JPS62158161A - Ceramic heating element - Google Patents

Ceramic heating element

Info

Publication number
JPS62158161A
JPS62158161A JP60298091A JP29809185A JPS62158161A JP S62158161 A JPS62158161 A JP S62158161A JP 60298091 A JP60298091 A JP 60298091A JP 29809185 A JP29809185 A JP 29809185A JP S62158161 A JPS62158161 A JP S62158161A
Authority
JP
Japan
Prior art keywords
heating element
ceramic
sintering
oxide
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60298091A
Other languages
Japanese (ja)
Other versions
JPH0460070B2 (en
Inventor
陸人 宮原
古賀 静樹
茂樹 毛利
平山 尚志
城山 正治
佐々木 豊重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP60298091A priority Critical patent/JPS62158161A/en
Publication of JPS62158161A publication Critical patent/JPS62158161A/en
Publication of JPH0460070B2 publication Critical patent/JPH0460070B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強度と硬さが大で、耐摩耗性と耐食性に優れ
た酸化物系セラミ・ツクからなる発熱素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heating element made of oxide-based ceramic which has high strength and hardness and excellent wear resistance and corrosion resistance.

〔従来の技術〕[Conventional technology]

従来から、発熱体として、ニクロムやカンタル合金等の
金属発熱体と炭化珪素、ランタンクロマイト (LaC
rOa )を主体とするセラミック発熱体が知られてい
る。
Traditionally, metal heating elements such as nichrome and kanthal alloy, silicon carbide, and lanthanum chromite (LaC) have been used as heating elements.
Ceramic heating elements mainly composed of rOa) are known.

前者の金属発熱体は、その耐熱性の点から高温発熱体と
して使用できず、専ら高温発熱用の抵抗体としては炭化
珪素、ランタンクロマイトを主体とするセラミック発熱
体が使用されている。
The former metal heating element cannot be used as a high-temperature heating element due to its heat resistance, and a ceramic heating element mainly made of silicon carbide or lanthanum chromite is used exclusively as a resistor for high-temperature heating.

しかしながら、かかるセラミック発熱体は比較的熱衝撃
に弱く金属結線との接合性に劣る欠点がある。さらには
、上記セラミック発熱体は比抵抗が高いため低電圧では
使用が困難であるといった問題がある。
However, such ceramic heating elements have the drawback of being relatively weak against thermal shock and having poor bondability with metal connections. Furthermore, since the ceramic heating element has a high specific resistance, it is difficult to use it at low voltage.

この対応のため、本願出願人は熱衝撃に強いアルミナ質
セラミックに着目し、これに導電付与剤としてMo2 
C,ZrC,NbC,TaC,WC,Cr2Ca等の炭
化物を添加して比抵抗を改善した発熱体を特開昭60−
127260号において開示した。
To address this issue, the applicant focused on alumina ceramics that are resistant to thermal shock, and used Mo2 as a conductive agent.
A heating element with improved resistivity by adding carbides such as C, ZrC, NbC, TaC, WC, and Cr2Ca was developed in JP-A-1988-
No. 127260.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、かかる酸化物系セラミック発熱体の端子
部は、電極との接合性が不十分であるため、電極と発熱
体との接触抵抗が増加し、導通不良あるいは接合部の異
常発熱を起こす場合があり、導電付与剤として添加した
炭化物が酸化しやすいこともあって耐酸化性にも問題が
あり、発熱体自体の寿命を低下させる要因となっていた
However, since the terminals of such oxide-based ceramic heating elements have insufficient bonding properties with the electrodes, the contact resistance between the electrodes and the heating element increases, which may cause poor continuity or abnormal heat generation at the joints. In addition, since the carbide added as a conductivity imparting agent is easily oxidized, there is also a problem in oxidation resistance, which is a factor that shortens the life of the heating element itself.

