Similarly, the signal from the thermometer 9 and the signal from the measuring device 10,
The signals of the amount of water detected from the flowmeter 12 are also sent to the controller 14 through filters 15, 16, 17, respectively. In the controller 14, the operating amounts of the supply amount of the raw material to be crushed and the water sprinkling amount are calculated based on these four variables, and the raw material supply device 1 and the water sprinkling amount regulating valve 18 are controlled according to these operating amounts.

すなわち、前記振動(または、振動と輸送装置の消費電
力に、それぞれ所定の荷重を掛け加算したもの)と被粉
砕温度の2変数を被制御変数とし、被粉砕原料供給量と
ミル内散水量を操作変数となし、被制御変数が大きくな
った場合、その程度に応じて操作変数を大きくすること
によって。
In other words, the vibration (or the vibration and the power consumption of the transportation device multiplied by a predetermined load) and the temperature of the pulverized material are the controlled variables, and the amount of raw material supplied and the amount of water sprinkled in the mill are controlled. If the controlled variable becomes large, the manipulated variable is increased accordingly.

前記の被制御変数を小さくし、もとの安定した状態に復
起させようとするものである。同様に、被制御変数が小
さくなった場合には、操作変数を小さくして、もとの安
定の状態に戻すなどの逆操作をすることは勿論である。
The purpose is to reduce the above-mentioned controlled variable and restore the original stable state. Similarly, when the controlled variable becomes small, it goes without saying that the reverse operation can be performed, such as reducing the manipulated variable to return to the original stable state.

[効果] 本発明による制御方法は、次の特徴を有する。[effect] The control method according to the present invention has the following features.

(a)1室の粉砕状態を反映するミルから発生する振動
と、2室の粉砕状態を反映するミル出口被粉砕物温度を
それぞれ1つの被制御変数として、多変数制御系に取り
入れることによって、ミル内の粗粉砕・微粉砕状態を一
定に維持することができる。
(a) By incorporating the vibration generated from the mill, which reflects the grinding state in one chamber, and the temperature of the material to be ground at the mill outlet, which reflects the grinding state in two chambers, as one controlled variable, into a multivariable control system, It is possible to maintain a constant state of coarse and fine pulverization in the mill.

(b)被粉砕原料供給量、散水量、振動、ミル出口被粉
砕物温度の4変数は、相互に影響を及ぼし合うが、多変
数制御系であるため、それらの影響を考慮した制御を行
なうことができる。
(b) The four variables of supply amount of raw material to be crushed, amount of water sprinkling, vibration, and temperature of crushed material at the mill outlet influence each other, but since it is a multivariable control system, control is performed taking these influences into consideration. be able to.

(c)上記(a)、(b)の理由により、非常に安定し
た制御系を得ることができる。たとえばエアセパレータ
回転数の変更などによる精粉粒度の調整が不必要となる
ほどに、精粉粒度の変動は小さくなる。
(c) Due to the reasons (a) and (b) above, a very stable control system can be obtained. The variation in the fine powder particle size becomes so small that it becomes unnecessary to adjust the fine powder particle size by, for example, changing the rotational speed of the air separator.

本制御の実施により粉砕系全体の安定化が図られ、その
結果、粉砕効率の最適化が容易となり、省電力効果をも
たらす。
By implementing this control, the entire grinding system is stabilized, and as a result, it becomes easy to optimize the grinding efficiency, resulting in a power saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法を実施するための装置の1実施例
を示す説明図、第2図は、従来の一般的な閉回路チュー
ブミル粉砕系を表わすフローチャート図、第3図、第4
図、第5図は、被制御変数や操作変数間の関係を経時変
化によって表わす説明図である。 1・・・原料供給装置、   2・・・ミル、3・・・
パケットエレベータ、4・・・エアセパレータ。 5・・・経路(精粉)、 ・  6・・・経路(戻粉)
、7・・・ミル入口軸受メタル、8・・・振動計、9・
・・温度計、     lO・・・計量装置、11・・
・散水装置、    12・・・流量計、13・・・フ
ィルタ、     14・・・コントローラ、15・・
・フィルタ、     16・・・フィルタ、17・・
・フィルタ、     18・・・流量調節弁。 特許出願人  宇部興産株式会社 第1図 第3図 時間 時間 第4図 時間 第5図 時間 鰭
FIG. 1 is an explanatory diagram showing one embodiment of an apparatus for carrying out the method of the present invention, FIG. 2 is a flowchart diagram representing a conventional general closed circuit tube mill grinding system, and FIGS.
FIG. 5 is an explanatory diagram showing the relationship between controlled variables and manipulated variables based on changes over time. 1... Raw material supply device, 2... Mill, 3...
Packet elevator, 4... air separator. 5...Route (powder), ・6...Route (returning powder)
, 7... Mill inlet bearing metal, 8... Vibration meter, 9...
...Thermometer, lO...Measuring device, 11...
・Water sprinkler, 12...flow meter, 13...filter, 14...controller, 15...
・Filter, 16...Filter, 17...
・Filter, 18...Flow control valve. Patent applicant: Ube Industries, Ltd. Figure 1 Figure 3 Time Time Figure 4 Time Figure 5 Time Fin

