JPS62116690A - Production of coal-water slurry - Google Patents

Production of coal-water slurry

Info

Publication number
JPS62116690A
JPS62116690A JP25656985A JP25656985A JPS62116690A JP S62116690 A JPS62116690 A JP S62116690A JP 25656985 A JP25656985 A JP 25656985A JP 25656985 A JP25656985 A JP 25656985A JP S62116690 A JPS62116690 A JP S62116690A
Authority
JP
Japan
Prior art keywords
coal
dispersant
slurry
water
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25656985A
Other languages
Japanese (ja)
Inventor
Ryuichi Kaji
梶 隆一
Hideo Kikuchi
菊池 秀雄
Tadashi Muranaka
廉 村中
Keizo Otsuka
大塚 馨象
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP25656985A priority Critical patent/JPS62116690A/en
Publication of JPS62116690A publication Critical patent/JPS62116690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To produce at low cost a coal-water slurry of high concn. and low viscosity, by adding water and a dispersant to a coal pulverized so as to have a predetermined particle size distribution and then agitating so as to maintain the particle size distribution before addition of the dispersant, thereby minimizing the use of the dispersant. CONSTITUTION:Coal is pulverized in a mill 1 for about 30min, and caused to pass through a classifying device 2 so as to obtain a coal having a particle size distribution with a maximum particle size of about 50mum. The coal, together with water, is introduced in a wet mill 3, in which the coal is wet pulverized. The resulting coal is fed into a mixer 4, and a dispersant comprised of at lest one compd. selected from among org. anionic surfactants, nonionic surfactants and inorg. ionic compds. is added in an amt. of 0.01-5.0wt% based on the dry weight of the coal. Alternatively, coal is processed through the mill 1 and the classifying device 2 and fed into the mixer 4, in substantially the same manner as described above. The above-mentioned dispersant is added in the above-mentioned amt. to obtain a slurry. After addition of the dispersant, mixing under agitation is conducted while maintaining the coal particle size distribution before addition of the dispersant without pulverizing coal to a coal-water slurry.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は石炭水スラリの製造方法に係り、特に。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a method for producing a coal-water slurry, and more particularly.

その製造における分散剤の添加量を低減する経済的な製
造方法に関する。
The present invention relates to an economical manufacturing method that reduces the amount of dispersant added in the manufacturing process.

〔発明の背景〕[Background of the invention]

粉体のスラリ輸送技術は、固体である粉体を取扱いが簡
単な流体状にして輸送する方法として古くから研究が行
なわれている。近年1石炭の輸送にこのスラリ輸送技術
を適用し1石炭の自然発火や粉じん飛散等の問題がなく
、安全で、しかも管路輸送か可能であシ、このため、取
扱いか容易で。
Powder slurry transportation technology has been studied for a long time as a method for transporting solid powder in a fluid state that is easy to handle. In recent years, this slurry transportation technology has been applied to the transportation of coal, and it is safe without problems such as spontaneous combustion or dust scattering, and can be transported through pipes, making it easy to handle.

輸送効率の向上を図ることができる石炭水スラリの製造
技術開発が盛んに行なわれている。
BACKGROUND ART The development of manufacturing technology for coal-water slurry that can improve transportation efficiency is being actively conducted.

石炭水スラリは1石炭含有量をできるだけ大きくするこ
とによ)、石炭の輸送効率を向上することができ、まな
、水分量を低減することにより。
The coal-water slurry can improve the transport efficiency of coal by increasing the coal content as much as possible (by increasing the coal content as much as possible), and by reducing the moisture content.

石炭水スラリを輸送後、脱水を行なわないで直接燃焼す
ることか可能となるので1石炭水スラリ中の石炭濃度を
高める高濃度化技術の開発か行なわれてきた。スラリ中
の固体濃度を高くすると、その粘度が増大することはよ
く知られた事実であるが・石炭水スラリでは管路輸送が
可能な程度に粘度を低く保ちつつ、石炭濃度を可能な限
シ高くする必要があシ、その方法として第一に石炭水ス
ラリ中の石炭粒子の粒径分布全調整することにより高濃
度化し、第二に、更に分散剤を添加して石炭粒子の分散
性を高めることによシ低粘注化する方法が知られている
(特表昭56−501568号)。
Since it is possible to directly burn the coal-water slurry without dehydration after transporting it, a high concentration technology has been developed to increase the coal concentration in the coal-water slurry. It is a well-known fact that increasing the solids concentration in a slurry increases its viscosity.In the case of coal-water slurry, the coal concentration should be kept as low as possible while keeping the viscosity low enough to allow pipe transportation. Firstly, the particle size distribution of the coal particles in the coal-water slurry is adjusted to increase the concentration, and secondly, a dispersant is further added to improve the dispersibility of the coal particles. A method of lowering the viscosity by increasing the concentration is known (Japanese Patent Publication No. 501568/1983).

高濃度で、かつ、低粘性の石炭水スラリを製造する方法
はこの公知例以外にも多数開示されているが、全て上述
の二つの基本的な原理に基づくものである。
Many methods for producing coal-water slurry with high concentration and low viscosity have been disclosed in addition to this known example, but all of them are based on the above two basic principles.

