JPS62158792A - Production of highly concentrated coal-water slurry - Google Patents

Production of highly concentrated coal-water slurry

Info

Publication number
JPS62158792A
JPS62158792A JP63086A JP63086A JPS62158792A JP S62158792 A JPS62158792 A JP S62158792A JP 63086 A JP63086 A JP 63086A JP 63086 A JP63086 A JP 63086A JP S62158792 A JPS62158792 A JP S62158792A
Authority
JP
Japan
Prior art keywords
coal
dispersant
slurry
water
water slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63086A
Other languages
Japanese (ja)
Inventor
Ryuichi Kaji
梶 隆一
Hideo Kikuchi
菊池 秀雄
Tadashi Muranaka
廉 村中
Keizo Otsuka
大塚 馨象
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP63086A priority Critical patent/JPS62158792A/en
Publication of JPS62158792A publication Critical patent/JPS62158792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To produce the titled slurry at low cost without adversely affecting the properties of high concentration and low viscosity despite decreased dispersant usage, adding water, a dispersant, a radial polymerization reaction retarder, etc., to coal and grinding the coal. CONSTITUTION:Added to coal are water and a dispersant (e.g., anionic dispersant), and further at least one member selected from a radical polymerization retarder (e.g., hydroquinone), a radical polymerization inhibitor (e.g., naphthoquinone) and an antioxidant (e.g., 2,4,6-trimethylphenol). The coal is ground in the above-added materials to produce a highly concentrated coal-water slurry. According to this process, the usage of a dispersant can be decreased in the manufacture of a coal-water slurry having a high fluidity. That is, while the dispersant usage ranges from 0.5-1.0% in the past,the usage can be decreased to 0.1-0.2% according to the present process. Thus it is possible to produce a slurry as desired in an economical manner.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高濃度石炭水スラリーの製造方法に係り、特に
その製造における分散剤の添加量を低減する経済的な製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for producing a highly concentrated coal-water slurry, and particularly to an economical method for producing the same by reducing the amount of dispersant added in the production.

〔発明の背景〕[Background of the invention]

粉体のスラリー輸送技術は、固体である粉体を取扱いが
簡単な流体状となして輸送する方法として古くから研究
が行われている。近年1石炭の輸送に上記のスラリー輸
送技術を適用し1石炭の自然発火や粉じん飛散等の問題
がなく、安全で、しかも管路輸送が可能であり、このた
め取扱いが容易で、輸送効率の向上を図ることができる
石炭水スラリーの製造技術開発が盛んに行われている。
Powder slurry transportation technology has been studied for a long time as a method for transporting solid powder in a fluid state that is easy to handle. In recent years, the above-mentioned slurry transportation technology has been applied to the transportation of 1 coal, and it is safe without problems such as spontaneous ignition of 1 coal or dust scattering, and can be transported via pipes, making it easy to handle and improving transportation efficiency. The development of manufacturing technology for coal-water slurry that can improve the performance of coal-water slurry is actively being carried out.

該石炭水スラリーにおいては、石炭含有量をできるだけ
大きくすることにより石炭の輸送効率を向上することが
でき、また水分量を低減することにより、該石炭水スラ
リーを輸送機脱水を行わないで直接燃焼することが可能
となることから、該石炭水スラリー中の石炭濃度を高め
る高濃度化技術の開発が行われてきた。スラリー中の固
体濃度を高くするとその粘度が増大することはよく知ら
れた事実であるが、石炭水スラリーにおいては管路輸送
が可能な程度に粘度を低く保ちつつ、石炭濃度を可能な
限り高くする必要があり、その方法として第1に該石炭
水スラリー中の石炭粒子の粒径分布を調整することによ
り高濃度化し、第2として更に分散剤を添加して石炭粒
子の分散性を高めることにより低粘性化する方法が知ら
れている(特表昭56−501568) 、高濃度でか
つ低粘性の石炭水スラリーを製造する方法は上記公知側
以外にも多数開示されているが、全て上記の2つの基本
的な原理に基づくものである。
In the coal-water slurry, the coal transport efficiency can be improved by increasing the coal content as much as possible, and by reducing the water content, the coal-water slurry can be directly combusted without dehydration in the transport machine. Since it has become possible to do so, high concentration technology has been developed to increase the coal concentration in the coal water slurry. It is a well-known fact that increasing the solids concentration in a slurry increases its viscosity, but in a coal-water slurry, the coal concentration is kept as high as possible while keeping the viscosity low enough to allow pipe transportation. Firstly, the particle size distribution of the coal particles in the coal-water slurry is adjusted to increase the concentration, and secondly, a dispersant is further added to increase the dispersibility of the coal particles. A method of lowering the viscosity is known (Japanese Patent Publication No. 56-501568), and there are many methods of producing a highly concentrated and low viscosity coal-water slurry in addition to the above-mentioned publicly known methods. It is based on two basic principles:

