JPS6216011B2 - - Google Patents

Info

Publication number
JPS6216011B2
JPS6216011B2 JP53159196A JP15919678A JPS6216011B2 JP S6216011 B2 JPS6216011 B2 JP S6216011B2 JP 53159196 A JP53159196 A JP 53159196A JP 15919678 A JP15919678 A JP 15919678A JP S6216011 B2 JPS6216011 B2 JP S6216011B2
Authority
JP
Japan
Prior art keywords
impurity concentration
containers
doping
container
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53159196A
Other languages
Japanese (ja)
Other versions
JPS5587425A (en
Inventor
Tomio Kasono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP15919678A priority Critical patent/JPS5587425A/en
Publication of JPS5587425A publication Critical patent/JPS5587425A/en
Publication of JPS6216011B2 publication Critical patent/JPS6216011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は半導体エピタキシヤル成長法に関し、
特に、エピタキシヤル層の不純物濃度を自由に制
御できるドーピング法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor epitaxial growth method,
In particular, it relates to a doping method that allows the impurity concentration of an epitaxial layer to be freely controlled.

従来、エピタキシヤル成長層を得るには、第1
図に示すように、SiあるいはGeの四塩化物液
(以下珪素のエピタキシヤル成長の場合を例にと
り、四塩化珪素を用いる場合について説明す
る。)1を蒸発容器2に充てんし、これに水素ガ
スを送入して、四塩化珪素の蒸発ガス(水素ガス
を含む)を得、これを気相成長炉3へ導入して、
炉内の基板4上へエピタキシヤル層を成長させて
いる。
Conventionally, to obtain an epitaxially grown layer, a first
As shown in the figure, an evaporation vessel 2 is filled with Si or Ge tetrachloride solution (hereinafter, the case of using silicon tetrachloride will be explained by taking the case of epitaxial growth of silicon as an example), and hydrogen is added to it. Gas is fed to obtain vaporized gas of silicon tetrachloride (including hydrogen gas), which is introduced into the vapor phase growth reactor 3.
An epitaxial layer is grown on a substrate 4 in a furnace.

この場合、エピタキシヤル層中の不純物濃度の
制御法(ドーピング)としては、液1中に不純物
(燐、ひ素、その他)を一定量混合して、不純物
ガスを含む蒸発ガスを得るようにしたいわゆる溶
液ドーピング法と、第1図に示すように、別にド
ーピングガス源5を設け、このドーピングガスを
蒸発容器2からの蒸発ガスと混合するガスドーピ
ング法とがある。
In this case, the method for controlling the impurity concentration (doping) in the epitaxial layer is to mix a certain amount of impurities (phosphorus, arsenic, etc.) into the liquid 1 to obtain an evaporated gas containing the impurity gas. There are a solution doping method and a gas doping method in which a doping gas source 5 is provided separately and this doping gas is mixed with the evaporation gas from the evaporation container 2, as shown in FIG.

溶液ドーピング法においては、液中の不純物濃
度と、蒸発ガス中の不純物濃度が異なるため、液
組成が時間とともに変化するので、エピタキシヤ
ル成長層の不純物濃度を制御するには困難があ
る。特に、極く低い不純物濃度(例えば1013/cm3
以下)の正確な制御はほとんど不可能である。
In the solution doping method, since the impurity concentration in the liquid and the impurity concentration in the evaporated gas are different, the liquid composition changes over time, making it difficult to control the impurity concentration in the epitaxially grown layer. In particular, extremely low impurity concentrations (e.g. 10 13 /cm 3
(below) is almost impossible to control accurately.

ガスドーピング法では、ドーピングガス量の制
御によつて、エピタキシヤル成長層の不純物濃度
を制御することができるが、別にドーピングガス
源を用意しなければならないとの不便があるし、
また1×1013/cm3程度の極めて低い不純物濃度を
実現することは困難であつた。
In the gas doping method, the impurity concentration of the epitaxially grown layer can be controlled by controlling the amount of doping gas, but it has the inconvenience of having to prepare a separate doping gas source.
Furthermore, it has been difficult to achieve an extremely low impurity concentration of about 1×10 13 /cm 3 .

