JPS62159895A - Device for preventing freezing of stratum for low-temperature storage tank - Google Patents

Device for preventing freezing of stratum for low-temperature storage tank

Info

Publication number
JPS62159895A
JPS62159895A JP61000426A JP42686A JPS62159895A JP S62159895 A JPS62159895 A JP S62159895A JP 61000426 A JP61000426 A JP 61000426A JP 42686 A JP42686 A JP 42686A JP S62159895 A JPS62159895 A JP S62159895A
Authority
JP
Japan
Prior art keywords
heat
low
reaction
storage tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61000426A
Other languages
Japanese (ja)
Inventor
Shigeo Tomura
重男 戸村
Yasushi Hasegawa
靖 長谷川
Hiroshi Nishio
洋 西尾
Arata Nagata
永田 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP61000426A priority Critical patent/JPS62159895A/en
Publication of JPS62159895A publication Critical patent/JPS62159895A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/10Arrangements for preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/032Avoiding freezing or defrosting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To reduce an operating cost by operating a heat pump with a low temp. source such as seawater, etc. and the coolness of a low temp. carrying liquid as heat sources. CONSTITUTION:Two hydrogenated metals having different equilibrium characteristics to pressure and temperature are filled into reaction containers 21-24 respectively. Heat from a low heat source is applied to one reaction container which is filled with the hydrogenated metal of the same temp. and a high equilibrium pressure, to generate a hydrogen gas by the decomposition reaction on the hydrogenated metal. Or, by providing a first heat exchanger 25 by means of which a generated heat accompanying the forming reaction of the hydrogenated metal is absorbed by an extremely low heat of a low temp. carrying liquid in a low temp. storage tank 12, a high temp. due to heat generating reaction between a hydrogen gas and the hydrogenated metal from one reaction container is fed to a heating medium in the other reaction container. By this structure, an operating cost can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はLPGやl−N G等の低温液化ガスを貯蔵
するための低)晶貯槽で周囲の地層の凍結を防止する凍
結防−1ニ装首の改良に関し、低温出荷液の冷熱γIを
利用したピー1−ポンプで運転経費の低減を図るように
したしのである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is an antifreeze-1 method for preventing surrounding strata from freezing in a low-temperature liquefied gas such as LPG or l-NG. Regarding the improvement of the neck, we attempted to reduce operating costs by using a P1-pump that utilizes the cold heat γI of the low-temperature shipping liquid.

〔従来の技術〕[Conventional technology]

LPG(液化石油ガス)や1−NG(液化天然力ス)等
の低温液化ガスを貯蔵する場合には、地りに立設した地
−L式の低)B貯(介ヤ)地層に側壁を埋設した地下式
の低温貯槽が使用されている。
When storing low-temperature liquefied gases such as LPG (liquefied petroleum gas) and 1-NG (liquefied natural gas), side walls are installed in the ground-L type low) B storage (mediation layer) installed on the ground. Underground cryogenic storage tanks are used.

例えば、周囲Iフ境との調和がはかりやすい地下式の低
温貯槽では、地層に形成した凹部の側部および底部にコ
ンクリートを打設してコンクリ−1〜側壁どコンクリー
ト底版とし、これらの内側に断熱保冷材を介して低温液
が入れられろ内ft’+を!j4築する二!I2殻構j
古がとられることが多い。
For example, in an underground low-temperature storage tank that is easy to harmonize with the surrounding I/F boundary, concrete is poured on the sides and bottom of a recess formed in the stratum to form a concrete bottom slab from Concrete 1 to the side walls. Low-temperature liquid can be poured into the interior ft'+ through an insulated cold insulator! j4 Build two! I2 shell structure
Often old.

このような地下式の低温貯槽では、内槽に低温液を貯蔵
でると、内槽の外側に断熱保冷(Aが介装されているに
もかかわらずコンクリート側壁や−1ンクリート底版を
介して次第に周囲の地層がYOInされ、凍結されてし
まう。
In such an underground low-temperature storage tank, when low-temperature liquid is stored in the inner tank, it gradually leaks through the concrete side wall and -1 concrete bottom plate, despite the insulation and cold insulation (A) being installed on the outside of the inner tank. The surrounding strata are YOIned and frozen.

このため地層等の膨張が生じ、コンクリ−上側壁やコン
クリート底版に大きな圧力が加わり、In傷を生ずるお
それがある。
This causes expansion of the strata, etc., and a large pressure is applied to the concrete upper wall and the concrete bottom slab, which may cause In damage.