これら公知例による石炭水スラリーの製造方法は、(1
)石炭、水及び分散剤を所定量ずつ混合しながらチュー
ブミルにより湿式粉枠し直接高濃度の石炭水スラリーを
製造するもの、(2)石炭を数種類の粒径に粉枠した後
、これらを所定の粒径分布となるように混合し、これに
所定量の水及び分散剤を添加して攪拌混合することによ
り製造するもの、(3)低石炭濃度で水及び分散剤共存
下でチューブミルにより湿式粉枠した後、得られたスラ
リーを脱水濃縮することにより高濃度化して製造するも
の等がある。これらいずれかの方法によっても1石炭製
度が70重量%以上で、しがも粘度が約1y500 c
 p以下で流動性の高い石炭水スラリーが得られる。
The method for producing coal water slurry according to these known examples is (1
) A method in which coal, water, and a dispersant are mixed in predetermined amounts in a wet powder frame using a tube mill to directly produce a highly concentrated coal-water slurry; (2) Coal is powdered into several types of particle sizes and then (3) A tube mill with a low coal concentration in the coexistence of water and a dispersant. There are products that are produced by making the slurry into a wet powder frame and then dehydrating and concentrating the resulting slurry to increase the concentration. Even if any of these methods is used, the coal production degree is 70% by weight or more, and the viscosity is about 1y500 c.
A highly fluid coal-water slurry can be obtained below p.

以上のように、高濃度低粘性の石炭水スラリーの製造技
術は確立されたかに見える。しかし1石炭の利用目的は
主に燃焼し、安価な燃料として使用することであり、上
記のように流体化し石炭の輸送や取扱いにおける安全性
や操作性を向上し、更にスラリーを高濃度、低粘性とす
ることによりその輸送効率を向上することは効果的では
あるが。
As described above, the technology for producing a highly concentrated and low viscosity coal-water slurry appears to have been established. However, the main purpose of using coal is to burn it and use it as a cheap fuel, and as mentioned above, it can be made into a fluid to improve safety and operability in transporting and handling coal, and it can also be used to make slurry with high concentration and low concentration. Although it is effective to improve the transport efficiency by making it viscous.

石炭水スラリー製造のための前記2つの基本的原理を満
足するために必要な石炭の粉枠動力及び分散剤の量は真
人なものであり、従来技術のみでは、石炭水スラリーは
必ずしも経済的な石炭の利用形態として確立されたとは
言い難い、ちなみに、第1の基本原理を満たすために必
要な石炭の粉枠動力費は、炭種により多少変動はあるが
、現状では約0.2円/1,0OOKcalであり、第
2の基本原理を満たすために必要な分散剤の費用は現状
では約0.5円/ 1,000Kcalで、両者合わせ
ると約0.7円71 、000にcalとなる0石炭の
価格は現在約2円/ 1,000Kcalであるから、
石炭水スラリーの製造における粉枠動力と分散剤だけで
約35%のコスト増となる。すでに述べたような従来技
術において、目的とする高濃度、低粘性の石炭水スラリ
ーを製造するのに必要な分散剤の量は、乾燥石炭に対し
0.01〜5.0重量%とされているが、実験によれば
、公知の方法によって例えば石炭濃度70重電量、粘度
L500 c p の石水炭スラリーを製造するのに必
要な分散剤量は約1重量%で、これ以下に低減すると粘
度は飛躍的に増大し、、流動性のあるスラリーとは成し
得ないことが確認された。このように、石炭水スラリー
の技術上の課題である製造コストの低減はまだ解決され
ていない。
The coal powder frame power and the amount of dispersant required to satisfy the above two basic principles for producing coal-water slurry are real, and with conventional technology alone, coal-water slurry is not necessarily economical. It is hard to say that it has been established as a form of coal utilization.Incidentally, the power cost for the coal powder frame necessary to satisfy the first basic principle varies somewhat depending on the type of coal, but currently it is about 0.2 yen/ 1,0OOKcal, and the cost of the dispersant required to satisfy the second basic principle is currently approximately 0.5 yen/1,000 Kcal, and the total cost of both is approximately 0.7 yen/71,000 cal. 0The price of coal is currently about 2 yen/1,000Kcal,
The powder frame power and dispersant alone in the production of coal-water slurry add about 35% to the cost. In the prior art as already mentioned, the amount of dispersant required to produce the target high concentration, low viscosity coal water slurry is 0.01 to 5.0% by weight based on dry coal. However, according to experiments, the amount of dispersant required to produce, for example, a coal-water coal slurry with a coal concentration of 70 deuterium and a viscosity of L500 c p by a known method is about 1% by weight, and if the amount is reduced below this amount, The viscosity increased dramatically, and it was confirmed that a fluid slurry could not be obtained. As described above, the technical issue of reducing the manufacturing cost of coal-water slurry has not yet been solved.

