JPS62157903A - Cooling method of pid control - Google Patents

Cooling method of pid control

Info

Publication number
JPS62157903A
JPS62157903A JP84986A JP84986A JPS62157903A JP S62157903 A JPS62157903 A JP S62157903A JP 84986 A JP84986 A JP 84986A JP 84986 A JP84986 A JP 84986A JP S62157903 A JPS62157903 A JP S62157903A
Authority
JP
Japan
Prior art keywords
cooling
output rate
controlled
value
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP84986A
Other languages
Japanese (ja)
Inventor
Tatsuaki Nasu
那須 竜昭
Junzo Sakai
阪井 順三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP84986A priority Critical patent/JPS62157903A/en
Publication of JPS62157903A publication Critical patent/JPS62157903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To vary a duty ratio according to, for example, a polygonal curve for adapting an output rate to the cooling characteristic of a controlled system by obtaining a curve which is adapted to the cooling characteristic of the controlled system as a controlled variable characteristic for cooling among control variables corresponding to the output rate. CONSTITUTION:The deviation (e)(=TM-Tj) between a desired value TM of temperature and the measured value Tj of temperature of the controlled system 1 is calculated and a temperature control part 2 perform PID arithmetic operation to calculate the output rate (m). A microcomputer outputs two kinds of control signals S1 and S2 and a relay ON time pulse value P is found from a constant control period thetac (equivalent to a task period for PID arithmetic) and a relay output period thetaR which is the minimum width of the relay ON time according to the output rate (m) which is calculated from a PID arithmetic expression by the temperature control part 2. The P value (PH) of a heating side is determined according to a linear line when the output rate calculated by the microcomputer is between 0 and 100% and the P value (PC) of a cooling side, on the other hand, is determined according to a curve corresponding to the cooling characteristic of the controlled system 1 when the output rate is between -100 and 0%.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加熱特性と冷却特性が異なる制御対象のPI
D制御における冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a method for controlling PI of a controlled object having different heating characteristics and cooling characteristics.
This relates to a cooling method in D control.

(従来の技術) 従来、少ない制御パラメータで良好なPID制御を行う
手法が種々提案されている。また、、PID制御を使っ
た温度制御においては、加熱機能だけでなく冷却機能を
持たせたものが提供されており、この種の温度制御にお
いても少ないパラメータで良好な制御特性を得ることが
望まれている。
(Prior Art) Conventionally, various methods have been proposed for performing good PID control with a small number of control parameters. In addition, temperature control using PID control is provided with not only a heating function but also a cooling function, and it is desirable to obtain good control characteristics with a small number of parameters even in this type of temperature control. It is rare.

(発明が解決しようとする問題点) しかるに、制御対象の保温状態や冷却用の冷媒特性に応
じて、加熱時と冷却時の時定数は一般的に異なる。従来
のPID制御では、例えば、PID演算によって求めた
出力率に対応して、加熱装置及び冷却装置の可動時間(
リレーON時間)をデユーティ制御で行っている。すな
わち、出力率が100%の場合をデユーティ1となし、
出力率O%の場合をデユーティ0とし、その間では冷却
特性及び加熱特性の双方が線型な関係でデユーティ比を
決定していたので、上述した冷却特性と加熱特性の異な
るシステムでは、良好なPlr)制御を行うことができ
なかった。
(Problems to be Solved by the Invention) However, the time constants during heating and cooling generally differ depending on the heat retention state of the controlled object and the characteristics of the cooling refrigerant. In conventional PID control, for example, the operating time of the heating device and the cooling device (
(relay ON time) is controlled by duty. In other words, the duty is 1 when the output rate is 100%,
When the output rate is 0%, the duty is 0, and during that time, the duty ratio is determined by a linear relationship between both the cooling and heating characteristics, so in the system with the different cooling and heating characteristics described above, a good Plr) could not be controlled.

(問題点を解決するための手段) 本発明は、設定目標値と測定値との偏差に関する比例項
、積分項、微分項に従って出力率を演算し、該出力率に
よって制御対象の加熱特性と冷却 、特性が異なるもの
を制御する方法であって、前記出力率に対応する制御量
のうち冷却用の制御量特性を当該制御対象の冷却特性に
適合する曲線になしたものである。
(Means for solving the problem) The present invention calculates an output rate according to a proportional term, an integral term, and a differential term regarding the deviation between a set target value and a measured value, and uses the output rate to determine the heating characteristics and cooling of a controlled object. , a method for controlling objects having different characteristics, in which the characteristics of the controlled amount for cooling among the controlled amounts corresponding to the output rate are made into a curve that matches the cooling characteristics of the controlled object.