本発明において解決すべき課題は、かかる酸化物系セラ
ミック発熱素子として接合部の改善とともに、耐熱、耐
酸化性を向上せしめ、且つ低電圧でも使用可能な酸化物
系セラミック発熱体を安定した発熱素子として使用を確
立することにある。
The problem to be solved by the present invention is to create a stable heating element using an oxide ceramic heating element that has improved heat resistance and oxidation resistance as well as improved joints, and can be used even at low voltages. The goal is to establish its use as a

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、絶縁セラミックスである酸化物系セラミック
焼結体は、導電付与剤である炭化物、窒化物、硼化物又
はそれらの複合物の添加を制御することによって比抵抗
の制御が可能であり、且つかかる発熱体は焼結後端子部
に金属化処理しても発熱体本体の比抵抗に何等悪影響を
与えることなく、接触抵抗変化がない発熱素子が得られ
るという知見に基づくものである。
The present invention provides that the resistivity of the oxide ceramic sintered body, which is an insulating ceramic, can be controlled by controlling the addition of carbide, nitride, boride, or a composite thereof as a conductivity imparting agent, In addition, this heating element is based on the knowledge that even if the terminal portions are metallized after sintering, there is no adverse effect on the specific resistance of the heating element body, and a heating element with no change in contact resistance can be obtained.

酸化物系セラミックとしては、アルミナのみならず酸化
ジルコニウム、酸化マグネシウム、酸化クロム、酸化チ
タン等の単一酸化物や、ムライト。
Oxide ceramics include not only alumina but also single oxides such as zirconium oxide, magnesium oxide, chromium oxide, titanium oxide, and mullite.

ジルコン、スピネル等の複合酸化物が適用できる。Composite oxides such as zircon and spinel can be applied.

また、導電付与剤としては、周期律表のIVa。In addition, examples of the conductivity imparting agent include IVa in the periodic table.

Va、VTa族の炭化物、窒化物、硼化物又はそれらの
複合物からなる群の中から選択した少なくとも1種を、
ヒーターの容量に応じて適宜含有せしめる。
At least one member selected from the group consisting of Va, VTa group carbides, nitrides, borides, or composites thereof,
Contain it as appropriate depending on the capacity of the heater.

これらの導電性付与成分の含有量が多くなるに従って電
気比抵抗は小さくなる傾向となるが、難焼結性の炭化物
、窒化物、硼化物が多くなる程焼結温度が高(なり、必
然的に結晶粒径が粗大化し強度が低下し、かつ粗大スポ
ットの発生率が大となるため好ましくない。
As the content of these conductivity-imparting components increases, the electrical resistivity tends to decrease, but as the amount of carbides, nitrides, and borides that are difficult to sinter increases, the sintering temperature becomes higher (necessarily). This is not preferable because the crystal grain size becomes coarse, the strength decreases, and the incidence of coarse spots increases.

一方、導電性付与剤の含有量が少なずぎると、焼結体で
ある発熱体の比抵抗が大きくなりすぎてlXl0−”Ω
・口を超え発熱体としては不適となる。
On the other hand, if the content of the conductivity imparting agent is too small, the specific resistance of the heating element, which is a sintered body, becomes too large, resulting in a
- Exceeds the mouth, making it unsuitable as a heating element.

これらの導電性付与成分は15.0〜40.0容量%の
範囲に設定する必要がある。この範囲内でこれらの導電
性付与成分を調整すれば、焼結体の比抵抗を発熱体とし
て任意に調整できる。
These conductivity-imparting components need to be set in a range of 15.0 to 40.0% by volume. By adjusting these conductivity-imparting components within this range, the specific resistance of the sintered body can be arbitrarily adjusted as a heating element.

また、導電付与剤としては、同量の添加では炭化物に比
べて窒化物、硼化物又はそれらの複合物を添加する方が
比抵抗が低く、かつ耐熱、耐酸化性に優れたセラミック
発熱素子を得ることができる。
In addition, when adding the same amount of conductive agents, nitrides, borides, or their composites have lower specific resistance than carbides, and ceramic heating elements with excellent heat resistance and oxidation resistance can be produced. Obtainable.

また、かかるセラミック発熱体は、上記導電付与剤の配
合によって調整した比抵抗に何等影響を与えることなく
、端子部に金属化処理を施すことができる。
In addition, the terminal portion of such a ceramic heating element can be subjected to metallization treatment without any effect on the specific resistance adjusted by blending the conductivity imparting agent.

