JPS6018585A - Preparation of coal slurry - Google Patents

Preparation of coal slurry

Info

Publication number
JPS6018585A
JPS6018585A JP12578983A JP12578983A JPS6018585A JP S6018585 A JPS6018585 A JP S6018585A JP 12578983 A JP12578983 A JP 12578983A JP 12578983 A JP12578983 A JP 12578983A JP S6018585 A JPS6018585 A JP S6018585A
Authority
JP
Japan
Prior art keywords
coal
particle size
slurry
particles
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12578983A
Other languages
Japanese (ja)
Other versions
JPH0367118B2 (en
Inventor
Ryuichi Kaji
梶 隆一
Tadashi Muranaka
廉 村中
Hideo Kikuchi
菊池 秀雄
Yoshiki Noguchi
芳樹 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP12578983A priority Critical patent/JPS6018585A/en
Publication of JPS6018585A publication Critical patent/JPS6018585A/en
Publication of JPH0367118B2 publication Critical patent/JPH0367118B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To obtain coal slurry having such viscosity that it can be transported by pipeline, by blending coal particles adjusted to particle diameters in a specific range with a liquid to give slurry having a specific concentration. CONSTITUTION:Coal particles having 5-95wt% cumulative weight ratio, having a particle size distribution adjusted in such a way that it obeys the formula [D is coal particle diameter(mum); D50 is coal particle diameter(mum)(5-500mum) at 50wt% cumulative weight ratio; F is cumulative weight ratio(wt%) of coal particle finer than coal particle diameter D; a is 2-5 in >=D50 particle diameter range, and 1-3 in <=D50 range particle diameter range] is blended with a liquid such as water, petroleum oil, methanol, etc. and the coal concentration is adjusted to >=55wt%, to give the desired slurry.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、粉砕した後粒径分布調整を行った粉炭と溶媒
とt−混合することによシ、管路輸送が可能な程度の粘
性を有する石炭スラリーの製造法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides pulverized coal that has been pulverized and then subjected to particle size distribution adjustment, and is mixed with a solvent to obtain a viscosity that is suitable for pipe transportation. The present invention relates to a method for producing coal slurry.

〔発明の背景〕[Background of the invention]

粉体のスラリー輸送技術は、固体である粉体を取扱いが
簡単な流体状として輸送する方法として古くから研究が
行なわれている。近年、石炭の輸送に上記のスラリー輸
送技術を適用し、石炭の自然発火や粉じん飛散等の問題
がなく安全で、しかも管路輸送が可能なため取扱いが容
易で輸送効率の向上を図る方法が種々開発されている。
Powder slurry transportation technology has been studied for a long time as a method for transporting solid powder as a fluid that is easy to handle. In recent years, the above-mentioned slurry transportation technology has been applied to the transportation of coal, which is safe without problems such as spontaneous combustion or dust scattering, and is easy to handle because it can be transported through pipes, which improves transportation efficiency. Various types have been developed.

これらの方法としてCOM(重油−石炭混合物) 、C
WH(水−石炭混合物)、CMM(メタノール−石炭混
合物ン等の石炭スラリーを用いる方法がある。
These methods include COM (heavy oil-coal mixture), C
There are methods using coal slurries such as WH (water-coal mixture) and CMM (methanol-coal mixture).

このような石炭スラリーにおいては、石炭含有量をでき
得る限シ大きくすることが石炭の輸送効率を向上する上
で重要なことである。しかし石炭の含有量を大きくする
と製造されたスラリーの粘性が高く々シ、ひいてはスラ
リーの流動性が無くなってしまうためスラリーの管路輸
送が不可能となる。このため石炭スラリーにおける石炭
含有量には自ずと上限があシ、実用に供する程度の粘性
を有するスラリーではその限界値は50〜55重量%で
ある。
In such a coal slurry, it is important to increase the coal content as much as possible in order to improve coal transportation efficiency. However, if the content of coal is increased, the viscosity of the slurry produced becomes high and the fluidity of the slurry is lost, making it impossible to transport the slurry through pipes. Therefore, there is naturally an upper limit to the coal content in the coal slurry, and for a slurry that has a viscosity that is suitable for practical use, the limit value is 50 to 55% by weight.

一方、粉体と液体の混合物であるスラリーの粘性に関す
る研究は理想的な粉体形状である球状粒子を用いて古く
から行われておシ、現在までに概略以下の結論が得られ
ている。
On the other hand, research on the viscosity of slurry, which is a mixture of powder and liquid, has been conducted for a long time using spherical particles, which are an ideal powder shape, and the following general conclusions have been obtained so far.

(1)スラリーの粘度は、その中に含有される粉体が最
密光てんされた時に存在する粒子間空隙空間の割合と関
係し、同一固体濃度においては、最密光てん時の粒子間
空隙空間が小さい粉体のスラリー程低い−1(n、 R
oscoe、 J3rit、 J、 Appl、 pi
]ys、。
(1) The viscosity of a slurry is related to the proportion of interparticle void space that exists when the powder contained therein is packed with light. The smaller the void space in the powder slurry, the lower -1(n, R
oscoe, J3rit, J, Appl, pi
]ys,.