四塩化珪素液の製造において、完全に不純物を
取り去ることはできず、一般に純粋な四塩化珪素
液でもドナー不純物をわずかに含んでいる。従つ
て、得たいエピタキシヤル成長層中の不純物濃度
が極めて低い場合には、上述のドーピング法をと
らず、工業的に得られる純粋な四塩化珪素液を第
1図の方法で蒸発させて、エピタキシヤル成長層
を得ることが行なわれているが、濃度にばらつき
が生じ易く、これを制御することは困難である。
In the production of silicon tetrachloride liquid, impurities cannot be completely removed, and even pure silicon tetrachloride liquid generally contains a small amount of donor impurities. Therefore, when the impurity concentration in the epitaxial growth layer to be obtained is extremely low, the above-mentioned doping method is not used, and an industrially obtained pure silicon tetrachloride solution is evaporated by the method shown in Fig. 1. Although attempts have been made to obtain epitaxially grown layers, variations in concentration tend to occur and it is difficult to control this.

本発明は、溶液ドーピング法を改良して、エピ
タキシヤル成長層の不純物濃度を正確に制御でき
るドーピング法を提供することを目的とし、特に
1013/cm3程度のような極めて低い不純物濃度を安
定して実現できるドーピング法を提供することを
目的とする。
The present invention aims to improve the solution doping method and provide a doping method that can accurately control the impurity concentration of an epitaxially grown layer.
The purpose of the present invention is to provide a doping method that can stably achieve an extremely low impurity concentration of about 10 13 /cm 3 .

他の目的は、不純物濃度1013〜1015/cm3のエピ
タキシヤル成長層を連続して得ることにある。
Another object is to obtain a continuous epitaxially grown layer with an impurity concentration of 10 13 to 10 15 /cm 3 .

本発明は、燐、ひ素、その他所望の不純物を異
なつた割合で混入させたSi(あるいはGe)の四
塩化物液を充てんした2本の蒸発容器を用い、こ
れら両容器に水素ガスを送入して、両容器から得
られる蒸発ガスを混合して、気相成長炉に導入す
るようになし、この際、両容器からの蒸発ガスの
混合比を制御して、エピタキシヤル層の不純物濃
度を制御するようにしたドーピング法である。
The present invention uses two evaporation vessels filled with Si (or Ge) tetrachloride liquid mixed with phosphorus, arsenic, and other desired impurities in different proportions, and hydrogen gas is fed into both vessels. Then, the evaporated gas obtained from both containers is mixed and introduced into the vapor phase growth furnace. At this time, the mixing ratio of the evaporated gas from both containers is controlled to control the impurity concentration in the epitaxial layer. This is a controlled doping method.

この際、両ガスの混合比の制御は、両容器へ送
入する水素の量比を制御することによつて、簡単
に行なえる。
At this time, the mixing ratio of both gases can be easily controlled by controlling the ratio of amounts of hydrogen fed into both containers.

以下、本発明を図面に示す実施例について詳細
に説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.

第2図は、本発明を実施するための装置の概略
図で、2本の蒸発容器21,22を、それぞれ導
管を通して共通の水素供給源H2へ接続する。一
方各容器21,22は、また、蒸発ガスをとりだ
すための導出管を介して、ミキサー7へ共通に接
続され、ミキサー7の導出管は成長炉3へ接続さ
れている。61,62は、それぞれの蒸発容器2
1,22へ送入する水素ガス量を計測する流量計
である。
FIG. 2 is a schematic diagram of an apparatus for carrying out the invention, in which two evaporation vessels 21, 22 are each connected through a conduit to a common hydrogen source H2 . On the other hand, each of the containers 21 and 22 is also commonly connected to a mixer 7 via a lead-out pipe for taking out evaporated gas, and the lead-out pipe of the mixer 7 is connected to the growth furnace 3. 61 and 62 are respective evaporation containers 2
This is a flow meter that measures the amount of hydrogen gas sent to the 1 and 22.