金属化処理は、例えばTi、 Cu及びMnとからなる
第1層とこの第1層の上にMo層あるいはNiのメッキ
層を形成せしめて金属化し、さらに、必要に応じて金属
化処理部に耐酸化導電材料、Ag+ Cu、 Au等を
メッキするか、又は金属化処理部にセラミックと熱膨張
係数が近い組成のAg−W、 Ag−WC,Cu−Wを
ろう付けし、端子部を形成する。
The metallization treatment is performed by forming a first layer consisting of Ti, Cu, and Mn, and a Mo layer or a Ni plating layer on the first layer, and then, if necessary, applying a layer to the metallized portion. Terminals are formed by plating oxidation-resistant conductive material, Ag+Cu, Au, etc., or brazing Ag-W, Ag-WC, Cu-W with a composition similar to ceramic in the thermal expansion coefficient to the metallized part. do.

本発明の発熱素子の本体発熱部の製造に際しては、?I
gO他の公知の酸化物系の焼結助剤を添加しても発熱体
としての比抵抗値に何等影響を与えることなく、焼結を
促進せしめとができる。またかかる焼結助剤を含有せし
めることによって、発熱素子として特に望ましい緻密で
且つ均質な焼結体を得ることができる。
When manufacturing the main body heat generating part of the heat generating element of the present invention, what should be done? I
Even if gO or other known oxide-based sintering aids are added, sintering can be accelerated without affecting the specific resistance value of the heating element. Furthermore, by including such a sintering aid, a dense and homogeneous sintered body that is particularly desirable as a heating element can be obtained.

本発明の発熱素子の製造に際しては、各種原料粉末の平
均粒径が3μ信以下、好ましくは1.5μm以下の粉末
を所定量に配合し、ボールミル機により粉砕混合した後
、乾燥整粒して焼結性用原料を得る。
When producing the heating element of the present invention, various raw material powders having an average particle diameter of 3 μm or less, preferably 1.5 μm or less are blended in a predetermined amount, pulverized and mixed in a ball mill, and then dried and sized. Obtain raw material for sinterability.

また、炭化物、窒化物、硼化物及びそれらの複合物の導
電性付与成分は、焼結体中で平均粒径3μm以下、より
好ましくは1.5μm以下の粒子として均一に分散し、
かつ少なくともネット構造を形成する量配合することに
より導電性が得られ、導電性付与成分としての効果を発
揮する。
Further, the conductivity-imparting components of carbides, nitrides, borides, and composites thereof are uniformly dispersed in the sintered body as particles with an average particle size of 3 μm or less, more preferably 1.5 μm or less,
In addition, conductivity can be obtained by blending at least an amount that forms a net structure, and the effect as a conductivity imparting component is exhibited.

焼結に際しては、非酸化性雰囲気で圧力10kg/d以
下で焼結する方法、非酸化性雰囲気中で対理論密度95
%以上に予備焼結した後ホットアイソスタティックプレ
ス (以下)11Pという)法、100〜300kg/
aI!の加圧力の下でホントプレス焼結する方法等、任
意の焼結法が適用できるが、いずれにしろ、対理論密度
を98.5%以上好ましくは99.0%以上に緻密化焼
結する必要がある。
For sintering, sintering is performed in a non-oxidizing atmosphere at a pressure of 10 kg/d or less, and the theoretical density is 95 in a non-oxidizing atmosphere.
% or more, then hot isostatic press (hereinafter referred to as 11P) method, 100-300 kg/
aI! Any sintering method can be applied, such as the method of true press sintering under the pressure of There is a need.