〔発明の目的〕[Purpose of the invention]

情 本発明の目的は、上記の事恢に鑑み、高濃度。 affection In view of the above circumstances, the object of the present invention is to provide high concentration.

低粘性の性状を損なうことなく、石炭水スラリーの製造
に必要な分散剤を低減する石炭水スラリーの製造方法を
提供することにある。
It is an object of the present invention to provide a method for producing a coal water slurry that reduces the amount of dispersant required for producing the coal water slurry without impairing its low viscosity properties.

〔発明の概要〕[Summary of the invention]

本発明になる高濃度石炭水スラリーの製造方法は、石炭
に水及び分散剤を添加し、さらに、ラジカル重合反応の
抑制剤あるいは、禁止剤、または、抗酸化剤のうち少く
ともしつの物質を添加し、しかる後、これら水及び上記
物質を添加した石炭を粉枠することにある。
The method for producing a highly concentrated coal-water slurry according to the present invention involves adding water and a dispersant to coal, and further adding at least one of a radical polymerization reaction suppressor, inhibitor, or antioxidant. After that, the coal to which water and the above-mentioned substances have been added is powdered.

本発明者らは、石炭水スラリーの高濃度、低粘性化技術
及び分散剤、粉枠動力を低減し、低コストで製造する方
法に関し、鋭意研究を進めた。
The present inventors have conducted intensive research on a method for producing coal-water slurry at low cost by reducing its high concentration and viscosity technology, dispersant, and powder frame power.

結果、すでに述べたように、従来の方法で製造する限り
、どうしても製造コストの低減を図ることは困難で、特
に前述のように分散剤の添加量は前記のように乾燥石炭
に対し約1重量%以下に低減することは不可能であるこ
とが明らかになった。
As a result, as mentioned above, it is difficult to reduce production costs as long as production is carried out using conventional methods, and in particular, as mentioned above, the amount of dispersant added is approximately 1 weight per dry coal. It became clear that it was not possible to reduce it below %.

石炭の比表面積及び石炭に対する分散剤の吸着特性から
考えるに、約1重量%の添加量は非常に多量なもので、
石炭の表面に単分子層を形成するに必要な量の数十倍以
上である8本発明者らは。
Considering the specific surface area of coal and the adsorption characteristics of the dispersant to coal, the addition amount of about 1% by weight is a very large amount.
8 The present inventors found that the amount was several tens of times more than that required to form a monomolecular layer on the surface of coal.

このように多量の分散剤が必要となる原因を究明するこ
とにより1分散剤の低減法に関する示唆が得られるもの
と考え研究を重ねた。以下、本発明に到った経過につい
て説明する。
We conducted repeated research in the belief that by investigating the cause of the need for such a large amount of dispersant, we would be able to obtain suggestions on how to reduce the amount of dispersant used. Hereinafter, the progress that led to the present invention will be explained.

発明者らは、まず石炭に対する分散剤の吸着性から検討
を加えた0石炭水スラリーを高濃度、低粘性化するには
、先に述べたように、分散剤を添加して石炭粒子の分散
性を高める必要がある。しかし、現在までのコロイド化
学の知識から、粒子を分散するには粒子の外表面にのみ
分散剤が吸着していれば充分である。しかるに1石炭は
多孔性物質であり、粒子内部に多くの細孔が形成されて
いる。良く知られているように、石炭はその細孔内に水
を吸収するが、石炭水スラリー製造時のように分散剤共
存下の水中に浸漬した場合、水の吸収と同時に水中に溶
解している分散剤も石炭内に吸収され、その壁面に吸着
されると考えられる。
The inventors first investigated the adsorption properties of the dispersant to coal.In order to make the coal-water slurry highly concentrated and low in viscosity, as mentioned above, the dispersant was added to disperse the coal particles. We need to improve our sexuality. However, current knowledge of colloid chemistry indicates that it is sufficient to disperse the particles if the dispersant is adsorbed only on the outer surface of the particles. However, coal is a porous substance, and many pores are formed inside the particles. As is well known, coal absorbs water in its pores, but when it is immersed in water in the coexistence of a dispersant, as in the production of coal-water slurry, it dissolves in water at the same time as it absorbs water. It is thought that the dispersant contained in the coal is also absorbed into the coal and adsorbed on its walls.