そこで、低温貯槽の周囲の地層等の凍結を防止するため
ヒータを設置して凍結防止装置としている。
Therefore, in order to prevent freezing of the strata around the low-temperature storage tank, a heater is installed as an antifreeze device.

凍結防IL 菰t!(は、例えば第3図に示すように、
地層1に埋設された低温貯槽2の側壁外周に伝熱管で構
成した側部ヒータ3を設置してヘッダに接続し、側部加
熱用循環ポンプ4によリー二次側部熱交換器5で加熱さ
れた二次温水を循環する一方、低温貯槽2の底版の下側
に伝熱管で構成した底部ヒータ6を設置し、底部加熱用
循環ポンプ7により二次底部熱交換器8で加熱された二
次温水を循1還J−るJ:うにな・〕ている。
Freeze protection IL kot! (For example, as shown in Figure 3,
A side heater 3 made of heat transfer tubes is installed on the outer periphery of the side wall of a low-temperature storage tank 2 buried in a geological formation 1 and connected to a header, and a secondary side heat exchanger 5 is connected to the side heating circulation pump 4. While circulating the heated secondary hot water, a bottom heater 6 composed of a heat transfer tube was installed under the bottom plate of the low temperature storage tank 2, and the water was heated by the secondary bottom heat exchanger 8 by the circulation pump 7 for bottom heating. The secondary hot water is circulated.

そして、2つの二次熱交換器5.8の加熱源となる一次
温水がボイラからの蒸気等の加熱媒体により一次熱交換
器9で加熱されるようになっている。
The primary hot water, which serves as a heating source for the two secondary heat exchangers 5.8, is heated in the primary heat exchanger 9 by a heating medium such as steam from a boiler.

また、側部ヒータ3おJ、び底部ヒータ6をそれぞれ伝
熱管で構成1.!す゛、電気ヒータで構成し、電力によ
り直接加熱りる凍結防止装置が使用されることらある。
In addition, the side heaters 3 and the bottom heater 6 are each constructed of heat transfer tubes.1. ! In some cases, anti-freeze devices are used that consist of electric heaters and are heated directly by electricity.

〔発明が解決しようとザる問題点〕[Problems that the invention attempts to solve]

このような凍結防止装置では、側部ヒータ3 J3よび
底部ヒータ6の加熱源として蒸気や電気を用いるため運
転経費が非常に高く、低湿貯槽2の管理費の30〜/I
O%を占め絆済的負担が大きいという問題がある。
In such an antifreeze device, operating costs are very high because steam or electricity is used as a heating source for the side heater 3 J3 and the bottom heater 6, and the management cost of the low humidity storage tank 2 is 30~/I.
There is a problem that the bond insurance burden is large, accounting for 0% of the total.

この発明はかかる従来技術に鑑みてなされたもので、低
温貯槽の出荷液の冷熱を利用する等で運転経費の低減が
はかれ、構3古の簡単な低温貯槽の地層凍結防止装置を
提供しようとするものである。
The present invention has been made in view of the prior art, and aims to provide a simple geological freeze prevention device for a low temperature storage tank, which reduces operating costs by utilizing the cold energy of the liquid shipped from the low temperature storage tank. That is.

C問題点を解決づ−るための手段] 上記問題点を解決づ−るためこの発明は、低温貯槽の地
層への埋設部分に接近して加熱用の熱交換器を設置し、
この熱交換器に加熱媒体を供給して地層の凍結を防止す
る凍結防止装置において、圧力・温度に対する平衡特性
の異なる2つの金属水素化物をそれぞれ反応容器に充填
し、同一温度の平衡圧力が高い金属水素化物が充填され
た一方の反応容器に低熱源からの熱を1qて当該金属水
素化物の分解反応による水素ガスを発生させ、あるいは
低(!+a貯冶内の低温出荷液の極低熱で金属水素化物
の生成反応に伴う発熱をうばう第1熱交換器を設り、他
方の反応容よ)に前記一方の反応容器からの水夕);ガ
スと金属水素化物どの発熱反応による高熱を加熱媒体に
供給し、あ、るいは前記低熱源からの熱を(qて金属水
素化物を分解再生りる第2熱交換器を設けたことを特徴
とするしのである。
Means for Solving Problem C] In order to solve the above problems, the present invention installs a heating heat exchanger close to the part of the low temperature storage tank buried in the stratum,
In this antifreeze device, which supplies a heating medium to a heat exchanger to prevent formations from freezing, two metal hydrides with different equilibrium characteristics with respect to pressure and temperature are filled into a reaction vessel, and the equilibrium pressure at the same temperature is high. 1 q of heat from a low heat source is applied to one reaction vessel filled with metal hydride to generate hydrogen gas due to the decomposition reaction of the metal hydride, or the extremely low heat of the low temperature shipping liquid in the low (!+a storage) is generated. A first heat exchanger is installed to absorb the heat generated by the metal hydride production reaction, and the high heat generated by the exothermic reaction between the gas and metal hydride is transferred to the other reaction vessel. The apparatus is characterized in that it is provided with a second heat exchanger which decomposes and regenerates the metal hydride by supplying the heating medium to the heat source or by using the heat from the low heat source.