これら公知例による石炭水スラリの製造方法は、(1)
石炭、水及び分散剤を所定量ずつ混合しながらチューブ
ミルによシ湿式粉砕し直接高濃度の石炭水スラリを製造
するもの、(2)低石炭濃度で水及び分散剤共存下でチ
ューブミルによシ湿式粉砕した後、得られたスラリを脱
水濃縮することにより高濃度化して製造するもの等があ
る。これらいずれの方法によっても、石炭濃度が70重
重量板上で、粘度が約1.500cp以下で流動性の高
い石炭水スラリか得られる。
The method for producing coal water slurry according to these known examples includes (1)
A method in which coal, water, and a dispersant are mixed in predetermined amounts and then wet-pulverized in a tube mill to directly produce a high-concentration coal-water slurry. After wet grinding, the resulting slurry is dehydrated and concentrated to make it highly concentrated. By any of these methods, a highly fluid coal-water slurry having a coal concentration on a 70-weight plate and a viscosity of about 1.500 cp or less can be obtained.

このように、高濃度低粘性の石炭水スラリの製造技術は
確立されたかに見える。しかし、流体化した石炭の輸送
や象扱い上の安全ヰや操作性を向上し、スラリを高濃度
、低粘性とすることにより。
In this way, the technology for producing a highly concentrated and low viscosity coal-water slurry appears to have been established. However, by improving the safety and operability of transporting and handling fluidized coal, and by making the slurry highly concentrated and low in viscosity.

その輸送効率を向上することは、効果的ではあるが、石
炭水スラリ製造のための二つの基本的原理を満足するた
めに必要な石炭の粉砕動力及び分散剤の量は美大なもの
となり、°従来技術のみでは、石炭水スラリは必ずしも
経済的な石炭の利用形態として確立されたとは言い難い
。ちなみに、第一の基本原理を満たすために必要な石炭
の粉砕動力費は、炭種により多少変動はあるが、現状で
は約0、2円/ 1.000 K calであp、g二
o基本imt−満たすために必要な分散剤の費用は現状
では約0.5円/ 1.000 K calで1両者合
わせると0.7円/ 1.000K calとなる。石
炭の価格は現在約2円/ 1.000 K calであ
るから1石炭水スラリの製造における粉砕動力と分散剤
だけで約35%のコスト増となる。従来技術で、目的と
する高濃度、低粘性の石炭水スラリを製造するのに必要
な分散剤の量は、乾燥石炭に対し0.01〜5.0重量
係とされているが、実験によれば、公知の方法によって
Improving its transportation efficiency is effective, but the amount of coal crushing power and dispersant required to satisfy the two basic principles for producing coal-water slurry is enormous; ° It cannot be said that coal-water slurry has necessarily been established as an economical form of coal utilization using only conventional technology. By the way, the coal crushing power cost required to satisfy the first basic principle varies somewhat depending on the type of coal, but at present it is approximately 0.2 yen/1.000 K cal, which is the basic cost of p, g2o. Currently, the cost of the dispersant required to satisfy imt is approximately 0.5 yen/1.000 Kcal, and when both are combined, the cost is 0.7 yen/1.000 Kcal. Since the price of coal is currently about 2 yen/1.000 Kcal, the cost will increase by about 35% just for the crushing power and dispersant in producing one coal-water slurry. In conventional technology, the amount of dispersant required to produce the target high concentration, low viscosity coal water slurry is said to be 0.01 to 5.0% by weight of dry coal, but in experiments According to known methods.

例えば1石炭製度70重量係、粘度1.500cpの石
炭水スラリを製造するのに必要な分散剤の量は約1重量
係で、これ以下に低減すると粘度は飛躍的に増大し、流
動性のあるスラリとけ成し得ないことが確認された。こ
のように1石炭水スラリの技術上の課題である製造コス
トの低減はまだ解決されていない。
For example, the amount of dispersant required to produce a coal-water slurry with a coal grade of 70 weight and a viscosity of 1.500 cp is approximately 1 weight. It was confirmed that a certain slurry cannot be achieved. As described above, the technical issue of reducing manufacturing costs for single-coal-water slurries has not yet been resolved.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高濃度、低粘性の性状を損なうことな
く、石炭水スラリの製造に必要な分散剤を低減する石炭
水スラリの製造法を提供することにある。
An object of the present invention is to provide a method for producing a coal water slurry that reduces the amount of dispersant required for producing the coal water slurry without impairing its properties of high concentration and low viscosity.

〔発明の概要〕[Summary of the invention]

本発明は、粉砕した石炭、水及び分散剤から成る石炭水
スラリを製造する方法において、予め所定の粒径分布に
粉砕した石炭と水の混合物に分散剤を添加して撹拌する
ことにより、スラリとし、分散剤添加後にはこのスラリ
中の石炭は粉砕されず1分散剤添加前と同一の粒径分布
を持つようにしたことを特徴とする。
The present invention is a method for producing a coal-water slurry consisting of pulverized coal, water, and a dispersant. The coal in this slurry is not crushed after the addition of the dispersant, but is characterized in that it has the same particle size distribution as before the addition of the dispersant.

本発明者らは1石炭水スラリの高濃度、低粘性化技術及
び分散剤、粉砕動力を低減し、低コストで製造する方法
に関し、鋭意研究を進めた。
The inventors of the present invention have conducted intensive research on a method for producing a coal-water slurry at low cost by reducing its high concentration and viscosity technology, dispersant, and crushing power.