粒子内部に発達した細孔の全表面積は粒子の外表面積に
比べかなり大きいと考えられ、従って分散剤も大部分は
細孔壁に吸着され、粒子内部に存在すると考えられる。
It is thought that the total surface area of the pores developed inside the particles is considerably larger than the outer surface area of the particles, and therefore it is thought that most of the dispersant is adsorbed on the pore walls and exists inside the particles.

このことが真実ならば、前述のコロイド化学の知識から
判断して大部分の分散剤(細孔壁に吸着しているもの)
は粒子の分散に有効ニ作用していないことになる0発明
者らは、細孔分布の異なる数種の石炭に対する分散剤(
ナフタレン環を有する陰イオン系のもの)の吸着;性を
調べたところ、第1図に示す結果を得た0分散剤の各種
石炭への平衡吸着量は、石炭の比表面積に比例すること
を示している。この結果は、上記の推察が正しく、細孔
内壁に多くの分散剤が吸着されていることを示している
。第2図はその内の一炭種の吸着等原線を示すが、分散
剤は石炭にフロイントリツヒ型の吸着をし、液中濃度が
ある程度高くなると吸着量は飽和に達することがわかる
。この飽和吸着点以上に分散剤を添加しても。
If this is true, judging from the knowledge of colloid chemistry mentioned above, most of the dispersants (those adsorbed on the pore walls)
This means that the dispersing agent for several types of coal with different pore distributions (
When we investigated the properties of adsorption of anionic substances (containing naphthalene rings), we obtained the results shown in Figure 1.We found that the equilibrium adsorption amount of dispersants on various types of coal is proportional to the specific surface area of the coal. It shows. This result shows that the above assumption is correct and that a large amount of dispersant is adsorbed on the inner walls of the pores. Figure 2 shows the adsorption isogen of one of the coal types, and it can be seen that the dispersant has a Freundlich-type adsorption to the coal, and when the concentration in the liquid increases to a certain extent, the amount of adsorption reaches saturation. Even if a dispersant is added above this saturated adsorption point.

石炭には吸着されず、液中の濃度が大きくなるだけであ
る。ここで1図中黒丸で示した点は、濃度70%の石炭
水スラリーにおいて、石炭に対し0.5重量%の分散剤
を添加した場合の点を示す。
It is not adsorbed by coal, and its concentration in the liquid only increases. Here, the points indicated by black circles in Figure 1 indicate the points when 0.5% by weight of the dispersant was added to the coal in the coal-water slurry with a concentration of 70%.

この結果かられかるように、通常の石炭水スラリーに添
加する分散剤の量は石炭の細孔壁をも含めた全表面への
飽和吸着量よりも更に多く、石炭水スラリーにおいて上
記のように多く分散剤を必要とするのには更に別の原因
があることを示している。
As can be seen from this result, the amount of dispersant added to a normal coal-water slurry is much larger than the saturated adsorption amount on the entire surface of the coal, including the pore walls. This indicates that there is another reason why a large amount of dispersant is required.

発明者らはこの原因を究明するため種々の石炭水スラリ
ーを調製し検討を行った。この検討の過程で次のような
新らしい事実を見出すに到ったので1例により説明する
In order to investigate the cause of this, the inventors prepared and investigated various coal water slurries. In the process of this study, we discovered the following new fact, which will be explained using an example.

まず、検討のために種々の粒径分布を持つ、た石炭水ラ
リ−を調製した。すでに述べたように、石炭を水及び分
散剤と混合し、これをチューブミルに充てんして粉枠し
スラリーを調製した。チューブミルに充てんした石炭は
第3図aに示すように最大粒径約50μmに予め微粉枠
したものを用いた。また、分散剤には陰イオン系のもの
を乾燥石炭に対し0.3重量%添加した。粉枠を30分
First, coal-water rallies with various particle size distributions were prepared for investigation. As previously mentioned, the coal was mixed with water and a dispersant, and the mixture was packed into a tube mill and milled to form a slurry. The tube mill was filled with coal that had been pulverized in advance to a maximum particle size of about 50 μm as shown in FIG. 3a. Furthermore, an anionic dispersant was added in an amount of 0.3% by weight based on the dry coal. Powder frame for 30 minutes.

60分、及び120分行った場合の生成スラリー中の石
炭の粒径分布を第3図す、c、dに示す。
The particle size distribution of coal in the slurry produced after 60 minutes and 120 minutes is shown in Figure 3, c and d.

粉枠時間が30分では原料石炭に比バスラリ−中の石炭
粒子はかなり小さくなっている。粉枠時間60分では更
に微粉枠されていることがわかる。
When the powder time is 30 minutes, the coal particles in the slurry are considerably smaller than the raw coal. It can be seen that the powder frame is further reduced when the powder frame time is 60 minutes.