〔作 用〕[For production]

低温貯(角の地層への設置部分に接近して設けた熱交換
器に加熱媒体を供給覆ることで凍結を防止するが、この
加熱媒体の加熱のため平衡特性の異なる2つの金属水素
化物間の分解反応と生成反応とを圧力条件を変えて可逆
的に行なわせるよう海水等の低熱源と低温出荷液の冷熱
とを利用し、生成反応による発熱で加熱を行ない、分解
反応で金属水素化物の再生を行なうJ:うにしてヒート
ポンプを構成し、安価な熱源ぐ地層の凍結を防止覆る。
Low-temperature storage (freezing is prevented by supplying a heating medium to a heat exchanger installed close to the installation part in the corner stratum and covering it, but due to the heating of this heating medium, the temperature between two metal hydrides with different equilibrium properties In order to perform the decomposition reaction and production reaction reversibly by changing the pressure conditions, a low heat source such as seawater and the cold heat of the low-temperature shipping liquid are used.The heat generated by the production reaction is used to heat the metal hydride. J: Build a heat pump using sea urchin and cover it to prevent freezing of the geological formation, which is an inexpensive heat source.

〔実施例〕〔Example〕

以下この発明の一実施例を図面に基づさ詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第1図はこの発明の低温貯(aの地層凍結防止装置Ff
の一実施例にかかる概略構成図(ある。
Figure 1 shows the cryogenic storage (a) geological freeze prevention device Ff of this invention
A schematic configuration diagram according to an embodiment of the present invention.

この凍結防止¥1id10は、地層11に埋設された地
下式の低温貯槽12に適用したしのであり、低温貯槽1
2の周囲地表部に低温貯槽12より大径の入口ヘッダ1
3aと出口ヘッダ13bとが設置され、低温貯f?f1
2の側壁に接近して円周等間隔に多数の二重管で形成さ
れた加熱管13cが配首されてその内管が入口ヘッダ1
3aに、外管が出口ヘッダ13bに接続されて側部加熱
用の側部ヒータ13がtf4成されている。
This freezing prevention ¥1id10 is applied to the underground low temperature storage tank 12 buried in the stratum 11, and the low temperature storage tank 1
An inlet header 1 with a larger diameter than the low-temperature storage tank 12 is installed on the ground surface around 2.
3a and an outlet header 13b are installed, and the low temperature storage f? f1
Heating tubes 13c formed of a large number of double tubes are arranged at equal intervals around the circumference close to the side wall of the header 2, and the inner tubes are connected to the inlet header 1.
3a, an outer tube is connected to an outlet header 13b, and a side heater 13 for side heating is constructed.

J:た、低温貯槽12の底版の下側にb加熱用の伝熱管
14aが底版の形状に対応して蛇行させであるいはコイ
ル状に配置され、底部加熱用の底部ヒータ11Iが構成
されている。
J: A heat exchanger tube 14a for b heating is arranged under the bottom plate of the low temperature storage tank 12 in a meandering manner or in a coil shape in accordance with the shape of the bottom plate, and a bottom heater 11I for heating the bottom is configured. .

これら側部ヒータ13および底部ヒータ14へは加熱媒
体が供給されて加熱されるが、この加熱媒体はヒル1−
ポンプ15による熱を利用して加゛熱されるようになっ
ている。
A heating medium is supplied to these side heaters 13 and bottom heater 14 for heating.
It is heated using the heat generated by the pump 15.

づなわち、ヒートポンプ15で4qられた熱と熱交換さ
れて一次温水16が作られ、この−次温水16を側部加
熱用循環ポンプ得て側部ヒータ13に送給して低温貯槽
12の側壁外周の地層11を加熱し、加熱後の一次温水
16を二次渇水加熱器18に送給して二次温水19を加
熱し、この二次温水19を底部加熱用循環ポンプ20で
底部ヒータ14に循環して低温貯槽12の底版を加熱り
るJ:うになっている。
In other words, primary hot water 16 is produced by heat exchange with the heat generated by 4q by the heat pump 15, and this secondary hot water 16 is supplied to the side heater 13 through the side heating circulation pump to be fed to the low temperature storage tank 12. The stratum 11 on the outer periphery of the side wall is heated, the heated primary hot water 16 is sent to the secondary drought heater 18 to heat the secondary hot water 19, and this secondary hot water 19 is sent to the bottom heater using the bottom heating circulation pump 20. 14 to heat the bottom plate of the low temperature storage tank 12.