さらに、本発明の発熱素子は耐熱衝撃性と共に高い機械
的強度を有するために、薄板状の発熱素子としても使用
することができる。この薄板状の形状を有する発熱体素
子の成形焼結はドクターブレード法により製造したシー
トを所定寸法にカットした後、望みの形状に加工したま
ま機密焼結する方法やスリップキャスティング法により
単純形状及び湾曲形状や複雑形状にしたり、押出成形し
た丸棒又は角棒を所定形状にカントして焼結することに
より製造することができる。
Furthermore, since the heating element of the present invention has high mechanical strength as well as thermal shock resistance, it can also be used as a thin plate-shaped heating element. Shaping and sintering of this heating element having a thin plate shape is performed by cutting a sheet manufactured by the doctor blade method to a predetermined size and then secretly sintering it while processing it into the desired shape, or by slip casting method to create a simple shape. It can be manufactured by making it into a curved shape or a complicated shape, or by canting an extruded round or square bar into a predetermined shape and sintering it.

さらに本発明のセラミック発熱素子は、発熱体本体の端
部に電極取付のために金属化処理を施して電極との電気
的な接合を改善している。
Further, in the ceramic heating element of the present invention, the end portion of the heating element body is metallized for attachment of electrodes to improve electrical connection with the electrodes.

この金属化処理のためにには種々の方法が適用できるが
、特にTi、 Cu及びMnを必須成分としTi:Cu
 : Mnをそれぞれ重量比で20〜70:20〜70
:2〜20の割合の配合物を発熱体本体の端部に塗布し
てその上部に一〇の薄板を置き、真空雰囲気中で焼成し
て同時にセラミック素子と結合させ、さらにNiメッキ
層を形成させる。さらに、このままでは金属化処理部の
酸化が発生する場合があり、用途に応じては金属化処理
部に耐酸化導電材料、Ag、 Cu。
Various methods can be applied for this metallization treatment, but in particular Ti:Cu with Ti, Cu and Mn as essential components.
: Mn in weight ratio of 20-70:20-70, respectively
: Apply the mixture at a ratio of 2 to 20 to the end of the heating element body, place a 10 thin plate on top of it, fire it in a vacuum atmosphere, and bond it with the ceramic element at the same time, and further form a Ni plating layer. let Furthermore, if left as is, oxidation may occur in the metallized portion, and depending on the application, the metallized portion may be coated with an oxidation-resistant conductive material, Ag, or Cu.

Au等をメッキするか良淳電性の金属板をろう付けする
のが好ましい。
It is preferable to plate with Au or the like or to braze a metal plate with good electrical conductivity.

なお、上記の金属板はセラミック発熱素子と熱膨張率が
近い成分のものが良く、具体的にはAg−也Ag−WC
,Cu−W等をろう付けすれば、熱膨張率の差異による
セラミック発熱素子の割れを防止できる。
The metal plate mentioned above should preferably have a component with a coefficient of thermal expansion close to that of the ceramic heating element, specifically Ag- or Ag-WC.
, Cu-W, etc., can prevent the ceramic heating element from cracking due to differences in thermal expansion coefficients.

〔実施例〕〔Example〕

実施例1 純度99.9%、平均粒子径0.5 μmの八1203
と導電性付与剤として平均粒子径2μm以下の周期律表
rVa、Va、Via族の炭化物、窒化物、硼化物、そ
れらの複合物と焼結助剤として純度99.9%で平均粒
子径が0.5μmの?IgOとを所定量秤量し、第1表
に示す配合割合で湿式ボールミルにより20時間粉砕混
合した。この混合粉末を乾燥整粒して50X50mm+
高さ60飄1の黒鉛型内に充填してそれぞれ最適の焼結
温度1350℃〜1800℃で100〜300kg/ 
adの圧力を加え60分保持し、ついで圧力を除去し放
冷することにより対理論密度98.5%以上の50X5
0X5mmの焼結体を得た。各々の焼結体をダイヤモン
ド砥石で切断研削してそれぞれの試験片を作成し各種試
験に供した。物性調査試料としては、ダイヤモンド砥石
による3 X 4 x4Q*mの研削試片を用い、また
、発熱体素子としての試料は、0−5 ×3 X30m
mの薄板上に切断研削加工し試験に供した。
Example 1 Hachi1203 with a purity of 99.9% and an average particle size of 0.5 μm
and carbides, nitrides, and borides of groups rVa, Va, and Via of the periodic table with an average particle diameter of 2 μm or less as conductivity imparting agents, and composites thereof as sintering aids with an average particle diameter of 99.9%. 0.5 μm? A predetermined amount of IgO was weighed and mixed by pulverization in a wet ball mill for 20 hours at the mixing ratio shown in Table 1. This mixed powder is dried and sized into 50x50mm+
100 to 300 kg/filled at the optimum sintering temperature of 1350°C to 1800°C in a graphite mold with a height of 60 cm.
By applying a pressure of ad and holding it for 60 minutes, then removing the pressure and allowing it to cool, it becomes 50X5 with a theoretical density of 98.5% or more.
A sintered body of 0×5 mm was obtained. Each sintered body was cut and ground using a diamond grindstone to prepare each test piece, which was subjected to various tests. A specimen of 3 x 4 x 4Q*m ground with a diamond grinding wheel was used as a sample for physical property investigation, and a sample of 0-5 x 3 x 30 m was used as a heating element.
It was cut and ground on a thin plate of 500 m in diameter and used for testing.