しかし、粉枠時間と120分に増しても、60分の場合
と大差なく、第3図Cの粒径分布は本試験で用いたチュ
ーブミルの粉枠限界になっていると考えられる。これら
の粒径分布から各スラリー中の石炭粒子の外表面積を計
算すると、第3図すのものが1.33rrr/g、cが
1.51rrr/g、dが1.58イ/gであった。
However, even if the powder frame time is increased to 120 minutes, there is not much difference from the case of 60 minutes, and it is considered that the particle size distribution shown in FIG. 3C is at the limit of the powder frame of the tube mill used in this test. Calculating the outer surface area of the coal particles in each slurry from these particle size distributions, those in Figure 3 were 1.33 rrr/g, c was 1.51 rrr/g, and d was 1.58 i/g. Ta.

以上のように、予め微粉枠した石炭を用いて調製したス
ラリー中の石炭の粒径分布及び外表面積は粉枠時間を変
えてもそれ程大きく変化しないことがわかった。しかし
、以下に述べるように、これらのスラリーの流動特性は
大きく変化していることが見出された。第4図a、b、
Qは、チューブミルによる湿式粉枠時間が各々30,6
0゜120分のスラリーの流動曲線を示したものである
。第5図はそれぞれのスラリーのせん断速度18g−1
における見かけ粘度を粉枠時間に対してプロットしたも
のである。湿式チューブミルによる粉枠時間が長くなる
とスラリーの流動特性はダイラタント、チクソトロピー
の性状から、擬塑性でレオペクシーの性状に変化し、同
時に見かけ粘度は大巾に増大することがわかった。
As described above, it was found that the particle size distribution and outer surface area of coal in a slurry prepared using coal that had been pulverized in advance did not change significantly even if the pulverization time was changed. However, as discussed below, the flow characteristics of these slurries were found to vary widely. Figure 4 a, b,
Q is the wet powder frame time by tube mill of 30 and 6, respectively.
The flow curve of the slurry at 0°120 minutes is shown. Figure 5 shows the shear rate of each slurry at 18g-1.
The apparent viscosity at is plotted against the powder window time. It was found that as the powder time in the wet tube mill increases, the flow characteristics of the slurry change from dilatant and thixotropic to pseudoplastic and rheopexic, and at the same time, the apparent viscosity increases significantly.

以上の流動特性試験結果は現在までに集積されたコロイ
ド化学の知識から、次のように解釈することができる。
The above flow characteristic test results can be interpreted as follows from the knowledge of colloid chemistry accumulated up to now.

本発明が対象としているようなスラリーの流動特性は、
その中に存在する粒子の分散・凝集状態の影響を大きく
受ける。一般に粒子がよく分散しているスラリーでは、
ダイラタントでチクソトロピーの流動特性を示し1粒子
の凝集性が大きいスラリーでは凝塑性でレオペクシーの
性状を示す、このことから、上記のように製造したスラ
リーは、粉枠時間が30分のものでは石炭粒子がよく分
散しており、粉枠時間が60,120分と長くなるにし
たがい何らかの原因により石炭粒子の凝集性が増大した
ことが示唆される。すでに述べたように石炭粒子の外表
面積は上記粉枠時間で大きく変化しないこと、及び添加
した分散剤は乾燥石炭に対し0.5 重量%で、石炭の
比表面積から予測される吸着容量に対し大過剰に存在し
ている。従って、粉枠時間が長くなるにしたがって石炭
粒子の凝集性が高くなっているのは分散剤量が不足して
いるからではないことは明らかである。
The flow characteristics of the slurry as targeted by the present invention are as follows:
It is greatly affected by the state of dispersion and agglomeration of the particles present within it. Generally, in slurries with well-dispersed particles,
Slurries that exhibit dilatant and thixotropic flow characteristics and a large degree of agglomeration per particle exhibit coagulation-plastic and rheopexic properties.From this, the slurry produced as described above has coal particles when the powder time is 30 minutes. were well dispersed, suggesting that as the powder window time increased to 60 and 120 minutes, the cohesiveness of the coal particles increased for some reason. As already mentioned, the outer surface area of the coal particles does not change significantly with the above-mentioned powder time, and the amount of the dispersant added is 0.5% by weight based on the dry coal, which increases the adsorption capacity predicted from the specific surface area of the coal. It exists in large excess. Therefore, it is clear that the reason why the cohesiveness of the coal particles becomes higher as the powder frame time becomes longer is not because the amount of dispersant is insufficient.