その結果、すでに述べたように、従来の方法で製造する
限シ、どうしても製造コストの低減を図ることは困難で
、前述のように1分散剤の添加量は乾燥石炭に対し約1
重量係以下に低減することは不可能であることが明らか
になった。
As a result, as mentioned above, it is difficult to reduce production costs when manufacturing using conventional methods, and as mentioned above, the amount of dispersant added is about 1% per dry coal.
It became clear that it was impossible to reduce the weight below the weight factor.

石炭の表面積及び石炭に対する分散剤の吸着特注力・ら
考えると、約1重量%の添加量は非常に多量なもので、
石炭の表面に単分子層を形成するに必要な量の数十倍以
上である。発明者らは、このように多量の分散剤が必要
となる原因を究明することによシ、分散剤の低減法に関
する示唆が得られるものと考え研究を重ねた。
Considering the surface area of coal and the adsorption focus of the dispersant on coal, the addition amount of about 1% by weight is a very large amount.
The amount is several tens of times higher than that required to form a monomolecular layer on the surface of coal. The inventors have conducted repeated research in the belief that by investigating the reason why such a large amount of dispersant is required, suggestions regarding methods for reducing the amount of dispersant can be obtained.

発明者らは%まず、石炭に対する分散剤の吸着性から検
討を加えた。石炭水スラリを高濃度、低粘性化するには
1分散剤を添加して石炭粒子の分散性を高める必要があ
る。しかし、現在までのコロイド化学の知識から、粒子
を分散するには粒子の外表面にのみ分散剤が吸着してい
れば充分である。しかし、石炭は多孔性物質であり、粒
子内部に多くの細孔が形成されている。良く知られてい
るように1石炭はその細孔内に水を吸収するが。
The inventors first investigated the adsorption properties of the dispersant to coal. In order to make the coal water slurry highly concentrated and low in viscosity, it is necessary to add a dispersant to improve the dispersibility of coal particles. However, current knowledge of colloid chemistry indicates that it is sufficient to disperse the particles if the dispersant is adsorbed only on the outer surface of the particles. However, coal is a porous substance, and many pores are formed inside the particles. As is well known, coal absorbs water within its pores.

石炭水スラリ製造時のように分散剤共存下の水中に浸漬
した場合、水の吸収と同時に水中に溶解している分散剤
も石炭内に吸収され、その壁面に吸着されると考えられ
る。粒子内部に発達した細孔の全表面積は粒子の外表面
積に比べてかなり大きいと考えられ、従って1分散剤も
大部分子fi細孔壁に吸着され1粒子内部に存在すると
考えられる。
When coal is immersed in water in the coexistence of a dispersant, as in the production of coal-water slurry, it is thought that the dispersant dissolved in the water is absorbed into the coal at the same time as the water is absorbed, and is adsorbed on its wall surface. The total surface area of the pores developed inside the particles is considered to be considerably larger than the outer surface area of the particles, and therefore it is considered that most of the dispersant is adsorbed on the walls of the molecular fi pores and exists inside the particles.

このことが真実ならば、前述のコロイド化学の知識から
判断して大部分の分散剤(細孔壁に吸着しているもの)
は粒子の分散に有効に作用していないことになる。発明
者らは、細孔分布の異なる数種の石炭に対する分散剤(
ナフタレン環をもつ陰イオン系のもの)の吸着特注を調
べたところ、第2図に示す結果を得た。分散剤の各種石
炭への平衡吸着量は、石炭の比表面積に比例することを
示している。この結果は、上記の推察が正しく、細孔内
壁に多くの分散剤が吸着されていることを示している。
If this is true, judging from the knowledge of colloid chemistry mentioned above, most of the dispersants (those adsorbed on the pore walls)
This means that the particles are not effectively dispersed. The inventors developed a dispersant for several types of coal with different pore distributions (
When we investigated custom-made adsorption of anionic products (having naphthalene rings), we obtained the results shown in Figure 2. It has been shown that the equilibrium adsorption amount of dispersant onto various types of coal is proportional to the specific surface area of the coal. This result shows that the above assumption is correct and that a large amount of dispersant is adsorbed on the inner walls of the pores.

第3図はその内の一炭種の吸着等温線を示すが1分散剤
は石炭にフロイントリツヒ型の吸着をし、液中濃度があ
る程度高くなると吸着量は飽和に達することがわかる。
Figure 3 shows the adsorption isotherm of one of the coal types, and it can be seen that one dispersant causes Freundlitz type adsorption to coal, and when the concentration in the liquid increases to a certain extent, the amount of adsorption reaches saturation.

この飽和吸着点以上に分散剤を添加しても、石炭には吸
着されず、液中の濃度が大きくなるだけである。ここで
、図中黒丸で示した点は、!I度70%の石炭水スラリ
において1石炭に対し0.5重量%の分散剤を添加した
場合の点を示す。この結果から明らかなように、通常の
石炭水スラリに添加する分散剤の量は石炭の細孔壁をも
含めた全表面への飽和吸着量よりも更に多く1石炭水ス
ラリで上述のように多くの分散剤を必要とするのは別の
原因があることを示している。
Even if the dispersant is added above this saturated adsorption point, it will not be adsorbed by the coal and the concentration in the liquid will only increase. Here, the points indicated by black circles in the figure are! The points are shown when 0.5% by weight of a dispersant is added to 1 coal in a coal-water slurry with an I degree of 70%. As is clear from this result, the amount of dispersant added to a normal coal-water slurry is much larger than the saturated adsorption amount on the entire surface of the coal, including the pore walls, as described above for one coal-water slurry. The need for a large amount of dispersant indicates another cause.