このヒートポンプ15は、圧力・湿度に対する平衡特性
の異なる2種類の金属水素化物を利用し、自然界のZ角
氷や空気等を低熱源とするとともに、[!貯槽12内の
但;Ω出荷液の冷熱を利用するものである。
This heat pump 15 uses two types of metal hydrides that have different equilibrium characteristics with respect to pressure and humidity, uses natural Z ice cubes, air, etc. as a low heat source, and [! However, the cold energy of the shipping liquid in the storage tank 12 is utilized.

金属水素化物は、次式(1)に示J−反応ISj性を右
してJ3す、左辺の牛成過稈ては反応熱Qの発熱反応で
あり、右辺の分解過程では反応熱熱量Qの吸熱反応であ
る。
The metal hydride is expressed in the following equation (1) with the J-reaction ISj characteristic. It is an endothermic reaction.

ここで、Me:水素吸蔵合金 MOトIX 、 Me 1−IX+1/ :金属水メ1
化物Q:反応熱      である。
Here, Me: hydrogen storage alloy MOto IX, Me 1-IX+1/: metal water me 1
Compound Q: Heat of reaction.

そこで、圧力・濡麿に対Jる平衡特性の異イg62種類
の金属水素化物Me 1−1x 、 M(! 1−1x
+yとM e’ l−I X’ M O’ l−I X
’ +Vを用いることで、第2図に示づ一ヒー1−ポン
プ4Jイクルに従って作動リ−るピー1〜ポンプ15を
構成する。
Therefore, we investigated 62 types of metal hydrides Me 1-1x , M(! 1-1x
+y and M e' l-I X' M O' l-I X
' +V is used to configure pumps 1 to 15 that operate according to the cycle of one heater 1 and pump 4J as shown in FIG.

例えば、金属水メる化物Hcllx、 Me tlx4
Vの方が同一温度Tに対する平衡圧力1つが高いとJれ
ば、その平衡特(’tは図中へとなり、他方の金属水素
化物M O’ I−1X’ 、 M (!’ HX’ 
十Vの平衡特性が図中8となる。
For example, metal hydrochloride Hcllx, Me tlx4
If V has a higher equilibrium pressure for the same temperature T, then its equilibrium characteristic ('t is in the figure, and the other metal hydride M O'I-1X', M (!'HX'
The equilibrium characteristic of 10V is 8 in the figure.

ぞして、ヒートポンプサイクル上の点をa、b。Then, the points on the heat pump cycle are a and b.

c、dとすると、各点に対応すする)品疫および圧力は
次の物理的意味を右Jる。
c, d, the quality and pressure corresponding to each point have the following physical meanings.

Ta :自然界等から得られる低熱源の温度。Ta: Temperature of a low heat source obtained from the natural world.

T1〕:ヒートポンプにJ、って1vlらる温度。T1]: The temperature at which 1vl of J is applied to the heat pump.

Td 二低温出荷液の極低温。Td: Extremely low temperature of the two-lower temperature shipping liquid.

Pa :金属水素化物Me’ トl x’ +yの温度
1aにお(プる平衡圧力。
Pa: Equilibrium pressure of metal hydride Me' +y at temperature 1a.

Pb :金属水素化物fVlol−1xの温度T b 
ニー1j +Jる平衡圧力1゜ I’ll:金属水素化物He’ トl x’の温度Td
にお【)る平衡圧力。
Pb: Temperature T b of metal hydride fVlol-1x
Knee 1j + J equilibrium pressure 1゜I'll: Temperature Td of metal hydride He'
equilibrium pressure.

PC;水素化物Mcl−1x+yの温UTc(=1−a
)にJ5レノる平衡圧力。
PC; warm UTc of hydride Mcl-1x+y (=1-a
) to the equilibrium pressure of J5.