(作用) 加熱装置を制御する制御量は、PTI’)演算によって
求めた出力率と線型の関係でデユーティ比が変化される
。一方、冷却装置に対してPID演算によって求めた出
力率は、当該制御対象の冷却特性に適合する例えば折れ
線曲線によって前記デユーティ比が変化される。
(Function) The duty ratio of the control amount for controlling the heating device is changed in a linear relationship with the output rate obtained by PTI') calculation. On the other hand, in the output rate determined by PID calculation for the cooling device, the duty ratio is changed according to, for example, a polygonal curve that matches the cooling characteristics of the controlled object.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明に係るPIF’)制御の制御系を示す
ブロック図である。
FIG. 1 is a block diagram showing a control system for PIF') control according to the present invention.

温度の目標値をTH1制御対象1の温度の実測値をT4
、この実測値TJと目標値′rMとの偏差e (=TH
TJ)をとり、温度調節部2によってPTr)演算を行
い、出力率(m)を下式(A)に従って演算し、該演算
結果に従い制御対象1を自動制御して、一定の目標値T
、に維持するようになされている。前記制御対象1は加
熱装置と冷却装置の双方を有している。
The target temperature value is TH1 The actual measured temperature value of controlled object 1 is T4
, the deviation e (=TH
TJ) is calculated, PTr) is calculated by the temperature controller 2, the output rate (m) is calculated according to the formula (A) below, and the controlled object 1 is automatically controlled according to the calculation result to maintain a constant target value T.
, and is maintained in the same way. The controlled object 1 has both a heating device and a cooling device.

但し、kP:比例係数  T、:積分時間TD:微分時
間 第2図は、前記制御対象1の一例を示し、管体3内を流
れるプラスチック流体4を温度制御する場合の概略図を
示している。
However, kP: proportionality coefficient T,: integral time TD: differential time FIG. 2 shows an example of the control object 1, and shows a schematic diagram when the temperature of the plastic fluid 4 flowing inside the pipe body 3 is controlled. .

管体3の表面には適当間隔をおいてヒータ5a。Heaters 5a are provided on the surface of the tube body 3 at appropriate intervals.

5b・・・が設げられ、このヒータ5a、5b・・・は
、加熱用リレー6及び電tJ7に接続され、この加熱用
リレー6がマイクロコンピュータから出力される加熱用
制御信号S、によって0N10FFデユーテイ制御され
ている。一方、前記管体3には冷却媒体8を通過させる
冷却管9がコイル状に蛇行して装着されており、この冷
却管9は電磁パルプ等によって構成される冷却用リレー
1oによって流量制御されている。この冷却用リレー1
oは、前記マイクロコンピュータによって出力される冷
却用制御信号S2によって0N10FFデユーテイ制御
されている。管体3の温度測定は、例えば熱電対11に
よって検出され、マイクロコンピュータへ入力されてい
る。
5b... are provided, and these heaters 5a, 5b... are connected to a heating relay 6 and an electric current tJ7, and this heating relay 6 is set to 0N10FF by a heating control signal S output from a microcomputer. Duty controlled. On the other hand, a cooling pipe 9 for passing a cooling medium 8 is attached to the pipe body 3 in a meandering coil shape, and the flow rate of this cooling pipe 9 is controlled by a cooling relay 1o made of electromagnetic pulp or the like. There is. This cooling relay 1
o is 0N10FF duty-controlled by a cooling control signal S2 output by the microcomputer. The temperature measurement of the tube body 3 is detected by, for example, a thermocouple 11 and inputted to the microcomputer.

第4図は、前記マイクロコンピュータのハードウェア構
成を示している。
FIG. 4 shows the hardware configuration of the microcomputer.

同図において、CPUボード14を中心に各種基本ボー
ド及び画面表示をなすCPT15が接続されたものであ
る。各種基本ボードは、操作指令等をなすキーボード1
3と偏差(e)をもとにPID演算をなし、演算結果を
記憶するメモリボードと、入出力インターフェースをな
すデジタル入出力ボード17及びアナログ入出力ボード
18によって構成されており、本例では、温度制御を例
示しているので、このアナログ入出力ボード18には前
記熱電対11で測定された温度値が入力され、デジタル
入出力ボード17からは、上述した加熱用及び冷却用制
御信号St、Szが出力されている。
In the figure, various basic boards and a CPT 15 for screen display are connected around a CPU board 14. Each basic board has a keyboard 1 that provides operation commands, etc.
3 and the deviation (e), a memory board that stores the calculation results, and a digital input/output board 17 and an analog input/output board 18 that form an input/output interface. In this example, Since this is an example of temperature control, the temperature value measured by the thermocouple 11 is input to this analog input/output board 18, and the above-mentioned heating and cooling control signals St, Sz is output.