発明者らはこの原因を究明するため、種々の石炭水スラ
リを調製して検討を行なった。この検討の過程で次のよ
うな新しい事実を見出すに到りな。
In order to investigate the cause of this, the inventors prepared and investigated various coal water slurries. In the process of this investigation, we discovered the following new facts.

まず、検討のために種々の粒径分布をもった石炭水スラ
リを調製した。すでに述べたように1石炭を水及び分散
剤と混合し、これをチューブミルに充てんして粉砕しス
ラリを調製した。チューブミルに充てんした石炭は、第
4図のaに示すように、最大粒径約50μmに予め微粉
砕したものを用いた。tた、分散剤には陰イオン系のも
のを乾燥石炭に対し0.3重tチ添加した。粉砕を30
分、60分、及び120分行なった場合の生成スラリ中
の石炭の粒径分布を第4図のす、c、dに示す。粉砕時
間が30分では原料石炭に比べ、スラリ中の石炭粒子は
かなシ小さくなっている。粉砕時間60分では、更に、
微粉砕されていることがわかる。
First, coal-water slurries with various particle size distributions were prepared for investigation. As described above, one coal was mixed with water and a dispersant, and the mixture was filled into a tube mill and pulverized to prepare a slurry. The coal filled in the tube mill was previously pulverized to a maximum particle size of about 50 μm, as shown in FIG. 4a. In addition, as a dispersant, an anionic dispersant was added at 0.3 parts per dry coal. Grind 30
The particle size distribution of coal in the slurry produced when the heating was carried out for 1, 60 minutes, and 120 minutes is shown in FIG. 4, c, and d. When the grinding time was 30 minutes, the coal particles in the slurry were much smaller than the raw coal. In addition, when the grinding time is 60 minutes,
It can be seen that it is finely pulverized.

しかし、粉砕時間e120分に増しても、60分の場合
と大差なく、第4図のCの粒径分布は本試験で用いたチ
ューブミルの粉砕限界になっていると考えられる。これ
らの粒径分布から各スラリ中の石炭粒子の外表面積を計
算すると、第3図のbのものが1.33i/g、cが1
.51yd/g 、 dが1、58 rr?/gであっ
た。
However, even if the grinding time e is increased to 120 minutes, there is not much difference from the case of 60 minutes, and it is considered that the particle size distribution of C in FIG. 4 is at the grinding limit of the tube mill used in this test. Calculating the outer surface area of the coal particles in each slurry from these particle size distributions, the one in b in Figure 3 is 1.33i/g, and the one in c is 1.
.. 51yd/g, d is 1, 58 rr? /g.

このように、予め微粉砕した石炭を用いて調製したスラ
リ中の石炭の粒径分布及び外表面積は粉砕時間を変えて
もそれ程大きく変化しないことがわかった。しかし、次
に述べるように、これらのスラリの流動特注は大きく変
化していることが見出された。第5図のa、b、cは、
チューブミルによる湿式粉砕時間が各々30,60,1
20分のスラリの流動曲線を示したものである。第6図
はそれぞれのスラリのせん断速度188”における見か
け粘度を粉砕時間に対してプロットしたものである。湿
式チューブミルによる粉砕時間が長くなるとスラリの流
動特注はグイラタント、チクソトロピの曲状から擬塑性
でレオベクシの注状に変化し、同時に、見かけ粘度は大
巾に増大することがわかった。
Thus, it was found that the particle size distribution and outer surface area of coal in a slurry prepared using previously pulverized coal did not change significantly even if the pulverization time was changed. However, as discussed below, the flow customization of these slurries has been found to vary widely. a, b, c in Figure 5 are
Wet grinding time by tube mill is 30, 60, 1, respectively.
The flow curve of the slurry for 20 minutes is shown. Figure 6 shows the apparent viscosity of each slurry at a shear rate of 188'' plotted against the grinding time.The longer the grinding time with the wet tube mill, the more the custom slurry flow changes from giratant and thixotropic curves to pseudoplastic. At the same time, the apparent viscosity was found to increase significantly.