このビー1−ポンプ1ナイクルでは、まず、a−b間(
ごd5イて、a点の金B)水A;化物M O’ I−(
x’ +y自然界等の低熱源Taで加熱すると、上式(
1)の右辺の吸熱反応が起り、M Q’ II X’ 
に分解δれ且つ水素ガスート(2が発生する。
In this Bee 1-Pump 1 Nicle, first, between a and b (
d5, gold at point a B) water A; compound M O' I-(
x' +y When heated with a low heat source Ta such as in nature, the above formula (
The endothermic reaction on the right side of 1) occurs, and M Q' II X'
It decomposes into δ and hydrogen gas soot (2) is generated.

■ この水素ガス−142をb点のらう一方の金属水素化物
Met−1xに供給して反応させると、ここては、上式
(1)の左辺の反応が起りMcHx+yが生成され、■
つ高温Tbの反応熱Qが発生り−ることとなり、この温
度下すの反応熱Qを加熱媒体の加熱に+り用する。
■ When this hydrogen gas -142 is supplied to one metal hydride Met-1x at point b and reacted, the reaction on the left side of the above equation (1) occurs and McHx+y is generated, and ■
The reaction heat Q at a higher temperature Tb is generated, and the reaction heat Q at a lower temperature is used for heating the heating medium.

次にc −<1間にa−タいて、生成された金属水素化
物Met−1x+yを再生するため、0点でこれをii
’j水等の低熱源Tc  (=Ta )ぐ加熱し、上式
(1)の右辺の反応を起ざし、 ■ McHxと水素ガス−1−12を生成する。
Next, in order to regenerate the generated metal hydride Met-1x+y by a-ta between c-<1, it is set as ii at point 0.
A low heat source Tc (=Ta) such as water is heated to cause the reaction on the right side of the above equation (1) to produce (1) McHx and hydrogen gas-1-12.

そして、この水素ガス−1−12をd点の金属水素化物
M O’ HX’ に供給して上式(1)の左辺の反応
を起さけ、M e’ ti x’ +yに再生するとと
しに、発生する反応熱Q8淘度Tdの低温出荷液で冷1
(I除去することで・反応を連続さUる。
Then, suppose that this hydrogen gas-1-12 is supplied to the metal hydride M O'HX' at point d to cause the reaction on the left side of the above equation (1) and regenerated to M e' t x' +y. , the reaction heat generated is Q8.
(By removing I, the reaction continues.

こうして再生された金属水素化物 M O’ l−I X’ Fyは、再びa点で海水等の
低熱源T Qで加熱されa−b間の反応に用いられる。
The metal hydride M O' l-I X' Fy thus regenerated is heated again at point a with a low heat source TQ such as seawater and used for the reaction between a and b.

このようなヒートポンプサイクルによれば、海水や人気
簀の自然界の熱や温排水等の低熱源から高温の反応熱Q
を取り出・(ことができ、これを利用して低温貯槽の周
辺の地層の凍結を防止できる。
According to such a heat pump cycle, high temperature reaction heat
This can be used to prevent the strata around the cryogenic storage tank from freezing.

次に、このヒートポンプサイクルを行なわせるヒートポ
ンプの具体的構成について説明1゛る。
Next, the specific configuration of the heat pump that performs this heat pump cycle will be explained.

第2図のヒートポンプサイクルの各点a、b。Points a and b of the heat pump cycle in Figure 2.

c、dにスJ応シT: 4. It!a (7) 反応
容器21.22゜23.24を設冒し、それぞれの反応
容器21゜22.23.24に金属水素化物M e’ 
I−1x’ +y。
c, d: 4. It! a (7) Set up reaction vessels 21, 22, 23, 24, and place metal hydride M e' in each reaction vessel 21, 22, 23, 24.
I-1x' +y.

Me lx 、 Me t−1x+y 、 Me ’ 
Hx ’ を充tγ1づ“るとともに、熱交換器25.
26.27.28を設けて反応容器の加熱や冷ノJがで
きるようにする。
Me lx, Me t-1x+y, Me'
Hx' is filled with tγ1, and the heat exchanger 25.
26, 27, and 28 to enable heating and cooling of the reaction vessel.

そして、反応容器21と22を1つのパッケージ29に
収納して配管で接続するとともに、反応容器23と2/
Iを1つのパッケージ3oに入れて配管で接続し、パッ
ケージ29または3oの位買を交換可能としてJ3 <
Then, the reaction vessels 21 and 22 are housed in one package 29 and connected by piping, and the reaction vessels 23 and 2/
I is placed in one package 3o and connected with piping, and the position of package 29 or 3o is exchangeable and J3 <
.