これらの試験結果を第1表に示す。The results of these tests are shown in Table 1.

実施例2 実施例1に示した試料患のうち、患2〜階15に示した
各種試料に相当する材料から、5X1.0X50■宵の
板状に切削加工し、端子部はTi : Cu : Mn
が重量比で45 : 45 : 10の混合物ペースト
を塗布し乾燥させその上に0.5 am厚さのMn仮を
置き、10−十■−HHの真空中で1300℃で30分
間保持して端部を金属化した。次に1o層の上部に厚さ
10μmのNiメッキを施した。さらにその上部に厚さ
1鴎のAg−Wをろう付けし端子を形成した。
Example 2 Among the samples shown in Example 1, materials corresponding to the various samples shown in Examples 2 to 15 were cut into a 5x1.0x50 plate shape, and the terminal portion was made of Ti: Cu: Mn
A paste mixture with a weight ratio of 45:45:10 was applied, dried, a 0.5 am thick Mn layer was placed on top of the paste, and the mixture was kept at 1300°C for 30 minutes in a 10-10-HH vacuum. The ends are metallized. Next, Ni plating with a thickness of 10 μm was applied to the top of the 1o layer. Furthermore, a terminal was formed by brazing Ag-W with a thickness of 1 inch on the top thereof.

これらの発熱素子を12Vの電圧で昇温した結果いずれ
も10秒間以内で500℃以上に達した。
As a result of raising the temperature of these heating elements with a voltage of 12 V, the temperature reached 500° C. or higher within 10 seconds.

これらを樹脂切断用ヒータとして使用した結果、金属ヒ
ータと比べて溶融樹脂による腐食もな、く、いずれも3
倍以上の長寿命を示し、また消費電力も40%以下であ
った。
As a result of using these as resin cutting heaters, there was no corrosion due to molten resin compared to metal heaters, and both were rated 3.
The lifespan was more than twice as long, and the power consumption was 40% or less.

第    1    表 〔発明の効果〕 本発明の発熱素子は、強度、耐熱、耐酸化、耐食性に優
れ、比抵抗が比較的低く低電圧での使用も可能である。
Table 1 [Effects of the Invention] The heating element of the present invention has excellent strength, heat resistance, oxidation resistance, and corrosion resistance, has a relatively low specific resistance, and can be used at low voltage.

また、端子接続部の接合性は極めて良好で、金属発熱素
子並の低い安定した接触抵抗値を有する。
Furthermore, the bondability of the terminal connection portion is extremely good, and the contact resistance value is as low and stable as that of a metal heating element.

