JPS62158314A - Substrate for compound semiconductor single-crystal thin film - Google Patents

Substrate for compound semiconductor single-crystal thin film

Info

Publication number
JPS62158314A
JPS62158314A JP37686A JP37686A JPS62158314A JP S62158314 A JPS62158314 A JP S62158314A JP 37686 A JP37686 A JP 37686A JP 37686 A JP37686 A JP 37686A JP S62158314 A JPS62158314 A JP S62158314A
Authority
JP
Japan
Prior art keywords
thin film
substrate
compound semiconductor
crystal
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37686A
Other languages
Japanese (ja)
Inventor
Hideaki Iwano
岩野 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP37686A priority Critical patent/JPS62158314A/en
Publication of JPS62158314A publication Critical patent/JPS62158314A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a compound semiconductor substrate of large area showing little transformation, by superposing a thin film of silicon-germanium mixed crystal (Si1-xGex, 0<=x<=1) and a thin film of silicon-germanium (Si1-yGey, 0<=y<=1) different in composition from the former to form a strain superlattice on a silicon substrate. CONSTITUTION:A thin film 102 of Si1-xGex(0<=x<=1) and a thin film 103 of Si1-yGey(0<=y<=1, xnot equal to y) being different in composition from Si1-xGex are superposed sequentially on a single-crystal Si substrate 101, so as to form a strain superlattice. In the strain superlattice, the thin film 102 having a large amount of Si is formed immediately on the single-crystal Si substrate 101, and the thin film 103 having a large amount of Ge is formed as the final thin film of the lattice, respectively. Each film has a very thin superlattice structure, and therefore an internal stress is relaxed by each thin film. Therefore, a transition point does not appear, and thus a single-crystal substrate having a surface of crystal being substantially in accord with the lattice constant of a compound semiconductor of GaAs, ZnSe or the like can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、GaAs等のl−V族化合物半導体単結晶薄
膜及びZn5en −Vl族化合物半導体単結晶薄膜を
形成するための単結晶基板に関するものである0 〔発明の概要〕 本発明はGaAs等のl−V族化合物半導体単結晶薄膜
及びZn5el−Vl族化合物半導体単結晶薄膜を形成
するための単結晶基板において、単結晶シリコン半導体
基板上にS i 1−)(Gex(0≦x≦1)極薄膜
と5it−yGe)’ (0≦y≦1*xsy)’?H
膜を順次繰り返し積層して成る歪超格子を形成すること
により、GoAsの格子定数(5,6565λ)あるい
はZn5eの格子定t!1(5,667A)と格子整合
する5ix−yGey(0,5<y≦1)を表面に持ち
、且つ、歪超格子が格子定数の違いからくる内部応力を
緩和し、その結果、転移欠陥の少ない大面積単結晶基板
を提供できるようにしたものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a single crystal substrate for forming a single crystal thin film of a l-V group compound semiconductor such as GaAs and a single crystal thin film of a Zn5en-Vl group compound semiconductor. 0 [Summary of the Invention] The present invention relates to a single crystal substrate for forming an l-V group compound semiconductor single crystal thin film such as GaAs and a Zn5el-Vl group compound semiconductor single crystal thin film, on a single crystal silicon semiconductor substrate. S i 1-) (Gex (0≦x≦1) ultrathin film and 5it-yGe)'(0≦y≦1*xsy)'? H
By forming a strained superlattice formed by sequentially and repeatedly stacking films, the lattice constant of GoAs (5,6565λ) or the lattice constant t! of Zn5e can be changed. 1 (5,667A) on the surface, and the strained superlattice relieves the internal stress caused by the difference in lattice constants, resulting in dislocation defects. This makes it possible to provide a large-area single-crystal substrate with a small amount of damage.

〔従来の技術〕[Conventional technology]

従来の化合物半導体単結晶薄膜の基板は、該薄膜の格子
定数と近い格子定数を持ったG a A s + In
P等の単結晶基板を用いていた。
Conventional compound semiconductor single crystal thin film substrates are made of GaAs + In, which has a lattice constant close to that of the thin film.
A single crystal substrate such as P was used.

あるいは、アイ、イー、イー、イー、エレクトロン・デ
バイス、レターズ(I 、E−E−ElElectro
nDevice Letters)誌の1984年ED
D−5巻207負に記載された論文に見られるように単
結晶Si基板上にGeを中間層として形成し、その上に
Ga’As等の化合物半導体単結晶薄膜を形成する方法
が用いられていた。
Or, I, E-E-E, Electron Device, Letters (I, E-E-Electro
1984 ED of nDevice Letters) magazine
As seen in the paper described in Vol. D-5, page 207, a method is used in which Ge is formed as an intermediate layer on a single-crystal Si substrate, and a compound semiconductor single-crystal thin film such as Ga'As is formed thereon. was.