Claims (2)

【特許請求の範囲】[Claims] (1)原料供給装置によって被粉砕物原料をミルに供給
して粉砕し、粉砕された被粉砕物を輸送装置によりエア
セパレータに移送し、このエアセパレータにおいて、粉
砕系外に取り出される所定の粒度の精粉と、ふたたびミ
ル内に送入される粗粉とに分級し、粗粉をミルに戻して
再粉砕する閉回路粉砕系において、ミルから発生する振
動と、ミルから排出される被粉砕物の温度の2変数を被
制御変数とし、かつ、被粉砕原料供給量と、ミル内への
散水量の2変数を操作変数とし、前記被粉砕物温度が上
昇するとすこし遅れて前記振動が増大し、逆に振動が増
大すると被粉砕物温度がすこし遅れて上昇するといった
、被粉砕物温度と振動の間の影響を考慮して、前記振動
と被粉砕物温度からなる被制御変数が増加したとき、前
記被粉砕原料供給量とミル内散水量からなる操作変数を
増大させて、前記被制御変数を減少せしめるような方法
により、前記の4つの変数を多変数制御系に組入れ、被
粉砕原料供給量と散水量を、それぞれ振動と被粉砕物温
度に対する操作変数として総合的に制御を行なうことを
特徴とする閉回路チューブミルの粉砕制御方法。
(1) A raw material supply device supplies the material to be crushed to a mill, and the crushed material is transferred to an air separator by a transportation device, and in this air separator, a predetermined particle size is taken out of the grinding system. In the closed-circuit grinding system, which separates fine powder into fine powder and coarse powder, which is fed into the mill again, and returns the coarse powder to the mill for re-grinding, vibrations generated from the mill and crushed particles discharged from the mill are generated. The temperature of the object is the controlled variable, and the amount of raw material to be crushed and the amount of water sprinkled into the mill are the manipulated variables, and when the temperature of the object to be crushed increases, the vibration increases with a slight delay. However, conversely, when the vibration increases, the temperature of the crushed material rises with a slight delay. Considering the influence between the temperature of the crushed material and vibration, the controlled variable consisting of the vibration and the temperature of the crushed material was increased. When the raw material to be crushed A grinding control method for a closed circuit tube mill, characterized in that the supply amount and the water sprinkling amount are comprehensively controlled as operating variables for vibration and the temperature of the material to be ground, respectively.
(2)原料供給装置によって被粉砕物原料をミルに供給
して粉砕し、粉砕された被粉砕物を輸送装置によりエア
セパレータに移送し、このエアセパレータにおいて、粉
砕系外に取り出される所定の粒度の精粉と、ふたたびミ
ル内に送入される粗粉とに分級し、粗粉をミルに戻して
再粉砕する閉回路粉砕系において、ミルから発生する振
動とミルから排出された被粉砕物をエアセパレータに移
送する輸送装置の消費電力に、それぞれ所定の荷重を掛
け加算したものと、ミルから排出される被粉砕物の温度
の2変数を被制御変数とし、かつ、被粉砕原料供給量と
、ミル内への散水量の2変数を操作変数とし、前記被粉
砕物温度が上昇するとすこし遅れて前記振動が増大する
、逆に振動が増大すると被粉砕物温度がすこし遅れて上
昇するといった、被粉砕物温度と振動の間の影響を考慮
して、前記振動と前記消費電力に、それぞれ所定の荷重
を掛け加算したものと、被粉砕物温度からなる、被制御
変数が増加したとき、前記被粉砕原料供給量とミル内散
水量からなる操作変数を増大させて、前記被制御変数を
減少せしめるような方法により、前記の4つの変数を多
変数制御系に組入れ、供給被粉砕原料と散水量を、それ
ぞれ振動と被粉砕物温度に対する操作変数として総合的
に制御を行なうことを特徴とする閉回路チューブミルの
粉砕制御方法。
(2) The raw material to be crushed is supplied to the mill by the raw material supply device and pulverized, the pulverized material to be crushed is transferred to the air separator by the transportation device, and in this air separator, the predetermined particle size is taken out from the crushing system. In the closed-circuit grinding system, which separates fine powder into fine powder and coarse powder, which is fed into the mill again, and returns the coarse powder to the mill for re-grinding, vibrations generated from the mill and the ground material discharged from the mill are generated. The two variables to be controlled are the power consumption of the transportation device that transfers the raw material to the air separator, multiplied by a predetermined load, and the temperature of the crushed material discharged from the mill, and the supplied amount of the raw material to be crushed. and the amount of water sprinkled into the mill were used as the manipulated variables, and when the temperature of the material to be crushed increased, the vibration increased with a slight delay, and conversely, when the vibration increased, the temperature of the material to be crushed increased with a slight delay. , when a controlled variable consisting of the vibration and the power consumption multiplied by a predetermined load and the temperature of the object to be crushed increases, taking into account the influence between the temperature of the object to be crushed and the vibration; The above four variables are incorporated into a multivariable control system by increasing the operating variables consisting of the feed rate of the raw material to be crushed and the amount of water sprinkled in the mill and decreasing the controlled variables. A grinding control method for a closed circuit tube mill, characterized in that the amount of water sprinkled is comprehensively controlled as an operating variable for vibration and the temperature of the object to be ground, respectively.
JP223886A 1986-01-10 1986-01-10 Crushing control of closed circuit tube mill Pending JPS62160149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP223886A JPS62160149A (en) 1986-01-10 1986-01-10 Crushing control of closed circuit tube mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP223886A JPS62160149A (en) 1986-01-10 1986-01-10 Crushing control of closed circuit tube mill