本発明者らは上記のように粉枠時間によりスラリーの、
性状が変化し、長時間粉枠するにしたがいスラリーが高
粘性化する原因として、分散剤が粉枠中に化学反応によ
り変質し、分散効果が低下したためではないかと考えた
。粉枠過程において石炭の新生面が生成した時、表面近
傍の分子は切断され、非常に反応性に富んだラジカルが
生成される。上記スラリーに用いる分散剤は高分子重合
体であり、石炭の新生面に生成したラジカルと反応し1
分散剤分子が更に反応をおこし1分散効果のない物質に
変化したと考えられる。これは、一般にメカノケミカル
反応として知られている。もし。
The present inventors have determined that the slurry is
The reason for the change in properties and the increased viscosity of the slurry as it was kept in the powder frame for a long time was thought to be that the dispersant changed in quality in the powder frame due to a chemical reaction and the dispersion effect decreased. When a new surface of coal is generated during the powder frame process, molecules near the surface are cleaved and highly reactive radicals are generated. The dispersant used in the slurry is a high molecular weight polymer that reacts with the radicals generated on the new surface of the coal.
It is thought that the dispersant molecules further reacted and changed into a substance with no dispersing effect. This is commonly known as a mechanochemical reaction. if.

上記のような反応が粉枠中におこり分散剤が変質してい
るのであれば、石炭の新生面に形成したラジカルを何ら
かの方法で分散剤と反応する前に失活させてやればこの
ような分散剤の変質が防止され、少量の添加量でスラリ
ー中の石炭粒子を高分散状態に保ち、低粘性のスラリー
を製造することが可能になると考えられる。このことは
1石炭水スラリーの低粘性化に必要な分散剤の量を低減
し、経済的なスラリーを製造できることを意味している
If the above-mentioned reaction occurs in the powder frame and the dispersant changes in quality, it is possible to prevent such dispersion by deactivating the radicals formed on the new surface of the coal by some method before reacting with the dispersant. It is believed that this prevents deterioration of the agent, keeps the coal particles in the slurry in a highly dispersed state with a small amount of addition, and makes it possible to produce a low-viscosity slurry. This means that the amount of dispersant required to reduce the viscosity of a 1-coal-water slurry can be reduced and an economical slurry can be produced.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

〈実施例1〉 第3図aに示した粒径分布を持つ乾式粉枠炭を水9分散
剤(陰イオン系)、及びラジカル重合反応の抑制剤とし
てハイドロキノンを添加し、ボールミルにより2時間湿
式粉枠した。下表に粉枠時の分散剤及びハイドロキノン
添加量をまとめた。
<Example 1> Dry powdered charcoal having the particle size distribution shown in Figure 3a was wet-processed for 2 hours using a ball mill with water added as a dispersant (anionic) and hydroquinone as a radical polymerization inhibitor. I made a powder frame. The table below summarizes the amount of dispersant and hydroquinone added during the powder frame.

全ての試験はスラリー中の石炭濃度が63%となるよう
に石炭と水を混合した。m造したスラリーは全て非常に
良い流動性を示し、その流動特性を測定すると全てのス
ラリーは第4図aに示した流動曲線を示した。第4図G
に示した流動特性のスラリーは先記したように分散剤を
0.5%添加し、ラジカル抑制剤を加えずに粉枠したも
のであるが、本実施例で製造したスラリーでは分散剤の
添加量が少ないにもかかわらず石炭粒子が非常に良く分
散されており、すでに述べた発明者らの考え方が正しか
ったことが立証された。ここで注目すべきことは1分散
剤の量が0.2%でも流動性の高いスラリーが得られる
こと、及びハイドロキノンが乾燥石炭に対しわずか0.
03%でも非常に高い効果を示していることである。
All tests involved mixing coal and water such that the coal concentration in the slurry was 63%. All of the prepared slurries exhibited very good fluidity, and when their flow properties were measured, all of the slurries showed the flow curve shown in Figure 4a. Figure 4G
As mentioned above, the slurry with the fluidity characteristics shown in Figure 1 was made into a powder frame with the addition of 0.5% dispersant and no radical inhibitor; Although the amount was small, the coal particles were very well dispersed, proving that the inventors' idea previously described was correct. What should be noted here is that a slurry with high fluidity can be obtained even if the amount of dispersant is 0.2%, and that the amount of hydroquinone is only 0.2% compared to dry coal.
Even at 0.03%, it shows a very high effect.

〈実施例2〉 実施例1と全く同一の条件でラジカル抑制剤として、ラ
ジカル重合反応の禁止剤であるナフトキノンを用いた試
験を行い実施例1と同様の結果を得た。
<Example 2> A test was conducted under exactly the same conditions as in Example 1 using naphthoquinone, which is an inhibitor of radical polymerization reaction, as a radical inhibitor, and the same results as in Example 1 were obtained.

