JPS62158892A - Manufacture of electrolytic iron - Google Patents

Manufacture of electrolytic iron

Info

Publication number
JPS62158892A
JPS62158892A JP61000743A JP74386A JPS62158892A JP S62158892 A JPS62158892 A JP S62158892A JP 61000743 A JP61000743 A JP 61000743A JP 74386 A JP74386 A JP 74386A JP S62158892 A JPS62158892 A JP S62158892A
Authority
JP
Japan
Prior art keywords
cathode
anode
iron
electrolytic
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61000743A
Other languages
Japanese (ja)
Other versions
JPH0726220B2 (en
Inventor
Yoshimitsu Sawada
沢田 喜充
Susumu Saito
進 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61000743A priority Critical patent/JPH0726220B2/en
Publication of JPS62158892A publication Critical patent/JPS62158892A/en
Publication of JPH0726220B2 publication Critical patent/JPH0726220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To prevent the surface of electrolytic iron electrodeposited on a cathode from being made uneven when electrolytic iron is manufactured, by using a curved plate having a recessed surface on the anode side as the cathode or putting an anode in a vertical cylindrical body used as the cathode and rotating one of them. CONSTITUTION:A mild steel or pure iron anode and a stainless steel cathode are placed in an electrolytic soln. contg. ferrous ions and electric current is supplied to the electrodes to electrodeposit high purity electrolytic iron on the surface of the cathode. At this time, a recessed cathode 2 is placed in the electrolytic soln. 3 so that the recessed surface is faced toward a flat plate- shaped anode 1 placed in the soln. 3 or an anode 5 is put in a cylindrical cathode 6 whose central axis is in the vertical direction in a noncontact state and the cathode 6 or the anode 5 is rotated. The surface of electrolytic iron electrodeposied on the cathode is made smooth and high purity electrolytic iron without having ruggedness is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解鉄の製法に係り、より詳しく述べると、電
着表面の凹凸を小さくして陰極上により厚く鉄を電着す
ることができるようにする方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing electrolytic iron, and more specifically, it is possible to reduce the unevenness of the electrodeposited surface and electrodeposit thicker iron on the cathode. on how to do so.

電解鉄は通常の軟鋼とか純鉄に比べ各種不純物が格段と
少ないため、磁性材料、電子材料、合金材料、試験研究
用ベースメタル材料等高品位を要求される分野に賞月さ
れている。
Electrolytic iron contains far fewer impurities than ordinary mild steel or pure iron, so it is used in fields that require high quality, such as magnetic materials, electronic materials, alloy materials, and base metal materials for testing and research.

〔従来の技術〕[Conventional technology]

電解槽中に電解液を収容し、電解液中に水平回転軸を有
する回転ドラム型陰極と、板状の軟鋼または純鉄製陽極
とを対置させ、陰極を回転させながら電解して高純度鉄
を陰極曲面上に電着させる電解鉄の製造方法は公知であ
る。これは陰極表面付近で発生するガスの脱ガスのため
に陰極を回転させるものである。陰極として平板を用い
る電解法も公知であるが、その場合、脱ガスのために電
解液を強制循環するなどの手段が採用されている。
An electrolytic solution is stored in an electrolytic cell, and a rotating drum-shaped cathode with a horizontal rotating shaft is placed in opposition to a plate-shaped mild steel or pure iron anode, and high-purity iron is produced by electrolysis while rotating the cathode. Methods for producing electrolytic iron, which is electrodeposited onto a curved cathode surface, are known. This rotates the cathode in order to degas the gas generated near the cathode surface. An electrolysis method using a flat plate as a cathode is also known, but in that case, means such as forced circulation of the electrolyte solution are employed for degassing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如く回転ドラム型あるいは平板型の陰極を用いた
場合には、電着鉄の厚みが増すと表面の凹凸が大きくな
る傾向があるために、電着鉄を厚さを大きくすることが
できず、またその結果電極引上回数が多くなるという欠
点がある。
When using a rotating drum type or flat plate type cathode as described above, the thickness of the electrodeposited iron cannot be increased because the surface irregularities tend to increase as the thickness of the electrodeposited iron increases. Moreover, as a result, there is a drawback that the number of electrode pull-outs increases.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記問題点を解決すべく鋭意努力した結
果、陰極として陽極側に凹型の曲面を有するものを用い
れば、電着鉄の厚みが増しても表面の凹凸が大きくなら
ず、より厚い電着鉄を得ることを可能になることを見い
出し、本発明を完成するに至った。
As a result of our earnest efforts to solve the above-mentioned problems, the inventors of the present invention have found that if a cathode having a concave curved surface on the anode side is used, the surface irregularities will not increase even if the thickness of the electrodeposited iron increases. The present inventors have discovered that it is possible to obtain thicker electrodeposited iron, and have completed the present invention.