〔発明が解決しようとする問題点及び目的〕しかし前述
の従来技術では、まず、GaAS、InP等の単結晶基
板を用いる場合には、蒸気圧の異なる元素の単結晶材料
を製造することが@L<、大きな単結晶基板を作れない
、及び、単結晶基板表面には、数多くの転移点が存在し
、この基板上に成長したGaAs等の化合物半導体薄膜
には、欠陥が生じ、発光素子、FET等のデバイスを製
作する場合に、歩留りが極端に悪い、あるいは単結晶基
板の単価が高く、デバイスの製造コストを高くしている
などの問題点を有していた。
[Problems and objects to be solved by the invention] However, in the above-mentioned conventional technology, when using a single crystal substrate such as GaAS or InP, it is necessary to manufacture single crystal materials of elements with different vapor pressures. L<, it is not possible to make a large single crystal substrate, and there are many transition points on the surface of the single crystal substrate, defects occur in compound semiconductor thin films such as GaAs grown on this substrate, and light emitting elements, When manufacturing devices such as FETs, there have been problems such as extremely low yields or high unit costs of single crystal substrates, increasing device manufacturing costs.

また、単結晶Si基板上に、Ge単結晶薄膜を中間層と
して形成した基板は、単結晶St基板が安価で大面積基
板の製造が可能であり、且つ、Si基板表面には、はと
んど転移点がないという利点を有するが、Si単結晶の
格子定数が5.43071、Ge単結晶の格子定数がs
、 6 s y 4 Aであって、格子定数の不整合が
大きく、Ge単結晶薄膜の表面には、多数の転移点が生
じてしまうという問題点を有していた。
In addition, a substrate formed by forming a Ge single crystal thin film as an intermediate layer on a single crystal Si substrate is cheaper than a single crystal St substrate and can be manufactured with a large area. It has the advantage of having no transition point, but the lattice constant of Si single crystal is 5.43071, and the lattice constant of Ge single crystal is s.
, 6 sy 4 A, the lattice constant mismatch is large, and the surface of the Ge single-crystal thin film has the problem of a large number of transition points.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、安価で大面積基板が可能であり
、且つ、基板表面の転移点が極めて少ない化合物半導体
単結晶薄膜用基板を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to create a substrate for compound semiconductor single crystal thin films that is inexpensive, can be made into a large-area substrate, and has an extremely low transition point on the substrate surface. It's there to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の化合物半導体単結晶薄膜用基板は、単結晶シリ
コン基板上に5il−XGex (0≦x≦1)薄膜と
前記5i1−zGexと組成の異なる5ii−yGey
(0≦y≦1.x\y)薄膜を順次積層して成る歪超格
子が形成され、且つ該歪超格子においては、前記単結晶
Si基板直上にはSi量の多い薄膜(Si1−xGex
、o≦x(0,5)が、該歪超格子の最終薄膜にはゲル
マニウムの多い薄膜(Si1−yGey、0.5<y≦
1)力4A形成されていることを特徴としている。
The compound semiconductor single-crystal thin film substrate of the present invention includes a 5il-XGex (0≦x≦1) thin film and a 5ii-yGey having a different composition from the 5i1-zGex on a single-crystal silicon substrate.
(0≦y≦1.
, o≦x(0,5), but the final thin film of the strained superlattice has a germanium-rich thin film (Si1-yGey, 0.5<y≦
1) It is characterized by a force of 4A.

〔作用〕[Effect]

単結晶薄膜を基板上に成長させる場合、格子定数の不整
がある場合には、膜中に内部応力が生じ膜の厚さが厚く
なると、弾性限界を越えて、転移点が発するものである
が、本発明の上記の構成によれば5il−zGexとS
i x−yGey(x’ty)薄膜の間に格子定数不整
合が存在するのであるが、各々が極めて薄い超格子構造
であるため、内部応力が各々が極めて薄い超格子構造で
あるため、内部応力が各々の薄膜で緩和され、転移点が
発生せず良質の膜となり、超格子構造の最終薄膜のGe
組成をほとんど1にできるためGaAs  + Zn5
e等の化合物半導体の格子定数とほとんど一致した結晶
表面を持つ単結晶基板が製作可能なのである。
When growing a single crystal thin film on a substrate, if there is misalignment in the lattice constant, internal stress will occur in the film and as the film becomes thicker, the elastic limit will be exceeded and a transition point will occur. , according to the above configuration of the present invention, 5il-zGex and S
There is a lattice constant mismatch between the i The stress is relaxed in each thin film, and a transition point does not occur, resulting in a good quality film, and the final Ge thin film with a superlattice structure
Since the composition can be almost 1, GaAs + Zn5
It is possible to produce a single crystal substrate having a crystal surface that almost matches the lattice constant of a compound semiconductor such as e.