Publications (1)

Publication Number Publication Date
JPS62160149A true JPS62160149A (en) 1987-07-16

Family

ID=11523775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP223886A Pending JPS62160149A (en) 1986-01-10 1986-01-10 Crushing control of closed circuit tube mill

Country Status (1)

Country Link
JP (1) JPS62160149A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827653A (en) * 1981-08-12 1983-02-18 株式会社東芝 Supply control apparatus of stock material crusher
JPS60129146A (en) * 1983-12-14 1985-07-10 日本セメント株式会社 Crushing control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827653A (en) * 1981-08-12 1983-02-18 株式会社東芝 Supply control apparatus of stock material crusher
JPS60129146A (en) * 1983-12-14 1985-07-10 日本セメント株式会社 Crushing control method

Similar Documents

Publication Publication Date Title
CN103350023B (en) Double-layer-structure predication control method applicable to middle-discharging type cement raw material mil system
JPS62160149A (en) Crushing control of closed circuit tube mill
US4402462A (en) Process for controlling a grinding installation
KR100283419B1 (en) Control Process of Closed Circuit Dryer
JPS62168557A (en) Crushing control of closed circuit tube mill
JPS61287461A (en) Control of crushing of closed circuit tube mill
SU1028370A1 (en) Working disintegration control system
US3697003A (en) Grinding mill method and apparatus
JPS5816941B2 (en) grinding system
JPS60129146A (en) Crushing control method
JPH01288346A (en) Method for supplying material to mill
SU1066646A1 (en) System of automatic regulation of pulp density in ore self-grinding mill
SU1121037A1 (en) Method of controlling closed process of crushing
SU992096A1 (en) System for controlling feeding of open disintegration cycle mill
SU995883A1 (en) Method of automatic control of single stage wet disintegration process
SU1486184A1 (en) System for automatic control of throughput of ventilated mill
RU1787543C (en) Method for automatic control of two-stage wet grinding
JPH09122517A (en) Controller for crusher
US4088308A (en) System for controlling the flow of sinter to blast furnace
JP2023097945A (en) Control device, particulate matter supply system, control method, and program
RU2091307C1 (en) Method of controlling agitation leaching of silica-containing cake
SU1354011A1 (en) Automatic control system for process of granulation in drum drier
SU535101A1 (en) Method for automatic control of one-stage wet grinding cycle
SU1187883A1 (en) Automatic control system for grinding and drying in ball mill
JP3616110B2 (en) Pasty fuel manufacturing method and apparatus