各反応容器21〜24に設けられている熱交換器25〜
28のうら、熱交(受器25.27には、海水秀の自然
界の低熱源からの熱が供給されるにうにし、反応容器2
2の熱交換器26には、−次渇水16が循環されるよう
になっており、反応容器24の熱交換器28には、低温
出荷液31と熱交換器32で熱交換されて冷fJlされ
た冷7jl媒体33が循環ポンプ31で循環されるJ:
うになっている。
Heat exchangers 25 - provided in each reaction vessel 21 - 24
28, the heat exchanger (receiver 25.27 is supplied with heat from a low heat source in the natural world of sea water), and the reaction vessel 2
The second dry water 16 is circulated through the heat exchanger 26 of the reaction vessel 24, and the cold fJl is exchanged with the low-temperature shipping liquid 31 through the heat exchanger 32 and sent to the heat exchanger 28 of the reaction vessel 24. The cooled medium 33 is circulated by the circulation pump 31:
It's becoming a sea urchin.

なJ3、これら熱交換器25〜28に供給される熱交換
媒体はパッケージ29と30を交換した場合、熱交換器
25には冷却媒体33が、熱交換器26および28には
低熱源からの熱が、熱交換器27には一次温水16がそ
れぞれ供給されるようになっている。
J3, the heat exchange medium supplied to these heat exchangers 25 to 28 is that when the packages 29 and 30 are exchanged, the heat exchanger 25 receives the cooling medium 33, and the heat exchangers 26 and 28 receive the coolant from a low heat source. Heat is supplied to the primary hot water 16 to the heat exchanger 27, respectively.

このようなヒートポンプ15では、パッケージ2つ内で
ヒートポンプサイクルのa−b間の反応が、またパッケ
ージ30内でC−4間の反応が、同時に行イ1われ、−
次渇水16が加熱されて凍結Jj止に利用される。
In such a heat pump 15, the reaction between a and b of the heat pump cycle is carried out simultaneously in the two packages, and the reaction between C and 4 is carried out simultaneously in the package 30, and -
The next dry water 16 is heated and used to stop freezing.

そして、各パッケージ29.30内での反応が飽和した
らバララージ29と30とを交換し、連′F、を的に一
次温水1Gを加熱するJ:うにザる。
Then, when the reaction in each package 29 and 30 is saturated, replace the bulkheads 29 and 30, and heat 1G of primary hot water using series 'F' and sea urchins.

むお、j磨続的に一次温水16を加熱Uず、金属水:(
吋化物tvlcHxの再生を休止状態で行なうことも可
能であり、パッケージ2つのみどし、熱交換;音25に
は)h水等ど冷却媒体33の切換ができ・るようにする
とともに、熱交換器2Gには一次温水16とil+7水
等との切換ができるにうにしてら良い。
Continuously heating the primary hot water 16, metallic water: (
It is also possible to regenerate the compound tvlcHx in a dormant state. It is preferable that the exchanger 2G be capable of switching between the primary hot water 16 and the il+7 water.

また、このにうなし一1〜ポンプ15に用いられる金属
水素化物どしては、〃1えば、ランタン・ニッケルとミ
ツシュメタル・ニッケル・鉄とを用いることができ、こ
れをLNG、LPGの低温貯槽12に適用した場合には
、ヒートポンプサイクルの各点a〜dの平衡温度T J
j J:び平衡圧ノ〕Pは例えば、次のJ:′うな値ど
なり15℃程度の二次温水を50°C程度に加熱して、
これを凍結防止に利用できる。
In addition, as the metal hydride used in the pumps 1 to 15, for example, lanthanum nickel and Mitsushi metal nickel iron can be used, and these can be used in low-temperature storage tanks for LNG and LPG. 12, the equilibrium temperature T J of each point a to d of the heat pump cycle
j J: and equilibrium pressure] P is, for example, the following value J:' When secondary hot water of about 15°C is heated to about 50°C,
This can be used to prevent freezing.

a(杓 20℃、約11 K9/ cfflabs )
 。
a (ladle 20℃, approx. 11 K9/cfflabs)
.

b(約 60 ’C、約 7に9/ciabs ) 。b (approximately 60'C, approximately 7 to 9/ciabs).

C(約 10℃、約 I K’J / cnf abs
 ) 。
C (approx. 10℃, approx. IK'J/cnf abs
).

d(約−40℃、約 O07に9 / aj abs 
)。
d (approximately -40℃, approximately O07 to 9/aj abs
).

<K J3、金属水素化物どしては上記のbののばかラ
ンタン・ニッケルとミツシュメタル・ニッケルやミツシ
ュメタル・ニッケル・鉄とヂタン・り1:1ム・マンガ
ン秀種々のものを利用寸ろことがでさる。
<K J3, As for metal hydrides, various kinds of lanthanum nickel and Mitshu metal nickel and Mitshu metal nickel, iron and ditanium 1:1 mu manganese can be used. It's a monkey.