〔実施例〕〔Example〕

第1図は本発明の実施例における化合物半導体単結晶薄
膜用基板の主要断面図の1例であって、(101)が単
結晶Si基板であり、その直上にS i o、6Ge 
[L4の混晶薄膜(102)を10〜100λの膜厚で
形成する。    □その後SiO,IGe(19の混
晶薄膜(106)を10〜100λの膜厚で形成し、以
後(102)。
FIG. 1 is an example of a main cross-sectional view of a compound semiconductor single-crystal thin film substrate in an embodiment of the present invention, in which (101) is a single-crystal Si substrate, and directly above it is SiO, 6Ge.
[The mixed crystal thin film (102) of L4 is formed with a film thickness of 10 to 100λ. □After that, a mixed crystal thin film (106) of SiO, IGe (19) is formed with a film thickness of 10 to 100λ, and thereafter (102).

(103)の薄膜を交互に繰り返し10〜100層槓層
した場合の断面図である。最終表面の薄膜は(103)
の組成であり、QEl量の多い組成とする。各St 1
−xGex 薄膜の組成は、(102)層に対応する薄
膜では0.1 < x < 0.5、(103)層に対
応するSix −yGey *I換の組成は0.5<y
<1.0の範囲で成膜可能である。これらS i 1−
 zGex層の形成方法としては、熱分解化学気相成長
法、分子mエピタキシー法、イオンクラスタービーム法
等の成長方法が可能であるが、大面積基板に容易に成膜
可能な熱分解化学気相成長法が利点が多い。
(103) is a cross-sectional view when 10 to 100 thin films of (103) are alternately and repeatedly layered. The final surface thin film is (103)
The composition has a large amount of QEl. Each St 1
The composition of the -xGex thin film is 0.1 < x < 0.5 for the thin film corresponding to the (102) layer, and the composition of Six -yGey *I equivalent is 0.5 < y for the thin film corresponding to the (103) layer.
It is possible to form a film within the range of <1.0. These S i 1-
The zGex layer can be formed using pyrolytic chemical vapor deposition, molecular epitaxy, ion cluster beam method, etc., but pyrolytic chemical vapor deposition, which can easily form a film on a large area substrate, is possible. The growth method has many advantages.

しかし、熱分解化学気相成長法では、高温の基板温度で
形成した場合に、Ge原子の拡散現象が起こり、超格子
構造の製作が困難である場合が多いので、熱分解温度の
低い高次水素化シリコン(SinH21−4−2+ n
−z + 3 + 01.)等ノ原料−)fスを選択f
る必要がある。
However, in the pyrolytic chemical vapor deposition method, when formed at a high substrate temperature, a diffusion phenomenon of Ge atoms occurs and it is often difficult to fabricate a superlattice structure. Hydrogenated silicon (SinH21-4-2+ n
-z + 3 + 01. ) etc. raw materials -) f Select f
It is necessary to

第2図は前述の熱分解化学気相成長法で製造したSix
〜z G e x歪超格子のSi原子、Ge原子の各原
子濃度の膜厚方向の濃度分布をオージェ電子分光法に測
定した一例である。830℃〜900℃の低い基板温度
で成長しているため、各界面の組成の急峻性が確保でき
、超格子構造によって、格子定数の不整合が緩和され、
はとんど松移のない基板表面が得られた。
Figure 2 shows Six manufactured by the above-mentioned pyrolysis chemical vapor deposition method.
This is an example in which the concentration distribution of Si atoms and Ge atoms in the strained superlattice in the film thickness direction was measured using Auger electron spectroscopy. Because it is grown at a low substrate temperature of 830°C to 900°C, it is possible to ensure the steepness of the composition at each interface, and the superlattice structure alleviates lattice constant mismatch.
A substrate surface with almost no pine transfer was obtained.

第3図は、本発明による化合物半導体単結晶薄膜用基板
を用いて製造した。AAGaAa/GaAsダブpヘテ
ロ接合型半導体レーザの1例の断面斜視図である。(3
02)のn型単結晶Si基板上に、(303)のn型5
il−zGex歪超格子が形成され、その後、(304
)のn型AAGaAs。
FIG. 3 shows a compound semiconductor single crystal thin film substrate manufactured using the present invention. 1 is a cross-sectional perspective view of an example of an AAGaAa/GaAs double p-heterojunction semiconductor laser; FIG. (3
On the n-type single crystal Si substrate of (02), the n-type 5 of (303)
A il-zGex strained superlattice is formed, and then (304
) n-type AAGaAs.