3.267(1952)、几 J、 p a r hS
 + T ra n S 、 S ”。
3.267 (1952), Rin J, par hS
+ Tran S, S”.

Rheology、 12.281 (1968)、森
芳部、化学工学+ 201488 (1956) + 
J、 v、 Ro b s n s on 、J。
Rheology, 12.281 (1968), Mori Yoshibe, Chemical Engineering + 201488 (1956) +
J., v., Robson, J.

ph)rs、& Co11oid Chem、 53.
1042 (1949) )(2)最密光てん時の粒子
間空隙空間は、粒子が単一粒径ではなく、複数の異なる
粒径を持っている場合に小さくなる。(A、E、R,〜
vestma”+ J、 Am、Ceram、Soc、
、13,767(1938)、几、K McQeary
、 J、 Am、 Ceram、 Soc、 、 44
.513 (1961)eF、 D、 Andereg
gl Ifld、Eng、 C11eln、 、 23
.1058(1931)) すなわち上記(2)の研究において、第1図に示すよう
に異なる粒径を持つ粒子が混合された粉体でに、大径の
粒子間の空隙空間に小径の粒子が充てんされ、粒子の粒
径幅(最大粒径から最小粒径の幅)が大きい程、最密光
てん時におけるその粉体の空隙空間は小さくなシ、よシ
密に充てんされることになることを述べている。このこ
とから異なる粒径を持つ粒子を密に充てんされた粉体に
液体を加えてスラリーとする場合、粒径幅が大きく密に
充てんされる粉体程、スラリーに流動性を与えるに必要
な液体量が少なくて良いことが想定されうる。
ph)rs, & Co11oid Chem, 53.
1042 (1949) ) (2) The interparticle void space during close-packed optical fibers becomes smaller when the particles have a plurality of different particle sizes rather than a single particle size. (A, E, R, ~
vestma”+ J, Am, Ceram, Soc,
, 13, 767 (1938), K. McQeary
, J. Am, Ceram, Soc., 44
.. 513 (1961) eF, D, Andereg
gl Ifld, Eng, C11eln, , 23
.. 1058 (1931)) In other words, in the study of (2) above, as shown in Figure 1, in a powder mixture of particles with different particle sizes, small-diameter particles filled the void space between the large-diameter particles. Therefore, the larger the particle size width (width from the maximum particle size to the minimum particle size) of the particles, the smaller the void space of the powder at the time of close-packed light, and the more densely filled it becomes. states. Therefore, when making a slurry by adding a liquid to a powder that is densely packed with particles with different particle sizes, the larger the particle size range and the more densely packed the powder is, the more fluid it is necessary to give the slurry fluidity. It can be assumed that a small amount of liquid is sufficient.

したがって上記(1)の研究において、粉体と液体とを
混合することによシ流動性のあるスラリーとする場合、
同一濃度に於ては粉体粒子の粒径幅が広い程流動性の高
い、即ち低粘性のスラリーを製造することが可能となる
ことを述べている。
Therefore, in the research on (1) above, when making a fluid slurry by mixing powder and liquid,
It is stated that at the same concentration, the wider the particle size range of the powder particles, the higher the fluidity, that is, the lower the viscosity of the slurry can be produced.

最密光てん時の粒子間空隙空間ができるだけ小さくなる
ように粒径を調整する方法として、異なる粒径を持つ複
数の粉体を混合する方法と、広い粒径範囲に亘シ連続的
に分布するように粉砕する方法が知られている。最密光
てん時の粒子間空隙空間を小さくするような連結粒径分
布に関しても、古くから研究が行われておシ、アンドレ
アセン式%式% (1930))が知られている。これらの方法の中で代
表的なものであるアンドレアセン式は次式の様に表わさ
れる。
Two methods of adjusting the particle size so that the interparticle void space is as small as possible during close-packed light emitting are two methods: one is to mix multiple powders with different particle sizes, and the other is to continuously distribute the particles over a wide range of particle sizes. There is a known method of pulverizing it. Research has been conducted for a long time on the connected particle size distribution that reduces the interparticle void space during close-packed light emitting, and the Andreasen formula (% formula (1930)) is known. The Andreasen equation, which is a typical one among these methods, is expressed as the following equation.

ここでDは粒径(μm)、Fは粒径りよシも細かい粒子
の累積重合割合(重量%)、DLは粒子の最大粒径、n
は0.2〜0.7の値を持つ定数である。第2図はアン
ド777式において、DL=300μm、n=0.46
としたときの粒径分布曲線である。
Here, D is the particle size (μm), F is the cumulative polymerization ratio (wt%) of particles that are smaller than the particle size, DL is the maximum particle size of the particles, n
is a constant having a value of 0.2 to 0.7. Figure 2 shows the AND777 formula, DL=300μm, n=0.46
This is the particle size distribution curve when

このような分布曲線を持つ粒子によシスラリ−を製造す
ることによシ高濃度のスラリーを製造することは可能で
ある。
By producing a cis slurry using particles having such a distribution curve, it is possible to produce a highly concentrated slurry.