前記マイクロコンピュータから出力される2種の制御信
号S+、Stは、前記温度調節部2によって演算された
PID演算式〔上式(A)〕をもとに求めた出力率に応
じて、一定の制御周期θ。
The two types of control signals S+ and St output from the microcomputer have a constant output rate according to the output rate calculated based on the PID calculation formula [formula (A) above] calculated by the temperature adjustment section 2. Control period θ.

(P T D演算を行うタスク周期に相当)とリレーO
N時間の最小幅であるリレー出力周期θ8とから下式(
B)によってリレーON時間パルス値Pを演算し、この
P値をリレー出力周期θ、経過毎に(−1)だけ減算し
て、0になるまでリレーをON状態に保持し、0になっ
た時点でリレーをOFFにする。
(corresponds to the task cycle for PTD calculation) and relay O
From the relay output period θ8 which is the minimum width of N time, the following formula (
Calculate the relay ON time pulse value P using B), subtract (-1) from this P value every time the relay output period θ elapses, and keep the relay in the ON state until it reaches 0. Turn off the relay at this point.

UR100 前記マイクロコンピュータで演算された出力率が0%か
ら100%の間は加熱側のP値(pH)は線型な直線α
(第3図参照)に従って決定され、一方、出力率が一1
00%から0%の間の冷却側のP値(Pc)は制御対象
1の冷却特性に応じた曲線に従って決定される。例えば
、第3図において冷却特性は5種類の曲線を例示してお
り、直線β。は従来用いられている直線を示し、曲線β
UR100 When the output rate calculated by the microcomputer is between 0% and 100%, the P value (pH) on the heating side is a linear straight line α
(see Figure 3), while the output rate is 11
The P value (Pc) on the cooling side between 00% and 0% is determined according to a curve according to the cooling characteristics of the controlled object 1. For example, in FIG. 3, the cooling characteristics are exemplified by five types of curves, including a straight line β. indicates the conventionally used straight line, and the curve β
.

は特に冷却時定数が小さなものに適応され、曲線β2は
冷却時定数が大きなものに適用される。これら曲線β1
.β2の他に例えば図面に示す曲線β3は加熱装置がO
Nしている時に同時に冷却装置をON制御したい場合、
曲線β4は冷却装置を一定出力率までの間OFF制御し
たい場合であり、また、これら曲線の折点数も制御対象
の冷却特性や前記プラスチック流体4の異状が発生した
場合の対応として急冷の必要があること等の事情によっ
て適宜変更する。また、曲線は折れ線に限らず双曲線等
の二次曲線であってもよい。そして、これらの曲線は′
予め前記メモリボード16に記憶されており、キーボー
ド13の操作によって適宜選択可能となされている。
is particularly applied to those with a small cooling time constant, and the curve β2 is applied to those with a large cooling time constant. These curves β1
.. In addition to β2, for example, curve β3 shown in the drawing shows that the heating device is
If you want to control the cooling device to turn on at the same time when it is in the N state,
Curve β4 is a case in which the cooling device is desired to be turned off until a certain output rate is reached, and the number of bending points of these curves also indicates the need for rapid cooling in response to the cooling characteristics of the controlled object or in the event that an abnormality occurs in the plastic fluid 4. Changes may be made as appropriate depending on certain circumstances. Further, the curve is not limited to a polygonal line, but may be a quadratic curve such as a hyperbola. And these curves are′
They are stored in advance in the memory board 16 and can be selected as appropriate by operating the keyboard 13.

なお、上述した実施例では0N10FFデユーテイ比制
御の方法について例示したが、これに限らず、例えば加
熱側の電源7の電圧値を制御したり、冷却媒体8の流量
を直接制御してもよい。
In addition, although the method of 0N10FF duty ratio control was illustrated in the above-mentioned embodiment, the method is not limited to this, and for example, the voltage value of the power supply 7 on the heating side may be controlled, or the flow rate of the cooling medium 8 may be directly controlled.