(305)のmon−doped GaAs活性層、(
506)のP型AlGaA、s、(so7)のP型Ga
AJ層をllla次、液相エピタキシャル法、MO−C
VD法、’MBE法等の化合物半導体薄膜成長法により
成長させる。この場合、大面積に均一に成長可能なMO
−CVD法に利点が多い。
(305) mon-doped GaAs active layer, (
506) P-type AlGaA, s, (so7) P-type Ga
AJ layer lla next, liquid phase epitaxial method, MO-C
It is grown by a compound semiconductor thin film growth method such as the VD method or the 'MBE method. In this case, MO can be grown uniformly over a large area.
-CVD method has many advantages.

その後sio、1si3N4等の絶縁膜を成膜し、フォ
トリソグラフィにより、ストライプ状に、P型GaAs
  膜表面が露出する工程により(30B)を形成し、
表面及びSi基板裏面に、オーミックコンタクトの得ら
れる電極を蒸着して半導体レーザの主要構造を製作した
。転移点の少ない3インチ〜5インチの大面積基板が得
られるため、1回の製造プロセスで多くの半導体チップ
が得られたまた特性的にも、従来のGaAS等の単結晶
基板上に製造した半導体レーザと遜色のないものが得ら
れた。
After that, an insulating film such as sio, 1si3N4, etc. is formed, and P-type GaAs is formed into stripes by photolithography.
(30B) is formed by a step in which the film surface is exposed,
The main structure of the semiconductor laser was fabricated by depositing electrodes that could provide ohmic contact on the front surface and the back surface of the Si substrate. Since a large-area substrate of 3 inches to 5 inches with a low transition point can be obtained, many semiconductor chips can be obtained in one manufacturing process.In terms of characteristics, it is also possible to manufacture on a conventional single-crystal substrate such as GaAS. A product comparable to that of a semiconductor laser was obtained.

〔発明の効果〕〔Effect of the invention〕

以主述べたように本発明によれば、S 11− xGe
x歪超格子をSi基板上に形成したことにより、転移の
少ない大面積化合物半導体基板を提供できるという効果
を有する。
As described above, according to the present invention, S 11-xGe
By forming the x-strained superlattice on the Si substrate, it is possible to provide a large-area compound semiconductor substrate with few dislocations.

更に単結晶Si基板は6インチ径、8インチ径といった
大面積基板が製造可能であるため、大量の発光デバイス
ヤ集積回路が製造可能となる0、 更に、Si基板は、
安価に得られるため、製造したデバイスのコストを大幅
に低減できるという効果を有する。
Furthermore, since single-crystal Si substrates can be manufactured in large-area substrates such as 6-inch and 8-inch diameters, a large number of light emitting devices and integrated circuits can be manufactured.
Since it can be obtained at low cost, it has the effect of significantly reducing the cost of manufactured devices.

更にSi素子とGaAS等の化合物半導体素子の混在し
た集積回路が可能であるため、電気的駆動はSi素子が
受は持ち、発光受光等の光学的駆動部はGaAs系素子
が受は持つ、光−電気集積回路(OEIC)の実現が容
易であるという効果を有する。
Furthermore, it is possible to create integrated circuits in which Si elements and compound semiconductor elements such as GaAS are mixed, so the electrical drive is carried out by the Si element, and the optical drive parts such as light emission and light reception are carried out by the GaAs-based elements. - It has the effect that it is easy to realize an electrical integrated circuit (OEIC).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による化合物半導体単結晶薄膜用基板の
主要断面図である。 第2図は本発明による化合物半導体単結晶薄膜用基板の
Si+Ge谷元素の原子数濃度の膜厚方向分布図である
。 第3図は、本発明による化合物半導体単結晶薄膜用基板
を用いて製造した半導体レーザの主要断面斜視図。 (101)・・・単結晶Si基板 (102)−8i1−xGeXA’J膜(0≦x<0.
5)(103)−8i t −yGOX ’I’Jp膜
(0,5(y≦1)(302)・・・n型単結晶Si基
板 (303)・n型5tl−)(Gex歪超格子層以上 化如勾牛庵漆gI祐晶(7)1m基様勇14軒薗圓 第1図 第2図 3ρ2.1ド−ネーー んた均片S欅勅暢簿線槍)歇乞 第3図
FIG. 1 is a main cross-sectional view of a compound semiconductor single crystal thin film substrate according to the present invention. FIG. 2 is a distribution diagram of the atomic number concentration of Si+Ge valley elements in the film thickness direction of the compound semiconductor single crystal thin film substrate according to the present invention. FIG. 3 is a main cross-sectional perspective view of a semiconductor laser manufactured using the compound semiconductor single crystal thin film substrate according to the present invention. (101)...Single crystal Si substrate (102)-8i1-xGeXA'J film (0≦x<0.
5)(103)-8it-yGOX 'I'Jp film (0,5(y≦1)(302)...n-type single crystal Si substrate (303)/n-type 5tl-) (Gex strained superlattice More than a layer of Nyogogyuan lacquer gI Yuaki (7) 1 m base 14 eaves 1 figure 2 3 ρ 2.1 Done even piece S Keyaki Chonobu book line spear) Enkigo No. 3 figure