しかし、上記の密売てんを与える粒径分布式は粉体が理
想的な球形粒子よシ構成されている場合であシ、粉砕石
炭のように粒子形状が球形でなく不規則なものに対する
ものではない。したがって上記の粒径分布に合うように
石炭を粒径調整しても必ずしも最密光てんを与えるわけ
ではなく、またこのように調整した石炭と液体を混合す
ることによシスラリ−を製造しても、必ずしも低粘性を
与えるものでもない。このため管路輸送が可能な低粘性
の高濃度石炭スラリーの製造は困難であった。
However, the above particle size distribution equation that gives the smuggling ratio applies only when the powder is composed of ideal spherical particles, and cannot be applied to particles such as pulverized coal whose particle shape is not spherical but irregular. do not have. Therefore, even if the particle size of coal is adjusted to match the above particle size distribution, it does not necessarily give the most densely packed coal, and it is also possible to produce cis slurry by mixing the coal adjusted in this way with a liquid. However, it does not necessarily provide low viscosity. For this reason, it has been difficult to produce a low-viscosity, high-concentration coal slurry that can be transported through pipes.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、管路輸送が可能な粘性を有する高濃度
石炭スラリーの製造方法を提供することにある。
An object of the present invention is to provide a method for producing a highly concentrated coal slurry having a viscosity that allows pipe transportation.

〔発明の概要〕[Summary of the invention]

本発明者らは、種々の粒径分布に粉砕した石炭粒子を用
いて高濃度スラリーを調製しその粘度を調べると同時に
、これら粉砕炭の褪隙率の測定によυ石炭に対して最適
の粒径分布の探索を行った結果、本発明に到達したもの
である。異なる粒径を持つ粒子が混合された粉体を、振
動金加えるがわるいは遠心力下で最密光てんされるよう
に充てんした場合、第1図に示すように大粒径粒子の間
隙に小粒径粒子が順次光てんされるため、単一粒径の粒
子の充てん時よシも高密度に充てんされるっしかし粉体
に液体を添加し流動性を有するスラリーに必要かつ充分
の流動性を与えるのに必要な量の液体を添加することが
必要である。第3図は流動性のあるスラリー中の粒子の
充てん状態を模式的に示したものであって、第3図中、
1では粒子間空隙空間を充満する液体(間隙液)、2で
は流動媒体として作用する液体(液膜)、3は石炭粒子
である。
The present inventors prepared a highly concentrated slurry using coal particles pulverized into various particle size distributions and investigated its viscosity. At the same time, the inventors determined the optimum slurry for υ coal by measuring the porosity of these pulverized coals. The present invention was arrived at as a result of searching for particle size distribution. When a powder containing a mixture of particles with different particle sizes is packed in a close-packed manner by applying a vibrating metal or under centrifugal force, as shown in Fig. Since small particles are sequentially bombarded with light, particles of a single particle size can be filled with high density. It is necessary to add the necessary amount of liquid to impart properties. FIG. 3 schematically shows the filling state of particles in a fluid slurry, and in FIG.
1 is a liquid that fills the interparticle void space (interstitial liquid), 2 is a liquid that acts as a fluidizing medium (liquid film), and 3 is a coal particle.

管路輸送に適する程度の流動性を有するスラリーの製造
に必要な流動媒体として作用する液体量は、スラリー中
の粉体の体積の約1〜5%程度であることは本発明者ら
の研究め結果から判明している。
According to research by the present inventors, the amount of liquid that acts as a fluid medium necessary to produce a slurry with fluidity suitable for pipe transportation is approximately 1 to 5% of the volume of powder in the slurry. This is clear from the results.

そこで石炭の比重を1.3、管路輸送に適する程度の流
動性を有するスラリーの製造に必要な流動媒体量がスラ
リー中の石炭の体積の5チであるとした時、石炭の最密
光てん時の粒子間空隙空間の割合(以後空隙率と称す)
とスラリーの石炭重量濃度の間径を第4図に示す。第4
図かられかる通シ、従来の限界値とされていた50〜5
5重量%よシも高い、石炭濃度が75重量%以上のスラ
リーを製造するためには石炭の空隙率を約28−以下と
する必要がある。但し、石炭は多孔性の物質であシ、石
炭と溶媒を混合した場合には溶媒の一部が石炭粒子内に
吸収されるため、実際には炭種により多孔率が異なるた
め上記の値は多少変動する。
Therefore, when the specific gravity of coal is 1.3 and the amount of fluidizing medium required to produce a slurry with fluidity suitable for pipe transportation is 5 cm of the volume of coal in the slurry, the densest light of coal Percentage of interparticle void space at time (hereinafter referred to as porosity)
Figure 4 shows the diameter between the coal weight concentration of the slurry and the coal weight concentration of the slurry. Fourth
The previous limit was 50 to 5.
In order to produce a slurry with a coal concentration of 75% by weight or higher, which is higher than 5% by weight, the porosity of the coal must be about 28 or less. However, coal is a porous substance, and when coal and a solvent are mixed, some of the solvent is absorbed into the coal particles, so the porosity actually differs depending on the type of coal, so the above values are It varies somewhat.