実施例 1 今、蒸発容器21中に、純粋な市販の四塩化珪
素液へ、不純物濃度が1〜2×1013/cm3となるよ
うにように、燐をわずかドープした液11を充填
し、一方、蒸発容器に、同様に不純物濃度が2.5
×1016/cm3になるように燐をドープした四塩化珪
素液12を充填した。エピタキシヤル成長層中の
不純物濃度が1.5〜2×1015/cm3となることを目
標として、蒸発容器21,22への水素ガス流入
量の比を9:1として、約20分間エピタキシヤル
成長を行なわせた。1回の稼動で得られたエピタ
キシヤル成長層(試料数10枚)の不純物濃度のバ
ラツキを、ランナンバー(RunNo.)370〜490の間
のものについて、第3図に示す。第3図で、○・印
は中心値、I印はバラツキの範囲を示す。同図か
ら明らかなように、中心値で、ほぼ1.5〜2×
1015/cm3の濃度を示し、バラツキを含めても、
1.2〜2.4×1015/cm3の範囲にあり、所要の不純物
濃度のものを、安定して得られることがわかる。
Example 1 Now, an evaporation container 21 is filled with a liquid 11 in which a pure commercially available silicon tetrachloride liquid is slightly doped with phosphorus so that the impurity concentration is 1 to 2 x 10 13 /cm 3 . , while the impurity concentration in the evaporation vessel is 2.5
A silicon tetrachloride solution 12 doped with phosphorus was filled to a concentration of ×10 16 /cm 3 . Epitaxial growth was performed for about 20 minutes with the ratio of hydrogen gas inflow into the evaporation vessels 21 and 22 being 9:1, aiming at an impurity concentration in the epitaxial growth layer of 1.5 to 2×10 15 /cm 3 . was made to do so. FIG. 3 shows the variation in impurity concentration of epitaxial growth layers (10 samples) obtained in one operation with run numbers between 370 and 490. In FIG. 3, the circle mark indicates the center value, and the I mark indicates the range of variation. As is clear from the figure, the central value is approximately 1.5 to 2×
Even if it shows a concentration of 10 15 /cm 3 and includes variations,
It is found that the impurity concentration is in the range of 1.2 to 2.4×10 15 /cm 3 and that the required impurity concentration can be stably obtained.

実施例 2 次に、不純物濃度1〜2×1013/cm3になるよう
に燐をドーピングした四塩化珪素液11と、不純
物濃度2.5×1016/cm3になるように燐をドーピン
グした四塩化珪素液12を(ここで区別するため
に、前者を軽ドーピング液、後者を重ドーピング
液と呼ぶ)それぞれ充填した蒸発容器21,22
への水素ガス流入比を変えて約20分間エピタキシ
ヤル成長を行なわせた。このとき、軽ドーピング
液と重ドーピング液への水素ガス流入比と、各流
入比で得られたエピタキシヤル成長層中の不純物
濃度のバラツキを第4図に示す。図で、I印はバ
ラツキの範囲を示す。なお、各回の試料数は10枚
とした。
Example 2 Next, a silicon tetrachloride solution 11 doped with phosphorus to have an impurity concentration of 1 to 2×10 13 /cm 3 and a silicon tetrachloride solution 11 doped with phosphorus to have an impurity concentration of 2.5×10 16 /cm 3 were prepared. Evaporation vessels 21 and 22 each filled with silicon chloride liquid 12 (to distinguish, the former is called a light doping liquid and the latter is called a heavy doping liquid).
Epitaxial growth was performed for about 20 minutes by changing the hydrogen gas inflow ratio. At this time, FIG. 4 shows the ratio of hydrogen gas inflow into the light doping solution and the heavy doping solution, and the variation in impurity concentration in the epitaxially grown layer obtained at each inflow ratio. In the figure, the I mark indicates the range of variation. The number of samples for each round was 10.

同図から明かなように、水素流入比、従つて、
両容器の蒸発ガスの混合比を変えることによつ
て、不純物濃度を変化させることができ、しか
も、各流量比で得られたエピタキシヤル成長層の
不純物濃度のバラツキも小さく(特に低濃度側で
小さくなつている。)、したがつて、所望の不純物
濃度のエピタキシヤル層を安定して得ることがで
きる。
As is clear from the figure, the hydrogen inflow ratio, therefore,
The impurity concentration can be changed by changing the mixing ratio of the evaporated gases in both containers, and the variation in the impurity concentration of the epitaxially grown layer obtained at each flow rate ratio is also small (especially on the low concentration side). ), therefore, an epitaxial layer with a desired impurity concentration can be stably obtained.

次に、下記のような実験を行なつた。 Next, the following experiment was conducted.