J:た、凍結防止対象は、地上式低温貯槽の側壁J′3
J:び底版の周辺の地層に限らず、地上式低温貯槽のス
ラブの周辺の地層に(、)適用できる。
J: The target for freezing prevention is the side wall J'3 of the above-ground cryogenic storage tank.
J: Applicable not only to the strata around the bottom slab, but also to the strata around the slab of an above-ground low temperature storage tank.

〔発明の効果〕 以上−実施1列とどしに具体的に説明したようにこの発
明によれば、圧力・温度に対する平衡特性の異なる2種
類の金属水素化物の生成・分解による発熱反応および吸
熱反応を利用してピー1〜ポンプを構成し、このヒート
ポンプを海水等の低熱源おJ:び低温出荷液の冷熱とを
熱源として運転し、高温の反応熱を1ワて低i?fli
貯槽周辺の地層を加熱して凍結を防止するJ、うにした
ので、従来の凍結防止装置のように蒸気や電気を熱源と
り“る場合に比べ運転経費を大幅に削減でさ°る。
[Effects of the Invention] As specifically explained in Section 1 above-Execution 1, according to the present invention, exothermic reactions and endothermic reactions due to the production and decomposition of two types of metal hydrides with different equilibrium characteristics with respect to pressure and temperature can be achieved. A pump is configured using the reaction, and this heat pump is operated using a low heat source such as seawater and the cold heat of the low temperature shipping liquid as a heat source, and the high temperature reaction heat is used to generate a low heat pump. fli
Because it heats the strata around the storage tank to prevent freezing, operating costs can be significantly reduced compared to conventional antifreeze devices that use steam or electricity as their heat source.

また、低温出荷液の冷熱を有効に利用でき、従来のよう
に出荷に際して加熱器で加熱する場合にもそのエネルギ
を節減でき、低温貯槽システムの省エネルVともなる。
Furthermore, the cold energy of the low-temperature shipping liquid can be effectively used, and even when the liquid is heated with a heater during shipping as in the conventional case, the energy can be saved, resulting in energy saving V of the low-temperature storage tank system.

ざらに、この凍結防止装置には、可動部分がなく、循環
ポンプ等の運転管理たりて良く、保守管理が容易で信頼
性ら高い。
In general, this anti-freeze device has no moving parts, so it can be used to control the operation of circulation pumps, etc., and is easy to maintain and highly reliable.

また、装置の構造も簡単であり、従来装置への適用ら8
易である。
In addition, the structure of the device is simple, making it easy to apply to conventional devices.
It's easy.

4、図面の筒中χヱ31明 第1図はこの発明の低)晶貯槽の地層凍結防止装置の一
実施例にかかる概略構成図、第2図は金属水素化物を用
いるピー1〜ボンブリイクルの説明図、第3図【、1従
来装置の概略構成図である。
4. Figure 1 is a schematic diagram of an embodiment of a geological freeze prevention device for a low crystal storage tank according to the present invention, and Figure 2 is an explanation of a bomb tank using a metal hydride. FIG. 3 is a schematic configuration diagram of a conventional device.

10・・・凍結防止装置、11・・・地層、12・・・
低湿・貯槽、13・・・側部ヒータ、14・・・底部ヒ
ータ、15・・・ピー1〜ポンプ、16・・・−次温水
、17・・・側部加熱用循環ポンプ、18・・・二次渇
水加熱器、19・・・二次温水、20・・・底部加熱用
循環ポンプ、21〜24・・・反応容器、25〜28・
・・熱交換器、31・・・低温出荷液。
10... Freeze prevention device, 11... Geological stratum, 12...
Low humidity/storage tank, 13...Side heater, 14...Bottom heater, 15...P1~pump, 16...-Next hot water, 17...Circulation pump for side heating, 18... - Secondary drought heater, 19... Secondary hot water, 20... Bottom heating circulation pump, 21-24... Reaction vessel, 25-28.
...Heat exchanger, 31...Low temperature shipping liquid.