以上の点から、本発明者らは管路輸送に適する流動性金
有し、かつ尚濃度の石炭スラ+J−’t−得るためには
、従来公知の理想的な球形粒子に最密光てんを与える粒
径分布と異なシ、非球形の不規則な粒子が形成される粉
砕石炭特有の最適な粒径分布が必要であることを見い出
した。
From the above points, the present inventors believe that in order to obtain a coal slurry with a fluidity suitable for pipe transportation and with a still high concentration, the present inventors applied a close-packed optical fiber to conventionally known ideal spherical particles. It has been found that an optimum particle size distribution unique to pulverized coal is required, which is different from the particle size distribution that gives pulverized coal, and non-spherical irregular particles are formed.

本発明は、このような石炭粒子の最適粒径分布として、
累積重量割合が5から95%の間で石炭の粒径分布が実
質上次式 %式%() Dso:累積重量割合50チにおける石炭粒径(μm)
(5〜500μm) F :石炭粒径りよシも細かい石炭粒子の累積重量割合
(重量%) a 二定数(Dso以上の粒径範囲で2〜5、I)go
以下の粒径範囲で1〜3) に従うものであって、との粒径分布の粉砕石炭を液体中
に分散せしたものである。
The present invention provides the optimum particle size distribution of such coal particles as follows:
When the cumulative weight percentage is between 5 and 95%, the particle size distribution of coal is substantially expressed by the following formula: % () Dso: Coal particle size (μm) at a cumulative weight percentage of 50%
(5 to 500 μm) F: Cumulative weight percentage (weight %) of coal particles with finer coal particle diameter a Two constants (2 to 5 in the particle size range of Dso or more, I) go
The following particle size range is 1 to 3), and the pulverized coal having the particle size distribution is dispersed in a liquid.

本発明において、石炭粒子を上記(1)式の範囲内であ
る限シ大粒径とすることによって、石炭の粉砕に必要な
動力を軽減できる利点はおる。しかしスラリー中の粒子
は輸送や貯蔵時における重力の作用により沈降するため
、石炭の粒径をあまりにも大きくすることは得策ではな
い。スラリー中の石炭粒子の沈降は粒径ばかシではなく
使用する溶媒の比重や粘度等にも影響されるが、上記の
事情に鑑みスラリー製造に用いる石炭は、その95%以
上が1000μm以下の粒径となるように粉砕すること
が望ましい。
In the present invention, there is an advantage that the power required for pulverizing the coal can be reduced by making the coal particles have a maximum particle size within the range of the above formula (1). However, it is not a good idea to make the coal particle size too large because the particles in the slurry settle due to the action of gravity during transportation and storage. The sedimentation of coal particles in slurry is not affected by the particle size, but also by the specific gravity and viscosity of the solvent used, but in view of the above circumstances, the coal used for slurry production has particles in which more than 95% are 1000 μm or less. It is desirable to crush it so that it has a diameter.

本発明において、石炭粒子を上記(1)式に示すような
粒径分布は、例えば粉砕した石炭を篩分縁し、粒径の小
さい石炭粒子を分取し、−万粒径の大きい石炭粒子をボ
ールミル等によって湿式粉砕し、この湿式粉砕の時間を
数段階に分けることによって粒径範囲の異なる石炭粒子
群を数種類調製し、これらの石炭粒子群を混合すること
によって達成することができる。
In the present invention, the particle size distribution of coal particles as shown in the above equation (1) can be obtained by, for example, sieving pulverized coal, separating coal particles with a small particle size, and -10,000 large coal particles with a large particle size. This can be achieved by wet-pulverizing with a ball mill or the like, dividing the wet-pulverizing time into several stages to prepare several types of coal particle groups with different particle size ranges, and mixing these coal particle groups.

所定の粒径分布とされた石炭粒子に混合される液体は、
COM、CWM、及びCMMの石炭スラリーに用いられ
る溶媒、即ち、水、石油系油、メタノールがいずれも使
用できる。
The liquid mixed with coal particles having a predetermined particle size distribution is
Any of the solvents used in COM, CWM, and CMM coal slurries, ie, water, petroleum oil, and methanol, can be used.

第5図は石炭を粉砕して粒径調整を行ったものの粒径分
布を示す。第5図中1の曲線は(1)式においてり、、
=38μm%I)go以上の粒径範囲でa−3,0、D
、。以下の粒径範囲で8 = 2.5とした時の粒径分
布であシ、第5図中2の曲線は粒径が1〜300μmの
間で累積重量割合がほぼ連続的に変化するように粒径調
整を行ったもので、第5図中3の曲線り粒径範囲を15
〜90μmと狭くし、よシ単−粒径に近い粒径分布を有
する。
FIG. 5 shows the particle size distribution of coal obtained by pulverizing and adjusting the particle size. The curve 1 in Fig. 5 is given by equation (1),
= 38 μm% I) a-3,0, D in the particle size range of go or more
,. The particle size distribution is shown when 8 = 2.5 in the following particle size range.The curve 2 in Figure 5 shows that the cumulative weight ratio changes almost continuously within the particle size range of 1 to 300 μm. The particle size was adjusted to
It has a narrow particle size distribution of ~90 μm and is close to a single particle size.