この流動特注試験結果は現在までに集積されたコロイド
化学の知識から、次のように解釈することができる。す
なわち1本発明が対象としているようなスラリの流動特
注は、その中に在存する粒子の分散・凝集状態の影響を
大きく受ける。一般に粒子がよく分散しているスラリで
は、ダイラタントでチクントロピの流動特注を示し、粒
子の凝集性が大きいスラリでは擬塑性でレオペクシの注
状を示す。このことから、上記のようにして製造したス
ラリは、粉砕時間が30分のものでは石炭粒子がよく分
散しており、粉砕時間が60,120分と長くなるに従
い、何らかの原因により石炭粒子の凝集殴が増大したこ
とか示唆される。すでに述べtように1石炭粒子の外表
面積は上記粉砕時間で大きく変化しないこと、及び、添
加した分散剤は乾燥石炭に対し0.5重t%で、石炭の
比表面積から予測される吸着容量に対し大過剰に存在し
ている。従って、粉砕時間が長くなるに従って石炭粒子
の凝集性が高くなっているのは分散剤量が不足している
からではないことは明らかである。
The results of this custom flow test can be interpreted as follows based on the knowledge of colloid chemistry that has been accumulated to date. In other words, customizing the flow of slurry, which is the object of the present invention, is greatly influenced by the state of dispersion and agglomeration of the particles present therein. In general, slurries with well-dispersed particles exhibit dilatant and chikuntropic flow customization, while slurries with large particle cohesion exhibit pseudoplastic and rheopectic flow characteristics. From this, it can be seen that in the slurry produced as described above, coal particles are well dispersed when the grinding time is 30 minutes, but as the grinding time increases to 60, 120 minutes, the coal particles are agglomerated due to some reason. It is suggested that the beatings increased. As already mentioned, the outer surface area of one coal particle does not change significantly with the above-mentioned pulverization time, and the adsorption capacity predicted from the specific surface area of the coal is that the added dispersant is 0.5% by weight based on the dry coal. It exists in large excess. Therefore, it is clear that the reason why the cohesiveness of the coal particles becomes higher as the grinding time becomes longer is not because the amount of dispersant is insufficient.

本発明者らは、上述のように、粉砕時間によシスラリの
性状が変化し、長時間粉砕するに従い。
The present inventors discovered that, as mentioned above, the properties of cisurari change depending on the grinding time, and as the grinding time increases.

スラリか高粘性化する原因として1分散剤が粉砕中に化
学反応により変質し1分散効果が低下したためではない
かと考えた。粉砕過程で石炭の新生面が生成し念時1表
面近傍の分子は切断され、非常に反応性に富んだラジカ
ルが生成される。
The reason for the high viscosity of the slurry was thought to be that the dispersant 1 was altered by a chemical reaction during grinding, resulting in a decrease in the dispersion effect. During the pulverization process, a new surface of coal is generated, and molecules near the first surface are cut off, producing highly reactive radicals.

上記スラリに用いる分散剤は高分子重合体であシ。The dispersant used in the slurry is a high molecular weight polymer.

石炭の新生面に生成したラジカルと反応し、分散剤分子
が更に反応をおこし、分散効果のない物質に変化したと
考えられる。これは、一般にメカノケミカル反応として
知られている。もし、このような反応が粉砕中におこり
1分散剤が変質しているのであれば1分散剤の添加量を
低減するにはこのような変質を防止する方策を講じてや
れば良いことになる。このように新生面に生成したラジ
カルは非常に高い反応性を持っているため5分散剤のよ
うな反応物質がない場合にも媒質中に溶存している酸素
等と反応し、安定なものに変化すると考えられる。以上
の考察から0石炭を分散剤のない条件で粉砕し、新生面
の高反応曲基が安定なものに変化するまで放し、即ち1
石炭表面をエイソングした後、分散剤を添加し、その後
には石炭の新生面が生成しないようにすることにより1
分散剤の変質は防止され、従って、少量の添加でスラリ
に充分の流動性を与えることができるようになると考え
られる。
It is thought that the dispersant molecules reacted with the radicals generated on the newly formed surface of the coal, caused further reactions, and turned into a substance with no dispersing effect. This is commonly known as a mechanochemical reaction. If such a reaction occurs during grinding and the quality of the dispersant changes, then measures should be taken to prevent this change in order to reduce the amount of the dispersant added. . The radicals generated on the new surface have extremely high reactivity, so even in the absence of a reactive substance such as a dispersant, they react with oxygen etc. dissolved in the medium and turn into stable substances. It is thought that then. Based on the above considerations, 0 coal was pulverized in the absence of a dispersant and left until the highly reactive radicals on the newly formed surface changed to stable ones, that is, 1
By adding a dispersant after the coal surface is ray-sung and preventing the formation of a new surface of the coal, 1.
It is believed that deterioration of the dispersant is prevented, and therefore sufficient fluidity can be given to the slurry by adding a small amount.

以下、実施例によシ本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

〈実施例1〉 予め乾式で37μm以下に微粉砕し念石炭を。 <Example 1> The coal is finely ground to 37μm or less using a dry process in advance.

分散剤存在下、及び、不存下で湿式粉砕した。以下1分
散剤存在下で粉砕調製したスラリをA1分散剤不存下で
粉砕調製したスラリをBと呼ぶ。スラリAは石炭濃度5
7.5wt%  となるように水を添加し1分散剤とし
てナフタレンスルフォン酸系の陰イオン系のものを乾燥
石炭に対しQ、5wt%添加してボールミルにより1時
間粉砕して調製した。スラリBは石炭濃度56.3wt
%となるように水を添加し、分散剤は添加せずにボール
ミルによシ3時時間式粉砕することによシ調製した。ス
ラリ中の石炭の粒径分布は両者とも同じであった。
Wet milling was carried out in the presence and absence of a dispersant. Hereinafter, the slurry prepared by pulverization in the presence of dispersant A1 and the slurry prepared by pulverization in the absence of dispersant A1 will be referred to as B. Slurry A has a coal concentration of 5
Water was added to give a dispersant of 7.5 wt%, 5 wt% of an anionic naphthalene sulfonic acid dispersant was added to the dry coal, and the mixture was ground in a ball mill for 1 hour. Slurry B has a coal concentration of 56.3wt.
%, but without adding a dispersant, it was prepared by milling in a ball mill for 3 hours. The particle size distribution of coal in the slurry was the same in both cases.