(発明の効果) 以上述べたように、本発明によれば、加熱機能と冷却機
能を有する場合のPID制御において、少ない制御パラ
メータで良好な制御特性を得ることができる。ひいては
、加熱特性及び冷却特性の差異に起因するハンチング等
を有効に防止することができる。
(Effects of the Invention) As described above, according to the present invention, good control characteristics can be obtained with a small number of control parameters in PID control when a heating function and a cooling function are provided. As a result, hunting and the like caused by differences in heating and cooling characteristics can be effectively prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るPIT)制御の制御系を示すブロ
ック図、第2図は加熱系及び冷却系の構成を示す概略図
、第3図は出力率とP値の関係を示す特性図、第4図は
マイクロコンピュータのハードウェア構成を示すブロッ
ク図である。 ■・・・制御対象  2・・・温度制御部5a、5b・
・・ヒータ 6・・・加熱用リレー 10・・・冷却用リレー 特許出願人 積水化学工業株式会社 代表者  廣1) 馨 第1図 第2図
Fig. 1 is a block diagram showing the control system of PIT) control according to the present invention, Fig. 2 is a schematic diagram showing the configuration of the heating system and cooling system, and Fig. 3 is a characteristic diagram showing the relationship between output rate and P value. , FIG. 4 is a block diagram showing the hardware configuration of the microcomputer. ■...Controlled object 2...Temperature control section 5a, 5b.
... Heater 6 ... Heating relay 10 ... Cooling relay Patent applicant Sekisui Chemical Co., Ltd. Representative Hiroshi 1) Kaoru Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)設定目標値と測定値との偏差に関する比例項、積分
項、微分項に従って出力率を演算し、該出力率によって
制御対象の加熱特性と冷却特性が異なるものを制御する
方法であって、前記出力率に対応する制御量のうち冷却
用の制御量特性を当該制御対象の冷却特性に適合する曲
線になしたことを特徴とするPID制御における冷却方
法。 2)前記冷却用の制御量が一定間隔の制御周期における
デューティ比で規制される特許請求の範囲第1項記載の
PID制御における冷却方法。 3)前記曲線が折れ線である特許請求の範囲第1項記載
のPID制御における冷却方法。
[Claims] 1) An output rate is calculated according to a proportional term, an integral term, and a differential term regarding the deviation between a set target value and a measured value, and the heating characteristics and cooling characteristics of the controlled object are controlled depending on the output rate. A cooling method in PID control, characterized in that among the controlled variables corresponding to the output rate, the characteristic of the controlled variable for cooling is made into a curve that matches the cooling characteristic of the controlled object. 2) A cooling method in PID control according to claim 1, wherein the controlled amount for cooling is regulated by a duty ratio in a control cycle at constant intervals. 3) The cooling method in PID control according to claim 1, wherein the curve is a polygonal line.
JP84986A 1986-01-06 1986-01-06 Cooling method of pid control Pending JPS62157903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP84986A JPS62157903A (en) 1986-01-06 1986-01-06 Cooling method of pid control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP84986A JPS62157903A (en) 1986-01-06 1986-01-06 Cooling method of pid control

Publications (1)

Publication Number Publication Date
JPS62157903A true JPS62157903A (en) 1987-07-13

Family

ID=11485090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP84986A Pending JPS62157903A (en) 1986-01-06 1986-01-06 Cooling method of pid control

Country Status (1)

Country Link
JP (1) JPS62157903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121244A (en) * 1993-10-27 1995-05-12 Sekisui Chem Co Ltd Fuzzy temperature control system
JP2011039919A (en) * 2009-08-17 2011-02-24 Yokogawa Electric Corp Method and control device which can cope with process characteristic change
WO2020110291A1 (en) * 2018-11-30 2020-06-04 理化工業株式会社 Temperature regulator and failure detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121244A (en) * 1993-10-27 1995-05-12 Sekisui Chem Co Ltd Fuzzy temperature control system
JP2011039919A (en) * 2009-08-17 2011-02-24 Yokogawa Electric Corp Method and control device which can cope with process characteristic change
WO2020110291A1 (en) * 2018-11-30 2020-06-04 理化工業株式会社 Temperature regulator and failure detection method

Similar Documents

Publication Publication Date Title
US5199637A (en) Electronic thermostat having correction for internally generated heat from load switching
US6688532B2 (en) Controller, temperature controller and heat processor using same
EP0409989A1 (en) Method of controlling temperature of machine tool and apparatus for practicing same
JPS62157903A (en) Cooling method of pid control
US4489882A (en) Variable time constant anticipation thermostat
JPH02166235A (en) Method for controlling sheet temperature in metallic sheet heating furnace
KR910001807A (en) Process for controlling the heating of thin-walled bodies according to a pre-determined program
JP2653870B2 (en) Temperature control device
JPH0148472B2 (en)
KR930020088A (en) Heat generation control method of combustion equipment
JPH04198611A (en) Gas flow rate controller
KR960004216B1 (en) Control unit for combustor
JP3664125B2 (en) Control device, temperature controller and heat treatment device
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JPH02267453A (en) Hot water supplying device
SU1470792A1 (en) Method of controlling metal-heating
JPS6027405B2 (en) temperature control device
JPS61284576A (en) Method for controlling vacuum evaporating apparatus
JPS61295458A (en) Combustion controller for hot water supplier
JPH0338590Y2 (en)
JPS6122210A (en) Flow rate detector
SU672490A1 (en) Method and apparatus for control of thermal digesting of cellulose in periodic-action boilers
JPH03120320A (en) Sheet temperature control method for continuous annealing furnace
JP2000003205A (en) State quantity controller
JPH0481638A (en) Apparatus for controlling temperature of fluid sample by thermostatic tank