第6図は第5図の1〜3で示した粒径分布に調整した石
炭を円筒形容器に入れ、この容器をタッピングすること
によシ石炭充てん層の容積がもはや減少しなくなるまで
密売てんした時の石炭光てん層の空隙率を示す。第6図
の1・〜3は、各々第5図の1〜3の粒径分布に対応す
る。第6図かられかるように、本発明になる(1)式に
従った粒径分布を有する石炭の空隙率(1)は他の粒径
分布を有する石炭に程べ飛躍的に小さく、(1)式の粒
径分布は粉砕した石炭の最密光てん時における空隙率を
小さくするのに有効であることがわかる。
Figure 6 shows that coal adjusted to the particle size distribution shown in Figure 5 1 to 3 is placed in a cylindrical container, and the container is tapped until the volume of the coal-filled bed no longer decreases. This shows the porosity of the coal porosity layer when 1 to 3 in FIG. 6 correspond to the particle size distributions 1 to 3 in FIG. 5, respectively. As can be seen from FIG. 6, the porosity (1) of coal having a particle size distribution according to equation (1) according to the present invention is significantly smaller than that of coal having other particle size distributions, and ( It can be seen that the particle size distribution of formula 1) is effective in reducing the porosity of pulverized coal at the closest density.

第5図の石炭の粒径調整を行うに際し、粒径分布の測定
は以下の通シ行った。粒径37μm(400メツシユ)
以上の粒径はJISで定められた節を用いて水による湿
式分級によシ粒径分布を測定した。粒径37μtn以下
の粒子については、遠心力場における沈降を利用した光
透過法によシ測定した。また、溶媒として水を用いた。
When adjusting the particle size of the coal shown in FIG. 5, the particle size distribution was measured as follows. Particle size 37μm (400 mesh)
The above particle sizes were determined by wet classification using water using the criteria specified by JIS, and the particle size distribution was measured. Particles with a particle size of 37 μtn or less were measured by a light transmission method using sedimentation in a centrifugal force field. Moreover, water was used as a solvent.

粒径37μm以下の細かい粒子の粒径分布を測定する方
法は上記の光透適法以外にもコールカウンター法や光散
乱法等の方法があるが、微小粒子の粒径分布の測定結果
は使用する測定法や装置によシかなシ異なることが知ら
れている。本発明になる粒径分布は上記の光透過法によ
る粒径分布測定に基づくものである。
In addition to the above-mentioned light transmission method, there are methods to measure the particle size distribution of fine particles with a particle size of 37 μm or less, such as the call counter method and the light scattering method, but the measurement results of the particle size distribution of microparticles are used. It is known that there are some differences depending on the measurement method and equipment. The particle size distribution according to the present invention is based on particle size distribution measurement using the above-mentioned light transmission method.

石炭スラリーに限らず、粉体と液体を混合して得られる
スラリーの粘度は、スラリー中の粉体粒子の凝集の程度
によシ大きく変化する。これは、粒子同志の凝集によシ
スラリ−中の粉体の粒径分布が見かけ上質化するためで
ある。また、複数個の粒子が凝集して凝集塊を形成する
と、この凝集塊の内部に溶媒ヲ最シ込むため、結果的に
スラリーの流動に寄与する溶媒量(第3図中2で示され
る)が減少することになる。
The viscosity of not only coal slurry but also slurry obtained by mixing powder and liquid varies greatly depending on the degree of aggregation of powder particles in the slurry. This is because the particle size distribution of the powder in the cis slurry appears to be of higher quality due to aggregation of the particles. In addition, when multiple particles aggregate to form an aggregate, the solvent is completely absorbed into the aggregate, resulting in the amount of solvent that contributes to the flow of the slurry (indicated by 2 in Figure 3). will decrease.

第7図中はこの様子を模式的に示したものである。第7
図において、凝集塊5の中に凝集塊内液4が介在してい
る。粒子の凝集性はその表面がスラリー溶媒に対し疎液
性である程大きい。このような石炭粒子の凝集を防止し
、更に高濃度で低粘性の石炭スラリーとするためには、
石炭スラリーに更に界面活性剤を添加し、石炭粒子表面
をスラリー溶媒に対して残液性とすることが望ましい。
FIG. 7 schematically shows this situation. 7th
In the figure, an agglomerate-internal liquid 4 is present in an agglomerate 5. The cohesiveness of particles is greater as their surfaces are more lyophobic to the slurry solvent. In order to prevent such agglomeration of coal particles and create a coal slurry with higher concentration and lower viscosity,
It is desirable to further add a surfactant to the coal slurry to make the surface of the coal particles sticky with respect to the slurry solvent.

界面活性剤の添加は、特に溶媒として水を用いる石炭ス
ラリーに有効でアリ、界面活性剤には、陰イオン系界面
活性剤又は非イオン系界面活性剤を用いることができる
Addition of a surfactant is particularly effective for coal slurries that use water as a solvent; anionic surfactants or nonionic surfactants can be used as the surfactant.