これら二つのスラリの流動曲線を第7図に示す。The flow curves of these two slurries are shown in FIG.

たたし、スラリBKは湿式粉砕後に、スラリ大分調製時
に用いたものと同じ分散剤を乾燥石炭に対し、やはシ、
0.5wt%  添加した。スラリAは大きな降伏値を
持ってお先擬塑性の流動性を示すのに対し、スラリBは
降伏値を持念ず、グイラタントの性状を示す。
However, after wet pulverizing slurry BK, the same dispersant used in preparing slurry Oita was added to dry coal.
0.5 wt% was added. Slurry A has a large yield value and exhibits pseudoplastic fluidity, whereas slurry B does not have a yield value and exhibits giratant properties.

スラリの流動特注とスラリ中の固体粒子の分散性の関係
については、古くから知られており、第7図に示した結
果から、スラリA中の粒子の分散性は悪く1粒子が凝集
して凝集体を形成しており。
The relationship between the customization of slurry flow and the dispersibility of solid particles in the slurry has been known for a long time, and from the results shown in Figure 7, the dispersibility of particles in slurry A is poor and one particle aggregates. It forms aggregates.

逆に、スラ’JB中の粒子は非常に良く分散されている
ことがわかる。ここで、スラリAとBの違いは1分散剤
を添加して粉砕したか、粉砕後に添加したかの相異だけ
である。本実施例の結果から。
On the contrary, it can be seen that the particles in Sura'JB are very well dispersed. Here, the only difference between slurries A and B is whether the dispersant was added and pulverized or whether it was added after pulverization. From the results of this example.

石炭の粉砕中に分散剤が共存していると6分散剤の効果
が小さくなる。即ち、分散剤が変質劣化していることが
明らかとなった。
If a dispersant coexists during coal pulverization, the effect of the dispersant becomes smaller. In other words, it became clear that the dispersant had been altered and deteriorated.

〈実施例2〉 実施例1と同じ石炭を用いてスラリを調製し分散剤添加
量の影響について検討した。本実施例では、粒径3rt
!R以下に粗粉砕した石炭を、濃度58.1wt% と
なるように水を添加してボールミルにより湿式粉砕しス
ラリを調製した。スラリCは所定量の分散剤を添加して
から湿式粉砕を行なった。
<Example 2> A slurry was prepared using the same coal as in Example 1, and the influence of the amount of dispersant added was studied. In this example, the particle size is 3rt.
! Coal that had been roughly pulverized to less than R was wet-pulverized in a ball mill with water added to a concentration of 58.1 wt% to prepare a slurry. Slurry C was wet-pulverized after adding a predetermined amount of dispersant.

また、スラl) Dは分散剤を添加せずに粉砕してから
1分散剤を後添加することによりスラリを調製した。ス
ラIJ C及びD中の石炭粒子は最大粒径が約300μ
mで1両者とも同一の粒径分布をもっていた。粘度測定
に用いtスラリ中の石炭濃度は。
In addition, slurry 1) D was prepared by pulverizing without adding a dispersant and then adding a dispersant later. The maximum particle size of coal particles in Sura IJ C and D is approximately 300μ.
Both had the same particle size distribution. What is the coal concentration in the slurry used for viscosity measurement?

スラリC,Dともに58.1wt% とじた。分散剤は
実施例1と同じものを用いた。分散剤添加量とスラリ粘
度の関係を第8図に示す。分散剤を添加して粉砕調製し
念スラIJ Cは1分散剤量の増大とともにスラリ粘度
が低下し、Q、8wt96以上の添加量でほぼ一定の値
となる。これに対し、粉砕後に分散剤を添加したスラI
J Dでは、添加量的0.1wt%以上でスラリ粘度は
ほぼ一定値となっている。このことは、スラリDでは石
炭粒子を分散するのに約Q、1wt%の分散剤で充分で
あるが、スラリCでは2約0,8wt%を必要としてい
ることを意味している。即ち、スラIJ Cでは約0.
7wt1の添加剤が変質・劣化していることを示してお
り。
Both slurries C and D were bound at 58.1 wt%. The same dispersant as in Example 1 was used. FIG. 8 shows the relationship between the amount of dispersant added and the viscosity of the slurry. The slurry viscosity of IJC prepared by adding a dispersant and pulverization decreases as the amount of dispersant increases, and becomes a nearly constant value when the amount of addition is Q, 8wt96 or more. On the other hand, slug I to which dispersant was added after crushing
In JD, the slurry viscosity is approximately constant when the amount added is 0.1 wt% or more. This means that in Slurry D, approximately Q, 1 wt% of dispersant is sufficient to disperse the coal particles, while Slurry C requires approximately 0,8 wt%. That is, in sura IJC, it is approximately 0.
This indicates that the 7wt1 additive has deteriorated and deteriorated.

すでに述べた本発明者らの考え方が正しいことを裏付け
ている。この結果から1本発明になる方法によシスラリ
を調製することで分散剤の添加量を大巾に低減できるこ
とは明らかである。
This confirms that the thinking of the present inventors, which has already been stated, is correct. From these results, it is clear that the amount of dispersant added can be greatly reduced by preparing the cis slurry according to the method of the present invention.