従って、本発明に係る発熱素子は、熱風発生機用ヒータ
、軍用の各種発熱体素子、加熱炉用ヒータ、樹脂加工用
ヒータ、繊維加工用ヒータ、OA機用等、あらゆる分野
の発熱素子として好適に使用できる。
Therefore, the heating element according to the present invention is suitable as a heating element in all fields, such as heaters for hot air generators, various heating element elements for military use, heaters for heating furnaces, heaters for resin processing, heaters for textile processing, and for use in OA machines. Can be used for

Claims (1)

【特許請求の範囲】[Claims] 1、発熱体本体が周期律表のIVa、Va、VIa族の炭化
物、窒化物、硼化物及びそれらの複合物からなる群の中
から選択した少なくとも1種を15.0〜40.0容量
%含有する酸化物系セラミックの焼結体からなり、同発
熱体本体の端部に金属化処理を施した端子部を有するこ
とを特徴とするセラミック発熱素子。
1. The heating element body contains 15.0 to 40.0% by volume of at least one member selected from the group consisting of carbides, nitrides, borides, and composites thereof of groups IVa, Va, and VIa of the periodic table. 1. A ceramic heating element comprising a sintered body of an oxide-based ceramic containing an oxide-based ceramic, and having a terminal portion which is metallized at the end of the heating element main body.
JP60298091A 1985-12-28 1985-12-28 Ceramic heating element Granted JPS62158161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298091A JPS62158161A (en) 1985-12-28 1985-12-28 Ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298091A JPS62158161A (en) 1985-12-28 1985-12-28 Ceramic heating element

Publications (2)

Publication Number Publication Date
JPS62158161A true JPS62158161A (en) 1987-07-14
JPH0460070B2 JPH0460070B2 (en) 1992-09-25

Family

ID=17855045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298091A Granted JPS62158161A (en) 1985-12-28 1985-12-28 Ceramic heating element

Country Status (1)

Country Link
JP (1) JPS62158161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132078A (en) * 1987-11-18 1989-05-24 Yazaki Corp Electrode for heat pressure welding
JP2002226269A (en) * 2001-01-30 2002-08-14 Wicera Co Ltd Conductive ceramic and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101812A (en) * 1978-01-27 1979-08-10 Sumitomo Electric Industries Heat generating ceramics
JPS5978973A (en) * 1982-10-27 1984-05-08 株式会社日立製作所 Electroconductive ceramics
JPS5991684A (en) * 1982-11-16 1984-05-26 松下電工株式会社 Method of formng electrode of ceramic heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101812A (en) * 1978-01-27 1979-08-10 Sumitomo Electric Industries Heat generating ceramics
JPS5978973A (en) * 1982-10-27 1984-05-08 株式会社日立製作所 Electroconductive ceramics
JPS5991684A (en) * 1982-11-16 1984-05-26 松下電工株式会社 Method of formng electrode of ceramic heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132078A (en) * 1987-11-18 1989-05-24 Yazaki Corp Electrode for heat pressure welding
JPH0332189B2 (en) * 1987-11-18 1991-05-10 Yazaki Corp
JP2002226269A (en) * 2001-01-30 2002-08-14 Wicera Co Ltd Conductive ceramic and its manufacturing method

Also Published As

Publication number Publication date
JPH0460070B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
US4427915A (en) Spark plug and the process for production thereof
JP2828575B2 (en) Silicon nitride ceramic heater
JPS5924751B2 (en) Sintered shaped body
US2745928A (en) Heater bodies and their production
EP0170864B1 (en) Zrb2 composite sintered material
JPS61291463A (en) Material for high toughness ceramic tool
JPS5991685A (en) Ceramic heater
JPS6219396B2 (en)
US4017426A (en) Highly porous conductive ceramics and a method for the preparation of same
JPS62158161A (en) Ceramic heating element
JPS59207881A (en) Ceramic sintered body and manufacture
JPS631271B2 (en)
JPS6033265A (en) Silicon carbide electroconductive ceramics
JPS62153166A (en) B4c base composite sintered body
US2848586A (en) Non-metallic electrical heating elements
JPS6144768A (en) High strength boride sintered body
JPS61247661A (en) Oxidation-resistant high strength carbon material
JPH04325462A (en) Paste for heating resistor for aln ceramic heater
JPS6251229B2 (en)
JP2537606B2 (en) Ceramic Heater
JPS631272B2 (en)
JPS63315571A (en) Abrasion-resistant sintered compact having high strength
JP2004026517A (en) Silicon carbide-based electroconductive sintered compact and method of manufacturing the same
JPS59101702A (en) Ceramic conductive material and electric device using same
JPS632914B2 (en)