〔発明の実施例〕[Embodiments of the invention]

実施例 石炭Aをスクリーンミルによシ粉砕した後、目の開き2
97μm (48メツシユ)の篩によシ分級し、粒径2
97μm以下の石炭粒子を分取した。
Example After pulverizing coal A using a screen mill, the mesh size was 2.
Classified through a 97 μm (48 mesh) sieve, particle size 2
Coal particles of 97 μm or less were separated.

この石炭粒子t−Iとする。粒径297μm以上の石炭
粒子をボールミルによシ湿式粉砕を行った。
This coal particle is referred to as t-I. Coal particles having a particle size of 297 μm or more were wet-pulverized using a ball mill.

湿式粉砕はそれぞれ10分、2時間、及び12時間行な
い、粒径の異なる粉砕炭群を調製した。
Wet pulverization was carried out for 10 minutes, 2 hours, and 12 hours, respectively, to prepare pulverized charcoal groups with different particle sizes.

10分湿式粉砕した粉砕炭群を■、2時間湿式粉砕した
粉砕炭群を■、12時時間式粉砕を行った粉砕炭群を■
とする。このようにして製造した粒径の異なる4種類の
粉砕炭1〜■を混合することによシ第5図の1.2に示
した粒径分布となるようにそれぞれ粒径調整を行った。
The pulverized charcoal group wet-pulverized for 10 minutes is ■; the pulverized charcoal group wet-pulverized 2 hours is ■; the pulverized charcoal group subjected to 12-hour pulverization is ■.
shall be. By mixing the four types of pulverized coals 1 to 2 with different particle sizes produced in this way, the particle sizes were adjusted so that the particle size distribution was as shown in 1.2 of FIG. 5.

但し、第5図の3に示した粒径分布の石炭は上記の粉砕
炭Aを目の開き88μm(x7oメツシュ)の篩で分級
することによシ調製した。
However, the coal having the particle size distribution shown in 3 in FIG. 5 was prepared by classifying the above-mentioned pulverized coal A using a sieve with an opening of 88 μm (x7o mesh).

このようにして調製した3種類の粒径調整炭を用いてス
ラリーを作製した。本実施例では界面活性剤として隘イ
オン系のものを用い、溶媒として水を用いることにょシ
、石炭水スラリーを作成した。スラリーの調製は以下の
手順で行った。乾燥した粒径調整炭100gと、陰イオ
ン系界面活性剤0.5gを溶解した水42.9gとを混
合攪拌した。
A slurry was prepared using the three types of particle size-adjusted charcoal thus prepared. In this example, a coal-water slurry was prepared by using a highly ionic surfactant and water as a solvent. The slurry was prepared according to the following procedure. 100 g of dried particle size-adjusted charcoal and 42.9 g of water in which 0.5 g of anionic surfactant was dissolved were mixed and stirred.

このようにして作成したスラリーは石炭を7ON量褒含
有する高IJ[石炭水スラリーである。これらのスラリ
ーの粘度を回転円筒形の粘度計にょシ温度20c、せん
断速度18s−1で測定した。本発明になる第5図の1
の粒径分布を持つ石炭で調製したスラリーの粘度は約1
000cp、第5図の2の粒径分布を持つ石炭で調製し
たスラリーの粘度は約1700cI)であった。これに
対し、第5図の3の粒径分布を持つ石炭で調整したスラ
リーは全く流動性を示さず、その粘度の測定は不可能で
あった。
The slurry thus prepared is a high IJ [coal water slurry] containing 7ON of coal. The viscosity of these slurries was measured using a rotating cylindrical viscometer at a temperature of 20 C and a shear rate of 18 s. 1 of Fig. 5 according to the present invention
The viscosity of slurry prepared with coal having a particle size distribution of approximately 1
The viscosity of the slurry prepared with coal having a particle size distribution of 000 cp and 2 in Figure 5 was approximately 1700 cI). On the other hand, the slurry prepared using coal having a particle size distribution of 3 in FIG. 5 showed no fluidity, and it was impossible to measure its viscosity.

本実施例で使用した石炭Aは比較的細孔容積が大きく、
親水性が大きいためスラリー溶媒である水を吸収する性
質が大きいものである。因みに石炭Aを水中に浸漬した
・場合、その乾燥重量に対し豹10重i′チの水を吸収
する(以後吸水率10%と称する)。前述したよう吸水
率の大きい石炭ではその粒子内に溶媒である水を吸収す
るためスラリーの流動に寄与する溶媒Nを減少する。こ
のため、管路輸送に適した粘性を持つスラリーの最高の
石炭濃度(以後限界濃度と称す)は石炭粒子内に吸収し
た溶媒分だけ低くなる。第5図の1の粒径分布に調整し
た石炭Aの場合、上記の方法にょシフ2重量−の濃度々
なるように調整したスラリーの粘度は約2000 CI
)であシ、したがって石炭Aを用いた石炭水スラリーは
石炭濃度72重量−程度としても十分に管路輸送が可能
であると考えられる。
Coal A used in this example has a relatively large pore volume;
Because it has high hydrophilicity, it has a great property of absorbing water, which is a slurry solvent. Incidentally, when Coal A is immersed in water, it absorbs 10 parts of water based on its dry weight (hereinafter referred to as 10% water absorption). As mentioned above, coal with a high water absorption absorbs water as a solvent into its particles, so the amount of solvent N that contributes to the flow of the slurry is reduced. Therefore, the maximum coal concentration (hereinafter referred to as critical concentration) of a slurry with a viscosity suitable for pipe transportation is lowered by the amount of solvent absorbed into the coal particles. In the case of coal A adjusted to particle size distribution 1 in Figure 5, the viscosity of the slurry adjusted to various concentrations using the above method is approximately 2000 CI.
) Therefore, it is considered that the coal-water slurry using Coal A can be sufficiently transported through pipes even if the coal concentration is about 72% by weight.