〈実施例3〉 実施例1と全く同一の条件で抗酸化剤である2゜4.6
−トリメチルフエノールを用いた試験を行い、実施例1
と同様の結果を得た。
<Example 3> Antioxidant 2゜4.6 under exactly the same conditions as Example 1
- A test using trimethylphenol was conducted, Example 1
obtained similar results.

なお、ラジカル重合反応の抑制剤としてその他に、P−
ペソゾキノン、ジフェニルアミン、N−フエニル−N′
−イソプロピル−P−フエニレジアミン、6−エトキシ
−2.2.4−トリメチル−1,2−ジヒドロキノリン
、ニトロベンゼン等が有効である。
In addition, P-
Pesozoquinone, diphenylamine, N-phenyl-N'
-isopropyl-P-phenylenediamine, 6-ethoxy-2.2.4-trimethyl-1,2-dihydroquinoline, nitrobenzene, etc. are effective.

また、ラジカル重合反応の禁止剤としてその他に、2,
4−ジニトロクロルベンゼン、2.2−ジフエニル−1
−ピクリルヒドロジル、グチルヒドロキシアニソール、
α−ナフチルアミン、N −ニトロソフエニルヒドロキ
シアミン等が有効である。
In addition, as an inhibitor of radical polymerization reaction, 2,
4-dinitrochlorobenzene, 2,2-diphenyl-1
- Picrylhydrosyl, glylated hydroxyanisole,
α-Naphthylamine, N-nitrosophenylhydroxyamine, etc. are effective.

さらに抗酸化剤としてその他に、2,4−ジメチル−6
−tsrt−ブチルフエノール、2−tert−ブチル
−4−n−ブチルフエノール、フエニル−β−ナフチル
アミン、フェノアジン、N−メチル−N〜ニトロソアニ
リン、 2−tert−ブチルハイドロキノン等が有効
である。
Furthermore, as an antioxidant, 2,4-dimethyl-6
Effective examples include -tsrt-butylphenol, 2-tert-butyl-4-n-butylphenol, phenyl-β-naphthylamine, phenoazine, N-methyl-N-nitrosoaniline, and 2-tert-butylhydroquinone.

〔発明の効果〕〔Effect of the invention〕

本発明によれば流動性の高い石炭水スラリーの製造過程
において分散剤量を低減できる効果がある0分散剤の添
加量はスラリーに使用する石炭の性状により変動するが
、通常0.5〜1.0%添加している。本発明になる薬
剤の添加量は0.01カ 〜0.1%で動量があり、分散剤量を0.1〜0.2%
に低減できる。このため、添加剤に対する費用は各添加
剤の単価により異なるが、本発明の適用により3/4〜
1/2に低減することが可能である。
According to the present invention, the amount of dispersant added is effective in reducing the amount of dispersant in the manufacturing process of highly fluid coal-water slurry. The amount of dispersant added varies depending on the properties of the coal used in the slurry, but is usually 0.5 to 1. .0% is added. The added amount of the drug according to the present invention is 0.01% to 0.1%, and the amount of the dispersant is 0.1% to 0.2%.
can be reduced to Therefore, the cost for additives varies depending on the unit price of each additive, but by applying the present invention,
It is possible to reduce it to 1/2.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 1、石炭に水及び分散剤を添加し、さらに、ラジカル重
合反応の抑制剤あるいは、禁止剤、または、抗酸化剤の
うち少くとも1つの物質を添加し、しかる後、これら水
及び上記物質を添加した石炭を粉枠することを特徴とす
る高濃度石炭水スラリーの製造方法。 2、ラジカル重合反応の抑制剤として、ハイドロキノン
、P−ベンゾキノン、ジフエニルアミン、N−フエニル
−N′−イソプロピル−P−フエニレンジアミン、6−
エトキシ−2,2,4−トリメチル−1,2−ジヒドロ
キノリン、ニトロベンゼンの内少くとも1つを用いるこ
とを特徴とする特許請求の範囲第1項記載の高濃度石炭
水スラリーの製造方法。 3、ラジカル重合反応の禁止剤として、ナフトキノン、
2,4−ジニトロクロルベンゼン、2,2−ジフエニル
−1−ピクリルヒドロジル、グチルヒドロキシアニソー
ル、α−ナフチルアミン、N−ニトロソフエニルヒドロ
キシアミンの内少くとも1つを用いることを特徴とする
特許請求の範囲第1項記載の高濃度石炭水スラリーの製
造方法。 4、抗酸化剤として、2,4,6−トリメチルフエノー
ル、2,4−ジメチル−6−tert−ブチルフエノー
ル、2−tert−ブチル−4−n−ブチルフエノール
、フエニル−β−ナフチルアミン、フエノアジン、N−
メチル−N−ニトロソアニリン、2−tert−ブチル
ハイドロキノンの内少くとも1つを用いることを特徴と
する特許請求の範囲第1項記載の高濃度石炭水スラリー
の製造方法。
[Claims] 1. Water and a dispersant are added to coal, and at least one substance selected from a radical polymerization reaction suppressor, inhibitor, or antioxidant is added, and then, A method for producing a highly concentrated coal-water slurry, which comprises powdering coal to which these water and the above-mentioned substances have been added. 2. As an inhibitor of radical polymerization reaction, hydroquinone, P-benzoquinone, diphenylamine, N-phenyl-N'-isopropyl-P-phenylenediamine, 6-
The method for producing a highly concentrated coal-water slurry according to claim 1, characterized in that at least one of ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline and nitrobenzene is used. 3. Naphthoquinone as an inhibitor of radical polymerization reaction,
A patent characterized in that at least one of 2,4-dinitrochlorobenzene, 2,2-diphenyl-1-picrylhydrosyl, glylated hydroxyanisole, α-naphthylamine, and N-nitrosophenylhydroxyamine is used A method for producing a highly concentrated coal-water slurry according to claim 1. 4. As an antioxidant, 2,4,6-trimethylphenol, 2,4-dimethyl-6-tert-butylphenol, 2-tert-butyl-4-n-butylphenol, phenyl-β-naphthylamine, phenoazine, N-
The method for producing a highly concentrated coal-water slurry according to claim 1, characterized in that at least one of methyl-N-nitrosoaniline and 2-tert-butylhydroquinone is used.
JP63086A 1986-01-08 1986-01-08 Production of highly concentrated coal-water slurry Pending JPS62158792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086A JPS62158792A (en) 1986-01-08 1986-01-08 Production of highly concentrated coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086A JPS62158792A (en) 1986-01-08 1986-01-08 Production of highly concentrated coal-water slurry