すなわち、第1の形態の本発明は、第1鉄イオンと支持
電解質を主成分とする水溶液からなる電解浴中に、陽極
と陰極を対置させ、陰極子に高純度鉄を電着させる電解
鉄の製法において、陰極として陽極側に凹型に湾曲した
曲板を用いることを特徴とする電解鉄の製法にある。
That is, the present invention in its first form is an electrolytic iron method in which an anode and a cathode are placed opposite each other in an electrolytic bath consisting of an aqueous solution containing ferrous ions and a supporting electrolyte as main components, and high-purity iron is electrodeposited on the cathode. The manufacturing method of electrolytic iron is characterized by using a concavely curved curved plate on the anode side as the cathode.

また、第2形態の本発明は、第1鉄イオンと支持電解質
を主成分とする水溶液からなる電解浴中に、陽極と陰極
を対置させ、陰極上に高純度鉄を電着させる電解鉄の製
法において、陰極として円筒状陰極を用い、かつ陽極と
して円筒状陰極内に非接触状に挿入できる陽極を用いそ
れを陰極円中心部に保持して電解を行なうことを特徴と
する電解鉄の製法にある。この第2形態の本発明におい
て、陽極と陰極が鉛直に保持されること、また陽極およ
び(または)陰極が回転されることが好ましい。
Further, a second form of the present invention is an electrolytic iron method in which an anode and a cathode are placed opposite each other in an electrolytic bath consisting of an aqueous solution containing ferrous ions and a supporting electrolyte as main components, and high-purity iron is electrodeposited on the cathode. A method for producing electrolytic iron, characterized in that a cylindrical cathode is used as the cathode, and an anode that can be inserted into the cylindrical cathode in a non-contact manner is held at the center of the cathode circle to perform electrolysis. It is in. In this second form of the invention, it is preferable that the anode and cathode are held vertically and that the anode and/or cathode are rotated.

〔作 用〕[For production]

従来の平板型または凸面型の陰極で電着鉄の厚みが増す
と表面の凹凸が大きくなる理由は次のように考えられる
。すなわち、第3図を参照すると、平板型陰極Iの表面
に電着鉄の結晶粒2が成長すると、結晶粒の表面は平坦
でないので結晶粒2が形成する表面の表面積が陰極1の
表面積より増大し、そのために電流密度が小さくなる。
The reason why the surface irregularities become larger as the thickness of the electrodeposited iron increases in conventional flat or convex cathodes is thought to be as follows. That is, referring to FIG. 3, when crystal grains 2 of electrodeposited iron grow on the surface of the flat plate cathode I, the surface area of the surface formed by the crystal grains 2 is larger than the surface area of the cathode 1 because the surface of the crystal grains is not flat. The current density therefore decreases.

こうして電流密度が小さくなると、次に成長する結晶粒
3はより大きくなり、それによって形成される表面積も
より大きくなる。すると、電流密度がさらに小さくなり
、その上に成長する結晶粒4はさらに大きくなる。この
ようにして、電着鉄の厚みが増すにつれて結晶粒が大き
くなり、その結果表面の凹凸が増幅されてゆくのである
。第4図は、陰極が凸型の場合であるが、第3図の平板
型陰極と同様の理由から電着鉄のIIみの増加とともに
表面の凹凸が増大してゆく−のみならず、凸型表面では
、その上に鉄が電着すると電着鉄の厚み方向に曲率半径
(r+ =rz ””r3−rs )が大きくなるので
それによって表面積が増大する性質が本来的にあり、そ
の結果としても電着鉄の厚みの増加とともに結晶粒が大
きくなる傾向があるので、これらの相乗効果により、電
着鉄の表面の凹凸は著しく速く増大してゆく。第4図は
この様子を示し、凸型陰極11上に電着鉄の結晶粒12
,13.14が順次成長してゆき、表面の凹凸が急速に
拡大している。
When the current density decreases in this way, the crystal grains 3 that grow next become larger, and the surface area formed thereby also becomes larger. Then, the current density becomes even smaller, and the crystal grains 4 growing thereon become even larger. In this way, as the thickness of the electrodeposited iron increases, the crystal grains become larger, and as a result, the surface irregularities are amplified. Figure 4 shows a case where the cathode is a convex type, but for the same reason as the flat plate cathode in Figure 3, the surface irregularities increase as the amount of electrodeposited iron increases. When iron is electrodeposited on the mold surface, the radius of curvature (r+ = rz ""r3-rs) increases in the thickness direction of the electrodeposited iron, which inherently increases the surface area. As a result, However, as the thickness of the electrodeposited iron increases, the crystal grains tend to become larger, so due to the synergistic effect of these, the irregularities on the surface of the electrodeposited iron increase significantly rapidly. FIG. 4 shows this situation, with crystal grains 12 of electrodeposited iron on the convex cathode 11.
, 13 and 14 are growing sequentially, and the surface irregularities are rapidly expanding.