Claims (1)

【特許請求の範囲】[Claims] 低温貯槽の地層への埋設部分に接近して加熱用の熱交換
器を設置し、この熱交換器に加熱媒体を供給して地層の
凍結を防止する凍結防止装置において、圧力・温度に対
する平衡特性の異なる2つの金属水素化物をそれぞれ反
応容器に充填し、同一温度の平衡圧力が高い金属水素化
物が充填された一方の反応容器に低熱源からの熱を得て
当該金属水素化物の分解反応による水素ガスを発生させ
、あるいは低温貯槽内の低温出荷液の冷熱で金属水素化
物の生成反応に伴う発熱をうばう第1熱交換器を設け、
他方の反応容器に前記一方の反応容器からの水素ガスと
金属水素化物との発熱反応による高熱を加熱媒体に供給
し、あるいは前記低熱源からの熱を得て金属水素化物を
分解再生する第2熱交換器を設けたことを特徴とする低
温貯槽の地層凍結防止装置。
In an anti-freeze system that installs a heating heat exchanger close to the part of the low-temperature storage tank buried in the stratum and supplies a heating medium to the heat exchanger to prevent the stratum from freezing, equilibrium characteristics with respect to pressure and temperature are used. Two metal hydrides with different values are filled into reaction vessels, and one reaction vessel filled with a metal hydride at the same temperature and higher equilibrium pressure receives heat from a low heat source to cause a decomposition reaction of the metal hydride. A first heat exchanger is provided that generates hydrogen gas or uses the cold heat of the low-temperature shipping liquid in the low-temperature storage tank to absorb the heat generated by the metal hydride production reaction,
A second step for decomposing and regenerating the metal hydride by supplying high heat from the exothermic reaction between the hydrogen gas from the one reaction container and the metal hydride to the other reaction container, or by obtaining heat from the low heat source. A geological freeze prevention device for a low temperature storage tank characterized by being equipped with a heat exchanger.
JP61000426A 1986-01-06 1986-01-06 Device for preventing freezing of stratum for low-temperature storage tank Pending JPS62159895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000426A JPS62159895A (en) 1986-01-06 1986-01-06 Device for preventing freezing of stratum for low-temperature storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000426A JPS62159895A (en) 1986-01-06 1986-01-06 Device for preventing freezing of stratum for low-temperature storage tank

Publications (1)

Publication Number Publication Date
JPS62159895A true JPS62159895A (en) 1987-07-15

Family

ID=11473480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000426A Pending JPS62159895A (en) 1986-01-06 1986-01-06 Device for preventing freezing of stratum for low-temperature storage tank

Country Status (1)

Country Link
JP (1) JPS62159895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114211A (en) * 2014-12-17 2016-06-23 大成建設株式会社 Low temperature underground type reservoir and construction method of low temperature underground type reservoir
JP2017125546A (en) * 2016-01-13 2017-07-20 鹿島建設株式会社 Side heater equipment, heater operation management system, and heater operation management method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114211A (en) * 2014-12-17 2016-06-23 大成建設株式会社 Low temperature underground type reservoir and construction method of low temperature underground type reservoir
JP2017125546A (en) * 2016-01-13 2017-07-20 鹿島建設株式会社 Side heater equipment, heater operation management system, and heater operation management method

Similar Documents

Publication Publication Date Title
EP0015106B1 (en) Absorption-desorption system
US10006420B2 (en) Storage tank for liquefied fuel
US4185979A (en) Apparatus and method for transferring heat to and from a bed of metal hydrides
JP5531334B2 (en) Chemical heat pump container
JP2004239250A (en) Carbon dioxide closed circulation type power generating mechanism
IE52196B1 (en) Apparatus for carrying out a process for the energy-saving recovery of useful heat from the environment
JPS62159895A (en) Device for preventing freezing of stratum for low-temperature storage tank
Alqahtani Performance evaluation of a solar thermal storage system proposed for concentrated solar power plants
GB1568374A (en) Hydrogen from a hydride material
US5857345A (en) Method of managing a solid/gas adsorption or thermochemical reaction
US9777968B1 (en) Metal hydride-based thermal energy storage systems
Vasil’ev et al. Multisalt-carbon chemical cooler for space applications
KR20170119502A (en) Energy recycling system using warm water drained from power plant
JPH07113590A (en) Heat accumulation device for chemical heat accumulating material
JPH0470522B2 (en)
JP2003214721A (en) Chemical heat pump system and operation method for the same
JPH05332690A (en) Heat storage device
JPS62275820A (en) Regenerative heater for vehicle
JPH0115796B2 (en)
JPH02259374A (en) Cooling apparatus using metal hydride
JPH0456229B2 (en)
JPH0477221B2 (en)
CN215764597U (en) Gas-phase hydrogen storage equipment and system device
JPS6037395B2 (en) Portable heating or cooling device
JPS62123001A (en) Method for purifying hydrogen