第1図に示すように、工業的に得られる純粋な
四塩化珪素液(250Ωcm以上)1を充填した蒸発
容器2へ水素を送り込んで蒸発させ、ガスドーピ
ングを行うことなく成長炉3へ蒸発ガスを送り込
んで、約60分間エピタキシヤル成長を行なわせ
た。それぞれで得られた成長層の不純物濃度を測
定して、第5図に●印でプロツトした。なお、各
回の試料数は10枚とした。
As shown in Fig. 1, hydrogen is sent into an evaporation vessel 2 filled with industrially obtained pure silicon tetrachloride liquid (250 Ωcm or more) 1 and evaporated, and the evaporated gas is transferred to a growth furnace 3 without gas doping. The epitaxial growth was carried out for about 60 minutes. The impurity concentrations of the grown layers obtained in each case were measured and plotted with black circles in FIG. The number of samples for each round was 10.

次に、実施例1と同じ二種類のドーピング液を
充填した21,22のうち低濃度の方のドーピン
グ液、即ち容器21の方のみへ水素を供給して得
たガスを同じ気相成長炉3へ導入して約60分間エ
ピタキシヤル成長させ、得られた不純物濃度をラ
ンナンバー(RunNo.)63以降として○・印で、第5
図にプロツトした。なお、各回の試料数は10枚と
した。第5図から明らかなように、従来の方法で
は、各回毎の不純物濃度に大きなバラツキが生ず
るが、本発明によるときに、極めてバラツキが小
さく、所望の不純物濃度を安定して得られること
がわかる。
Next, gas obtained by supplying hydrogen only to the lower concentration doping solution 21 and 22 filled with the same two types of doping solutions as in Example 1, that is, to the container 21, was added to the same vapor phase growth reactor. 3, epitaxial growth was performed for about 60 minutes, and the obtained impurity concentration was marked with ○ as the run number (Run No.) 63 or later.
Plotted in the figure. The number of samples for each round was 10. As is clear from FIG. 5, in the conventional method, large variations occur in the impurity concentration each time, but when using the present invention, the variation is extremely small, and it can be seen that the desired impurity concentration can be stably obtained. .

上述のように、本発明によれば、異なる不純物
濃度の四塩化珪素液を別々の蒸発容器へ充填し
て、それぞれへ水素を送入して蒸発させ、両蒸発
ガスを所定の混合比で混合させて、気相成長炉へ
導入してエピタキシヤル成長を行うもので、混合
比を変えることによつて、所望の不純物濃度のエ
ピタキシヤル層を安定して得ることができ、特に
低濃度側で安定したエピタキシヤル層を得ること
ができる。
As described above, according to the present invention, silicon tetrachloride liquids with different impurity concentrations are filled into separate evaporation containers, hydrogen is introduced into each to evaporate, and both evaporated gases are mixed at a predetermined mixing ratio. By changing the mixing ratio, it is possible to stably obtain an epitaxial layer with a desired impurity concentration, especially on the low concentration side. A stable epitaxial layer can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のエピタキシヤル成長を行なう
ための装置の系統図、第2図は、本発明の方法に
よる装置の系統図、第3図は、本発明の一実施例
におけるエピタキシヤル層不純物濃度のデータを
示す図、第4図は、他の実施例で水素ガス流量比
と不純物濃度との関係を示す図、第5図は、第1
図の従来例による場合と、本発明による場合とを
比較して不純物濃度を示した図である。 11……軽ドーピング液、12……重ドーピン
グ液、21,22……蒸発容器、3……気相成長
炉、61,62……流量計、7……ミキサー。
FIG. 1 is a system diagram of a conventional apparatus for performing epitaxial growth, FIG. 2 is a system diagram of an apparatus according to the method of the present invention, and FIG. 3 is a diagram of an epitaxial layer impurity in an embodiment of the present invention. FIG. 4 is a diagram showing concentration data, and FIG. 4 is a diagram showing the relationship between hydrogen gas flow rate ratio and impurity concentration in another example. FIG.
FIG. 4 is a diagram showing the impurity concentration in comparison between the case according to the conventional example shown in the figure and the case according to the present invention. 11... Light doping liquid, 12... Heavy doping liquid, 21, 22... Evaporation container, 3... Vapor phase growth furnace, 61, 62... Flow meter, 7... Mixer.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発容器中にSi(あるいはGe)の四塩化物
液を充てんし、該容器に水素を送入し、該容器か
ら得られる蒸発ガスを気相成長炉に導入して、基
板上にSi(あるいはGe)のエピタキシヤル層を
成長させるエピタキシヤル法において、上記蒸発
容器として、一定量の微量不純物を混合したSi
(あるいはGe)の四塩化物液を充てんした容器
と、それより多量の一定量の不純物を混合したSi
(あるいはGe)の四塩化物液を充てんした容器と
の二種類を用意し、両容器に水素を送入し、両容
器から得られる蒸発ガスを混合して上記気相成長
炉に導入し、この際両容器からの蒸発ガスの混合
比を制御して、エピタキシヤル層の不純物濃度を
制御するようにしたことを特徴とする半導体エピ
タキシヤル層のドーピング法。
1 Fill an evaporation container with Si (or Ge) tetrachloride liquid, supply hydrogen into the container, introduce the evaporated gas obtained from the container into a vapor phase growth furnace, and deposit Si (or Ge) on the substrate. Alternatively, in the epitaxial method of growing an epitaxial layer of Ge), the evaporation vessel is made of Si mixed with a certain amount of trace impurities.
A container filled with a tetrachloride solution of (or Ge) and a certain amount of Si mixed with a larger amount of impurities.
Prepare two types of containers, one filled with a tetrachloride liquid (or Ge), feed hydrogen into both containers, mix the evaporated gas obtained from both containers, and introduce it into the vapor phase growth reactor. A method for doping a semiconductor epitaxial layer, characterized in that the impurity concentration in the epitaxial layer is controlled by controlling the mixing ratio of evaporated gases from both containers.
JP15919678A 1978-12-26 1978-12-26 Doping method for epitaxial layer of semiconductor Granted JPS5587425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15919678A JPS5587425A (en) 1978-12-26 1978-12-26 Doping method for epitaxial layer of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15919678A JPS5587425A (en) 1978-12-26 1978-12-26 Doping method for epitaxial layer of semiconductor