〔実施例〕〔Example〕

第1図は陽極側に凹型の曲面を有する陰極を用いた電解
装置を示す。陽極1と陰極2とが対置され、陽極1は平
板状であるが、陰極2は陽極1側に凹型の曲面を有する
曲板である。陽極として用いる鉄材は一般軟鋼でもよい
が、少しでも純度を上げる目的で純鉄を用いても良い。
FIG. 1 shows an electrolysis device using a cathode having a concave curved surface on the anode side. An anode 1 and a cathode 2 are placed opposite each other, and the anode 1 has a flat plate shape, but the cathode 2 is a curved plate having a concave curved surface on the anode 1 side. The iron material used as the anode may be general mild steel, but pure iron may also be used for the purpose of increasing the purity even slightly.

陰極は電解鉄が放電電着するものでステンレス鋼等で作
られた板状体もしくは回転ドラムが従来法同様用いられ
る。
The cathode is one in which electrolytic iron is electrodeposited by discharge, and a plate-shaped body or a rotating drum made of stainless steel or the like is used as in the conventional method.

陽極lおよび陰極2は電解浴3中に浸漬されているが、
電解浴は主要成分として硫酸第一鉄及び又は塩化第一鉄
を用い、これらの硫酸又は塩酸酸性浴に支持電解質とし
て電導性の良い、鉄よりも卑なる塩が用いられ硫酸アン
モニウム、塩化アンモニウム、硫酸ナトリウム、塩化ナ
トリウム、硫酸カリ、塩化カリ、硫酸マグネシウム、塩
化マグふシウム、塩化カルシウム等が代表例として挙げ
られる。
Anode l and cathode 2 are immersed in electrolytic bath 3,
The electrolytic bath uses ferrous sulfate and/or ferrous chloride as the main components, and in these sulfuric acid or hydrochloric acid acidic baths, a salt less base than iron with good conductivity is used as a supporting electrolyte. Representative examples include sodium, sodium chloride, potassium sulfate, potassium chloride, magnesium sulfate, magfcium chloride, and calcium chloride.

このような電解装置で実際に電解を行なった。Electrolysis was actually performed using such an electrolyzer.

その電解条件は次の通りである。The electrolysis conditions are as follows.

陽極 : 840 X 820 X 50の軟鋼製板状
体陰極 :陽極側が半径50の円弧105の凹型曲面を
有し、高さ1000.厚さ5のステンレス製曲板 極間距#:陰極中心部で150 電解浴 二 FeC1z   140 g/ (I NHaC7!130 g/ It pH4,5〜5.0 浴温    90〜98℃ 摺電圧 二0.8〜1.2■ 電流密度:        2.4A/drdこうして
96時間電解を行ない陰極上に高純度鉄を厚さ6璽璽電
着させたが、電着鉄の表面は平滑であった。従来、陰極
として板状体を用い上と同様の条件で電解する場合、表
面が平滑な電解鉄の厚みはせいぜい3R程度であった。
Anode: Mild steel plate measuring 840 x 820 x 50 Cathode: The anode side has a concave curved surface of an arc 105 with a radius of 50 mm and a height of 1000 mm. Distance between electrodes of a stainless steel curved plate with a thickness of 5 #: 150 at the center of the cathode Electrolytic bath 2FeC1z 140 g/(I NHaC7!130 g/It pH 4,5~5.0 Bath temperature 90~98℃ Sliding voltage 20. 8~1.2■ Current density: 2.4A/drd Electrolysis was carried out in this way for 96 hours, and high purity iron was electrodeposited to a thickness of 6 squares on the cathode, but the surface of the electrodeposited iron was smooth. When electrolyzing was carried out under the same conditions as above using a plate-shaped body as a cathode, the thickness of the electrolytic iron with a smooth surface was about 3R at most.