〈実施例3〉 実施例2と同じ石炭を用いて、同様の方法でスラリE、
Fを調製した。スラリEは分散剤を0.2wt%添加し
てボールミルにより湿式粉砕し調製した。スラリFは分
散剤を添加せずに湿式粉砕しt後、分散剤をスラIJ 
Eと同量添加して調製した。
<Example 3> Using the same coal as in Example 2, slurry E,
F was prepared. Slurry E was prepared by adding 0.2 wt % of a dispersant and wet milling using a ball mill. Slurry F is wet-pulverized without adding a dispersant, and then the dispersant is added to the slurry IJ.
It was prepared by adding the same amount as E.

分散剤は実施例1の場合と同じものを用いた。スラ!J
E、Fの粘度と石炭濃度の関係を第9図に示す。第9図
から明らかなように、例えば、粘度1000m100O
において、スラリFはスラリEに比べ石炭濃度を約5w
t% 高くすることができる。
The same dispersant as in Example 1 was used. Sura! J
Figure 9 shows the relationship between the viscosity of E and F and the coal concentration. As is clear from Figure 9, for example, the viscosity is 1000m100O
, slurry F has a coal concentration of about 5w compared to slurry E.
t% can be increased.

このように1本発明に従って、即ち1石炭を予め粉砕し
所定の粒径に調製した後に1分散剤を添加し、以後は石
炭粒子の外表面積を増加させないようにすることにより
1分散剤添加量の低減、あるいはスラリの高濃度化が可
能となる。
In this way, according to the present invention, 1 dispersant is added after 1 coal is crushed in advance and adjusted to a predetermined particle size, and 1 dispersant is added by not increasing the outer surface area of the coal particles thereafter. or increase the concentration of slurry.

良く知られているように、高濃度石炭水スラリでは分散
剤がないと流動性を示さない。現在2石炭、水及び分散
剤を所定量ずつ混合しながらチューブミルにより湿式粉
砕し直接高濃度の石炭水スラリを製造する方式がとられ
ているが、この方法では本発明になる方法を適用するこ
とはできない。
As is well known, a highly concentrated coal-water slurry does not exhibit fluidity without a dispersant. Currently, a method is used in which two coals, water, and a dispersant are mixed in predetermined amounts and wet-pulverized using a tube mill to directly produce a highly concentrated coal-water slurry, but in this method, the method of the present invention is applied. It is not possible.

なぜならば1分散剤を添加することなく高濃度湿式粉砕
をした場合、前述のように、スラリは流動性を全く示さ
ず、従って、チューブミル内でスラリか挿し出されない
ため、ミルの連続運転ができなくなるからである。また
、流動性がないとチューブミルでの粉砕が行なわれなく
なる。従って。
This is because, as mentioned above, when high-concentration wet milling is performed without adding a dispersant, the slurry shows no fluidity at all, and therefore the slurry is not inserted into the tube mill, making continuous operation of the mill impossible. This is because it will not be possible. In addition, if there is no fluidity, pulverization using a tube mill will not be possible. Therefore.

本方法を適用しようとすると、ミル内でのスラリか分散
剤のない状態でも流動性を示すように稀釈し、低濃度で
粉砕した後濃縮し、分散剤を添加する工程となり、プロ
セスの経済上の利点が少なくなる。本発明の方法が最も
効率的に適用できるのは第1図に示したようなプロセス
である。石炭はミルlで乾式粗粉砕された後1分散機2
で所定の粒度別に分級され、粗大粒子はチューブミル3
に送られここで水が添加され湿式粉砕し、微粒スラリー
と成る。ここでは1分散剤無添加で低濃度粉砕を行なう
。調製された微粒スラリは混合器4で先に分別された乾
式粉砕粒子と混合される。ここで初めて分散剤が添加さ
れ、高濃度石炭水スラリとなる。このようにすることに
より、脱水濃縮と言った操作をすることなく1本発明に
なる方法により経済的に高濃度石炭水スラリを調製する
ことができる。
When this method is applied, the slurry in the mill must be diluted to exhibit fluidity even in the absence of a dispersant, pulverized at a low concentration, concentrated, and then a dispersant added. benefits are reduced. The method of the present invention can be most efficiently applied to the process shown in FIG. After the coal is dry coarsely pulverized in the mill 1, it is passed through the dispersion machine 2.
The coarse particles are classified by tube mill 3 according to the predetermined particle size.
where water is added and wet-pulverized to form a fine slurry. Here, low-concentration pulverization is performed without adding a dispersant. The prepared fine particle slurry is mixed with the previously separated dry pulverized particles in a mixer 4. At this point, a dispersant is added for the first time, creating a highly concentrated coal-water slurry. By doing so, it is possible to economically prepare a highly concentrated coal-water slurry by the method of the present invention without performing operations such as dehydration and concentration.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スラリ調製中の分散剤の変質劣化がな
くなるので5分散剤の添加量を低減し石炭水スラリの経
済酸を向上できる。
According to the present invention, since there is no deterioration in quality of the dispersant during slurry preparation, it is possible to reduce the amount of the dispersant added and improve the economical acidity of the coal-water slurry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造プロセスを示す系統図
、第2図は石炭の比表面積と分散剤の吸着量を示す図、
第3図は石炭・\の分散剤の吸着等混線を示す図、第4
図は試験した石炭及びスラリ中石炭の粒径分布を示す図
、第5図は試験で製造したスラリの流動曲線を示す図、
第6図はスラリの粘度と粉砕時間の関係を示す図、第7
図は実施例1の結果を示すグラフ、第8図は実施例2の
結果を示す図、第9図は実施例3の結果を示す図である
。 1・・・ミル、2・・・分級機、3・・・湿式ミル、4
・・・混合器。
FIG. 1 is a system diagram showing the manufacturing process of an embodiment of the present invention, FIG. 2 is a diagram showing the specific surface area of coal and the adsorption amount of dispersant,
Figure 3 is a diagram showing crosstalk such as adsorption of coal/dispersant, Figure 4
The figure shows the particle size distribution of the tested coal and the coal in the slurry, and Figure 5 shows the flow curve of the slurry produced in the test.
Figure 6 shows the relationship between slurry viscosity and grinding time, Figure 7
8 is a graph showing the results of Example 1, FIG. 8 is a graph showing the results of Example 2, and FIG. 9 is a graph showing the results of Example 3. 1... Mill, 2... Classifier, 3... Wet mill, 4
...Mixer.