実施例2 本実施例では石炭Aよシも小さい吸水率(吸収率2−7
%)を有する石炭Bを用い、実施例1と同様の方法によ
り石炭スラリーヲ調製しその粘度及び限界製置について
検討した。実施例1と同様に、第5図の1〜3に示した
粒径分布に粒径調整した石炭Bf:用いて石炭濃度74
重f%のスラリーを調製し、その粘度を測定したところ
、第5図の工の粒径分布を持つ石炭で調製したスラリー
は約1200cp、第5図の2の粒径分布を持つ石炭で
調製したスラリーは約j4oocpであった。また、第
5図の3の粒径分布を持つ石炭で調整したスラリーは実
施例1の場合と同様流動性を示さず、粘度の測定は不可
能であった。第5図1の粒径分布を持つ石炭Bk用い石
炭濃度75重量%のスラリーヲ調製しその粘[f測定し
たところ、約2500cpであった。このことから、石
炭Bi本発明の粒径分布とした石炭スラリーでの石炭濃
度の上限は75重量%程厩と考えられる。
Example 2 In this example, coal A and Coal A also had a small water absorption rate (absorption rate 2-7
%), a coal slurry was prepared in the same manner as in Example 1, and its viscosity and processing limit were examined. As in Example 1, coal Bf whose particle size was adjusted to the particle size distribution shown in 1 to 3 in FIG. 5: Coal concentration 74
When we prepared a slurry with a weight of F% and measured its viscosity, it was found that the slurry prepared with coal having a particle size distribution of 1 in Figure 5 was approximately 1200 cp, and the slurry prepared with coal having a particle size distribution of 2 in Figure 5 was approximately 1200 cp. The resulting slurry was approximately j4oocp. Furthermore, the slurry prepared using coal having a particle size distribution of 3 in FIG. 5 did not exhibit fluidity as in Example 1, and it was impossible to measure the viscosity. A slurry with a coal concentration of 75% by weight was prepared using coal Bk having the particle size distribution shown in FIG. 1, and its viscosity [f was measured and found to be about 2500 cp. From this, it is considered that the upper limit of the coal concentration in the coal slurry having the particle size distribution of the present invention is about 75% by weight.

〔発明の効果〕〔Effect of the invention〕

粉砕した石炭粒子を所定の粒径分布となるように調整後
、これを液体と混合することによって、高濃度でかつ管
路輸送に支障のない低粘性とすることができるので石炭
の輸送効率の向上を図るξとができる。
After adjusting the pulverized coal particles to have a predetermined particle size distribution, by mixing them with a liquid, it is possible to obtain a high concentration and low viscosity that does not interfere with pipe transportation, which improves coal transportation efficiency. It is possible to improve ξ.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は異粒径粒子混合粉体の充てん状態を示す模式図
、第2図はアンドレアセン式の粒径分布の一例を示すグ
ラフ、第3図はスラリー中での粒子の充てん状態を示す
模式図、第4図は最密充てん時の粉砕石炭の空隙率とこ
の空隙率を有する石炭で作成したスラリー中の石炭重量
濃度との関係を示す図、第5図は粒径調整後の石炭の粒
径分布を示す図、第6図は第5図に示した各粒径分布を
持つ石炭の最密充てん時における空隙率を示す図、第7
図はスラリー中の粒子の凝集塊の状態を模式%式% $1 図 $2因 1 怪(,11*) ′f73 回 を瞭串 (2) 第 5 図 $6図 第 7 図
Figure 1 is a schematic diagram showing the filling state of mixed powder with particles of different particle sizes, Figure 2 is a graph showing an example of Andreasen's particle size distribution, and Figure 3 is a diagram showing the filling state of particles in slurry. Schematic diagram, Figure 4 is a diagram showing the relationship between the porosity of pulverized coal during close packing and the coal weight concentration in a slurry made with coal having this porosity, and Figure 5 is a graph of coal after particle size adjustment. Figure 6 is a diagram showing the particle size distribution of each grain size distribution shown in Figure 5.
The figure shows the state of agglomerates of particles in a slurry in a schematic % formula % $1 Figure $2 Factor 1 Strange (,11*) 'f73 Figure 7

Claims (1)