第2図は陰極が円筒状であり、陽極が陰極内に配置され
る電解装置を示す。同図中、5が陽極、6が陰極、7が
電解浴である。陰極6は中空円筒状であり、その内部、
特に中心部に棒状の陽極5を配置する。陽極5と陰極6
は同心円状に配置することによって陰極表面上での電解
条件を均一にする。ここで、陽極5と陰極6の一方また
は両方を回転するようにすれば、陰極表面上での電解条
件がより均一になり、好ましい。また、陽極5および陰
極6は、鉛直に配置することが電解条件の均一化のため
に好ましい。
FIG. 2 shows an electrolysis device in which the cathode is cylindrical and the anode is arranged within the cathode. In the figure, 5 is an anode, 6 is a cathode, and 7 is an electrolytic bath. The cathode 6 has a hollow cylindrical shape, and inside thereof,
In particular, a rod-shaped anode 5 is arranged at the center. Anode 5 and cathode 6
By arranging them concentrically, the electrolytic conditions on the cathode surface are made uniform. Here, it is preferable to rotate one or both of the anode 5 and the cathode 6 because the electrolytic conditions on the cathode surface become more uniform. Further, it is preferable that the anode 5 and the cathode 6 be arranged vertically in order to make the electrolytic conditions uniform.

このような電解装置で実際に電解を行なった。Electrolysis was actually performed using such an electrolyzer.

その電解条件は次の通りであった。The electrolysis conditions were as follows.

陽 極: 5Qmm X、3QQms角の軟鋼製棒状体
陰 極;内径IQQum、高さ1000鶴、厚さ5Rの
ステンレス製円筒体、 陰極回転速度: 3r、p、m。
Anode: 5Qmm x 3QQms square mild steel rod cathode; inner diameter IQQum, height 1000mm, thickness 5R stainless steel cylinder, cathode rotation speed: 3r, p, m.

電解浴: FeCj!、    140 gel NH,CI    130 g/N pH4,5〜5.0 浴温     90〜95 摺電圧 :1.2〜1.8■ 電流密度:       2.4A/diこうして96
時間電解を行ない陰極上に尚純度鉄を厚さ6關電着させ
たが、電着鉄の表面は平滑であった。
Electrolytic bath: FeCj! , 140 gel NH,CI 130 g/N pH 4,5-5.0 Bath temperature 90-95 Sliding voltage: 1.2-1.8 ■ Current density: 2.4 A/di Thus 96
Electrolysis was carried out for a period of time to electrodeposit pure iron to a thickness of 6 mm on the cathode, but the surface of the electrodeposited iron was smooth.

〔発明の効果〕〔Effect of the invention〕

本発明により、陰極の陽極側表面を凹型にすることによ
り、陰極上に高純度鉄が電着してその厚みが増す場合に
表面の凹凸が拡大することを防止できる。その結果、表
面が平滑なより厚い電着鉄を得ることができるとともに
、電極の引上回数が低減され、生産性が向上する。
According to the present invention, by making the anode-side surface of the cathode concave, it is possible to prevent the surface irregularities from expanding when high-purity iron is electrodeposited on the cathode and its thickness increases. As a result, thicker electrodeposited iron with a smoother surface can be obtained, and the number of electrode pull-ups is reduced, improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は陽極側が凹型曲面を有する板状陰極を用いた電
解装置の模式図、第2図は円筒状陰極と陰極内の棒状陽
極を用いた電解装置の模式図、第3図は平板状陰極上へ
の電着鉄の成長の様子を示す模式図、第4図は凸型陰極
−ヒへの電着鉄の成長の様子を示す模式図である。 l・・・平板状陰極、 2.3.4・・・結晶粒、 11・・・凸型陰極、 12、13.14・・・結晶粒、 r++rz+rz+ra・・・曲率半径。
Figure 1 is a schematic diagram of an electrolytic device using a plate-shaped cathode with a concave curved surface on the anode side, Figure 2 is a schematic diagram of an electrolytic device using a cylindrical cathode and a rod-shaped anode inside the cathode, and Figure 3 is a schematic diagram of an electrolytic device using a plate-shaped cathode with a concave curved surface on the anode side. FIG. 4 is a schematic diagram showing the growth of electrodeposited iron on the cathode. FIG. 4 is a schematic diagram showing the growth of electrodeposited iron on the convex cathode. l... Flat cathode, 2.3.4... Crystal grain, 11... Convex cathode, 12, 13.14... Crystal grain, r++rz+rz+ra... Radius of curvature.