Publications (1)

Publication Number Publication Date
JPS62158792A true JPS62158792A (en) 1987-07-14

Family

ID=11479046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086A Pending JPS62158792A (en) 1986-01-08 1986-01-08 Production of highly concentrated coal-water slurry

Country Status (1)

Country Link
JP (1) JPS62158792A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623101B2 (en) 2001-02-27 2009-11-24 Samsung Mobile Display Co., Ltd. Light emitting device and light emitting system
CN110129074A (en) * 2019-05-20 2019-08-16 太原理工大学 A kind of fire proofing material and preparation method thereof of inorganic salts-free radical quenching medium double inhibition coal spontaneous combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623101B2 (en) 2001-02-27 2009-11-24 Samsung Mobile Display Co., Ltd. Light emitting device and light emitting system
CN110129074A (en) * 2019-05-20 2019-08-16 太原理工大学 A kind of fire proofing material and preparation method thereof of inorganic salts-free radical quenching medium double inhibition coal spontaneous combustion

Similar Documents

Publication Publication Date Title
Roh et al. Rheological behaviour of coal-water mixtures. 1. Effects of coal type, loading and particle size
JP2827152B2 (en) Dust suppression method
US3957674A (en) Magnesium hydroxide suspension
Zhu et al. Synthesis, adsorption and dispersion of a dispersant based on starch for coal–water slurry
CN101338183A (en) Anti-salt high-density cement mortar
CN107141421B (en) A kind of seawater cement slurry distributed solid fluid loss agent and preparation method
CN103468028A (en) Efficient calcium slurry dispersant and preparation method thereof
JPS62158792A (en) Production of highly concentrated coal-water slurry
CN103816867A (en) Method for preparing brown coal adsorption material
JPS594691A (en) Improved aqueous slurry of carbonaceous matter
CA2431262C (en) Rare earth phosphate colloidal dispersion and preparation method
JPS5958092A (en) Preparation of coal slurry
JPS62116690A (en) Production of coal-water slurry
CN108706714B (en) Method for treating nitroaromatic wastewater by activating persulfate through lignite and metal/organic matter co-loaded modified lignite pyrolysis product
CN116426312A (en) Crude oil fluidity improver, preparation method and application thereof
CN113800832B (en) Low-friction high-density cement paste and preparation method thereof
JPS6018585A (en) Preparation of coal slurry
JPS62116691A (en) Production of coal-water slurry
CN106315805A (en) Modified straw polypropylene composite flocculant and key production technology thereof
JPS60226445A (en) Granular concrete water-reducing agent and slump reduction prevention of ready mixed concrete therewith
JPS58199032A (en) Carbonaceous material formed into aqueous slurry
JPS648679B2 (en)
JP2019025376A (en) Suppression method of dust emission from clinker ash
JPS6157689A (en) Production of coal-water slurry
MAEDA et al. Studies on Coal Slurry Fuel (Part 3) Effect of Model-components on Viscosity and Cohesion Behavior of Model-COM