Claims (1)

【特許請求の範囲】 1、粉砕した石炭、水及び分散剤からなる石炭水スラリ
を製造する方法において、 予め所定の粒径分布に粉砕した前記石炭と前記水の混合
物に前記分散剤を添加するか、粉砕した前記石炭に前記
水と前記分散剤を添加して攪拌することによりスラリと
し、前記分散剤の添加後には前記スラリ中の前記石炭は
粉砕されず、前記分散剤の添加前と同一の粒径分布を持
つようにしたことを特徴とする石炭水スラリの調製方法
。 2、特許請求の範囲第1項において、 前記分散剤として有機陰イオン系界面活性剤、非イオン
系界面活性剤および無機イオン化合物から選ばれた少な
くとも一種の化合物を、石炭の乾燥重量当たり0.01
〜5.0重量使用することを特徴とする石炭水スラリの
調製方法。
[Claims] 1. A method for producing a coal-water slurry consisting of pulverized coal, water, and a dispersant, including adding the dispersant to a mixture of the coal and the water that have been pulverized in advance to a predetermined particle size distribution. Alternatively, the water and the dispersant are added to the pulverized coal and stirred to form a slurry, and after the addition of the dispersant, the coal in the slurry is not pulverized and is the same as before the addition of the dispersant. A method for preparing a coal-water slurry characterized by having a particle size distribution of 2. In claim 1, at least one compound selected from an organic anionic surfactant, a nonionic surfactant, and an inorganic ionic compound is used as the dispersant in an amount of 0.0% per dry weight of coal. 01
A method for preparing a coal water slurry characterized by using ~5.0 weight.
JP25656985A 1985-11-18 1985-11-18 Production of coal-water slurry Pending JPS62116690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25656985A JPS62116690A (en) 1985-11-18 1985-11-18 Production of coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25656985A JPS62116690A (en) 1985-11-18 1985-11-18 Production of coal-water slurry

Publications (1)

Publication Number Publication Date
JPS62116690A true JPS62116690A (en) 1987-05-28

Family

ID=17294457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25656985A Pending JPS62116690A (en) 1985-11-18 1985-11-18 Production of coal-water slurry

Country Status (1)

Country Link
JP (1) JPS62116690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106190A (en) * 2007-10-30 2009-05-21 Sanyo Electric Co Ltd Apparatus for producing frozen dessert

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106190A (en) * 2007-10-30 2009-05-21 Sanyo Electric Co Ltd Apparatus for producing frozen dessert

Similar Documents

Publication Publication Date Title
JP2827152B2 (en) Dust suppression method
US4601729A (en) Aqueous phase continuous, coal fuel slurry and a method of its production
JPS62116690A (en) Production of coal-water slurry
JPH04220494A (en) Manufacture of highly concentrated coal/water slurry
JPS5958092A (en) Preparation of coal slurry
JPH04372691A (en) Production of highly concentrated aqueous slurry of coal
JPS62158792A (en) Production of highly concentrated coal-water slurry
JPS6157689A (en) Production of coal-water slurry
JPS62116691A (en) Production of coal-water slurry
JPH0552358B2 (en)
JPS6232187A (en) Aqueous slurry of coal
JPS6317990A (en) Wet production of coal-water slurry in high concentration
JPS60156797A (en) Manufacture of highly concentrated coal-water slurry
JPS6147197B2 (en)
JPH06108069A (en) Coal/water mixture and its production
JPS62172093A (en) Continuous production of solid fuel-oil slurry
JPH0469675B2 (en)
JPH0552359B2 (en)
JPS62158793A (en) Production of deashed and highly concentrated coal-water slurry
JPS6157687A (en) Method of decreasing viscosity of concentrated coal-water slurry
JPS6195094A (en) Production of coal-water slurry
JPS60156795A (en) Manufacture of highly concentrated coal-water slurry
JPH0576987B2 (en)
JPS59147088A (en) Preparation of coal-water slurry
JPS61115996A (en) Preparation of high-concentration coal/water slurry