Claims (1)

【特許請求の範囲】 1、第1鉄イオンと支持電解質を主成分とする水溶液か
らなる電解浴中に、陽極と陰極を対置させ、陰極上に高
純度鉄を電着させる電解鉄の製法において、陰極として
陽極側に凹型に湾曲した曲板を用いることを特徴とする
電解鉄の製法。 2、第1鉄イオンと支持電解質を主成分とする水溶液か
らなる電解浴中に、陽極と陰極を対置させ、陰極上に高
純度鉄を電着させる電解鉄の製法において、 陰極として中空円筒状陰極を用い、かつ陽極として該円
筒状陰極内に非接触状に挿入できる陽極を用いそれを該
陰極内中心部に保持して電解を行なうことを特徴とする
電解鉄の製法。 3、陽極および陰極を鉛直に保持して電解鉄を行なう特
許請求の範囲第2項記載の製法。 4、陽極および(または)陰極を回転しつつ電解を行な
う特許請求の範囲第2項または第3項記載の製法。
[Claims] 1. A method for producing electrolytic iron in which an anode and a cathode are placed opposite each other in an electrolytic bath consisting of an aqueous solution containing ferrous ions and a supporting electrolyte as main components, and high-purity iron is electrodeposited on the cathode. , a method for producing electrolytic iron characterized by using a concave curved plate on the anode side as a cathode. 2. In an electrolytic iron manufacturing method in which an anode and a cathode are placed opposite each other in an electrolytic bath consisting of an aqueous solution containing ferrous ions and a supporting electrolyte as main components, and high-purity iron is electrodeposited on the cathode, a hollow cylindrical shape is used as the cathode. 1. A method for producing electrolytic iron, which comprises using a cathode and an anode that can be inserted into the cylindrical cathode in a non-contact manner and holding the anode at the center of the cathode to carry out electrolysis. 3. The manufacturing method according to claim 2, wherein electrolytic ironing is carried out by holding the anode and cathode vertically. 4. The manufacturing method according to claim 2 or 3, wherein electrolysis is carried out while rotating the anode and/or cathode.
JP61000743A 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron Expired - Lifetime JPH0726220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000743A JPH0726220B2 (en) 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000743A JPH0726220B2 (en) 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron

Publications (2)

Publication Number Publication Date
JPS62158892A true JPS62158892A (en) 1987-07-14
JPH0726220B2 JPH0726220B2 (en) 1995-03-22

Family

ID=11482182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000743A Expired - Lifetime JPH0726220B2 (en) 1986-01-08 1986-01-08 Manufacturing method of electrolytic iron

Country Status (1)

Country Link
JP (1) JPH0726220B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212631A (en) * 1975-07-17 1977-01-31 Hall & Pickles Ltd Method of electrodeposition of metal foil and apparatus therefore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212631A (en) * 1975-07-17 1977-01-31 Hall & Pickles Ltd Method of electrodeposition of metal foil and apparatus therefore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials

Also Published As

Publication number Publication date
JPH0726220B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
JPH07423B2 (en) Method for producing aluminum support for printing plate
DE3562632D1 (en) Process for winning a metal by electrolysis of molten halogenides whereby a simultaneous and continuous double disposition is taking place, and apparatus therefor
US3728237A (en) Method of manufacturing aluminum electrode foil for electrolytic capacitors
JPS62158892A (en) Manufacture of electrolytic iron
CN210711782U (en) Oxidation tool of inside lining
US3493478A (en) Electrolytic preparation of perchlorates
US3114687A (en) Electrorefining nickel
JP2005163096A5 (en)
US3909369A (en) Method for the production of an electrode for cathodic protection
JPS62158894A (en) Manufacture of electrolytic iron
SU1724739A1 (en) Method of producing open-pore cellular metal foam
JPH0726221B2 (en) Method for producing electrolytic iron
US3668085A (en) Method of electrolytically coating lead dioxide on the surface of various materials
US3442776A (en) Electrolyte and process for the electrodeposition of cadmium
RU2007136074A (en) METHOD OF ELECTRODEPOSITION OF COMPACT NICKEL
SU798195A1 (en) Method of making electrode for electrochemical processes
JPS62161979A (en) Manufacture of electrolytic iron
JPH0472099A (en) Production of aluminum substrate for printing plate
JPS62161977A (en) Manufacture of high-purity iron
JPS6465285A (en) Production of rare earth metal or alloy of rare earth metal
KR100229165B1 (en) Process for electrodepositing a metallic coating of a nickel-cobalt alloy on an object and electrolytic solution used therein
JPH032235B2 (en)
JPS62158889A (en) Manufacture of electrolytic iron
SU644272A1 (en) Method for making electrode
JPS62161981A (en) Manufacture of electrolytic iron