【特許請求の範囲】 1、累積重量割合が5から95チの間でその粒径分布が
実質上次式(1) %式%() D、。:累積重量割合5(lにおける石炭粒径(μm)
(5〜500μm) F :石炭粒径DJ:、9も細かい石炭粒子の累積重量
割合(重i%) a 二定数(Dso以上の粒径範囲で2〜5、I)go
以下の粒径範囲で1〜3) に従うように粒径調整した石炭粒子を液体と混合し、少
なくとも55重量−以上の石炭濃度とすることを特徴と
する石炭スラリーの製造法。 2 石炭を粒径1000μm以下が95−以上となるよ
うに粒砕した後、前記式(1)の粒径分布とすることを
特徴とする特許請求の範囲第1項記載の石炭スラリーの
製造法。 3、前記液体が水9石油系油又はメタノールのいずれか
であることを特徴とする特許請求の範囲第1項記載の石
炭スラリーの製造法。 4、前記液体が水であって、この水に界面活性剤が添加
されていることを特徴とする特許請求の範囲第1項記載
の石炭スラリーの製造法。
[Claims] 1. When the cumulative weight ratio is between 5 and 95 inches, the particle size distribution is substantially expressed by the following formula (1). : Cumulative weight ratio 5 (coal particle size (μm) in l
(5 to 500 μm) F: Coal particle size DJ:, 9 Cumulative weight percentage of fine coal particles (weight i%) a Two constants (2 to 5 in the particle size range of Dso or more, I) go
A method for producing a coal slurry, which comprises mixing coal particles whose particle size has been adjusted to comply with the following particle size range 1 to 3) with a liquid to obtain a coal concentration of at least 55% by weight. 2. A method for producing a coal slurry according to claim 1, characterized in that the coal is pulverized so that the particle size of 1000 μm or less becomes 95 or more, and then the particle size distribution is expressed by the formula (1) above. . 3. The method for producing coal slurry according to claim 1, wherein the liquid is water, petroleum oil, or methanol. 4. The method for producing coal slurry according to claim 1, wherein the liquid is water, and a surfactant is added to the water.
JP12578983A 1983-07-11 1983-07-11 Preparation of coal slurry Granted JPS6018585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12578983A JPS6018585A (en) 1983-07-11 1983-07-11 Preparation of coal slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12578983A JPS6018585A (en) 1983-07-11 1983-07-11 Preparation of coal slurry

Publications (2)

Publication Number Publication Date
JPS6018585A true JPS6018585A (en) 1985-01-30
JPH0367118B2 JPH0367118B2 (en) 1991-10-21

Family

ID=14918900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12578983A Granted JPS6018585A (en) 1983-07-11 1983-07-11 Preparation of coal slurry

Country Status (1)

Country Link
JP (1) JPS6018585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599356A (en) * 1990-03-14 1997-02-04 Jgc Corporation Process for producing an aqueous high concentration coal slurry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5868832B2 (en) 2012-11-27 2016-02-24 株式会社神戸製鋼所 Storage method for modified coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599356A (en) * 1990-03-14 1997-02-04 Jgc Corporation Process for producing an aqueous high concentration coal slurry

Also Published As

Publication number Publication date
JPH0367118B2 (en) 1991-10-21

Similar Documents

Publication Publication Date Title
US4441887A (en) Stabilized slurry and process for preparing same
WO1983004046A1 (en) A process for producing a slurry of a pulverized carbonaceous material
US4468232A (en) Process for preparing a clean coal-water slurry
JPS60500721A (en) Novel grinding mixture and method for producing slurry therefrom
CA1188517A (en) Aqueous phase continuous, coal fuel slurry and a method of its production
US4090853A (en) Colloil product and method
JPS6018585A (en) Preparation of coal slurry
Piskunov et al. Individual and synergistic effects of modifications of the carrier medium of carbon-containing slurries on the viscosity and sedimentation stability
JPS58194989A (en) Coal-water fuel slurry and manufacture
Tsutsumi et al. Shear viscosity behavior of flocculated suspensions
Lorenzi et al. The influence of particle size distribution and nonionic surfactant on the rheology of coal water fuels produced using Iranian and Venezuelan coals
JPS59197496A (en) Coal-water fuel slurry and manufacture
US4440543A (en) Method for stabilizing a slurry of finely divided particulate solids in a liquid
Prasad et al. Influence of additives, particle size, and incorporation of coarse particles on the shear rheology of concentrated Indian coal ash slurries
JPS5883095A (en) Preparation of coal slurry
Pulido et al. Rheology of colombian coal-water slurry fuels: Effect of particle-size distribution
JPS62241993A (en) Coal-methanol slurry and production thereof
Adiga et al. Rheology of coal slurries in no. 2 oil and ethanol blends: Effect of water
JPS5943094A (en) Mixed composition
JPS625478B2 (en)
JPS60166392A (en) Pitch-water slurry composition
JPH0136518B2 (en)
JPS59100193A (en) Pitch/water slurry composition
KR870000646B1 (en) Coal-water slurry
JPS60166391A (en) Production of pitch-water slurry