Claims (1)

【特許請求の範囲】[Claims] III−V族及びII−VI族化合物半導体単結晶薄膜を形成
するための化合物半導体単結晶薄膜用基板において、単
結晶シリコン半導体基板上に、シリコン−ゲルマニウム
混晶(以下、Si_1_−_xGe_x、0≦x≦1と
記す)薄膜と、前記シリコンゲルマニウム混晶と組成の
異なるシリコンゲルマニウム(Si_1_−_yGe_
y、0≦y≦1)薄膜を順次積層して成る歪超格子が形
成され、且つ、該歪超格子においては、前記単結晶シリ
コン半導体基板直上には、シリコン量の多い薄膜(Si
_1_−_xGe_x、0≦x≦0.5)が、該歪超格
子の最終薄膜にはゲルマニウム量の多い薄膜(Si_1
_−_yGe_y、0.5<y≦1)が、各々形成され
ていることを特徴とする化合物半導体単結晶薄膜用基板
In a compound semiconductor single crystal thin film substrate for forming a III-V group and II-VI compound semiconductor single crystal thin film, a silicon-germanium mixed crystal (hereinafter, Si_1_-_xGe_x, 0≦ x≦1) thin film, and a silicon germanium (Si_1_−_yGe_
A strained superlattice is formed by sequentially stacking thin films (y, 0≦y≦1), and in the strained superlattice, a thin film with a large amount of silicon (Si
_1_−_xGe_x, 0≦x≦0.5), but the final thin film of the strained superlattice contains a thin film with a large amount of germanium (Si_1
A substrate for a compound semiconductor single crystal thin film, characterized in that _-_yGe_y, 0.5<y≦1) are formed.
JP37686A 1986-01-06 1986-01-06 Substrate for compound semiconductor single-crystal thin film Pending JPS62158314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37686A JPS62158314A (en) 1986-01-06 1986-01-06 Substrate for compound semiconductor single-crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37686A JPS62158314A (en) 1986-01-06 1986-01-06 Substrate for compound semiconductor single-crystal thin film

Publications (1)

Publication Number Publication Date
JPS62158314A true JPS62158314A (en) 1987-07-14

Family

ID=11472073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37686A Pending JPS62158314A (en) 1986-01-06 1986-01-06 Substrate for compound semiconductor single-crystal thin film

Country Status (1)

Country Link
JP (1) JPS62158314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
US4885614A (en) Semiconductor device with crystalline silicon-germanium-carbon alloy
US4113531A (en) Process for fabricating polycrystalline inp-cds solar cells
JPH0766922B2 (en) Method for manufacturing semiconductor device
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
JPH0794420A (en) Manufacture of compound semiconductor crystal substrate
JPS63169717A (en) Semiconductor device
EP0177903A2 (en) Semiconductor device having a gallium arsenide crystal layer grown on a silicon substrate and method for producing it
JPS5946414B2 (en) compound semiconductor device
JPS6232608B2 (en)
JPS62158314A (en) Substrate for compound semiconductor single-crystal thin film
JPS61189621A (en) Compound semiconductor device
JPS61294877A (en) Semiconductor device
US5254211A (en) Method for forming crystals
JPS6232609B2 (en)
JPS63184320A (en) Semiconductor device
JPH0289325A (en) Structure of compound semiconductor and formation thereof
JP3107646U (en) Compound semiconductor epitaxial wafer
JP2771635B2 (en) Ca lower 1-lower x Sr lower x F lower 2
JP2002324765A (en) Iron silicide film forming method, semiconductor wafer and optical semiconductor device
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JPH05175144A (en) Semiconductor device and its manufacture
JPS5973499A (en) Growth of compound semiconductor
JPS63186415A (en) Compound semiconductor substrate
JPH0239441A (en) Manufacture of compound semiconductor crystal
JPS6288317A (en) Compound semiconductor substrate