Publications (2)

Publication Number Publication Date
JPS5587425A JPS5587425A (en) 1980-07-02
JPS6216011B2 true JPS6216011B2 (en) 1987-04-10

Family

ID=15688412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15919678A Granted JPS5587425A (en) 1978-12-26 1978-12-26 Doping method for epitaxial layer of semiconductor

Country Status (1)

Country Link
JP (1) JPS5587425A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639703B2 (en) * 1986-04-15 1994-05-25 キヤノン株式会社 Deposited film formation method
JPH0196094A (en) * 1987-10-07 1989-04-14 Tokai Univ Process for introducing impurity in low pressure synthesis of diamond
FR2819198B1 (en) * 2001-01-05 2003-09-26 Yves Lecoffre METHOD AND DEVICE FOR CONSTITUTING A VOLATILE SUBSTANCE BY EVAPORATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.ELECTROCHEM.SOC=1975 *

Also Published As

Publication number Publication date
JPS5587425A (en) 1980-07-02

Similar Documents

Publication Publication Date Title
EP0931861B1 (en) Method and apparatus for feeding a gas for epitaxial growth
US3173814A (en) Method of controlled doping in an epitaxial vapor deposition process using a diluentgas
US5431733A (en) Low vapor-pressure material feeding apparatus
US3192083A (en) Method for controlling donor and acceptor impurities on gaseous vapor through the use of hydrogen halide gas
JPS6216011B2 (en)
US4279670A (en) Semiconductor device manufacturing methods utilizing a predetermined flow of reactive substance over a dopant material
US3653991A (en) Method of producing epitactic growth layers of semiconductor material for electrical components
KR920009652B1 (en) Compound semiconductor manufacturing apparatus
JP2866374B1 (en) Method and apparatus for supplying gas for epitaxial growth
Colter et al. Atomic layer epitaxy of device quality GaAs with a 0.6 μm/h growth rate
JPH0796477B2 (en) Vapor growth method and apparatus
US3461004A (en) Method of epitaxially growing layers of semiconducting compounds
JPS5922319A (en) Vapor growth of 3-5 group semiconductor
JPS61501237A (en) Deposition technology
US5250135A (en) Reagent source
JPH0687458B2 (en) Vapor phase epitaxial growth method
JPH01152734A (en) Evaporator
US3488712A (en) Method of growing monocrystalline boron-doped semiconductor layers
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPH01245529A (en) Manufacture of compound semiconductor device
JPS5813486B2 (en) Kagobutsunogouseihouhou
JPS60245214A (en) Vapor growth of compound semiconductor crystal
JPH03112139A (en) Apparatus for supplying gas for vapor epitaxy
JPS6329820B2 (en)
JPS6283400A (en) Method of improving cylinder for vapor growth of organometallic compound