JPS61295458A - Combustion controller for hot water supplier - Google Patents

Combustion controller for hot water supplier

Info

Publication number
JPS61295458A
JPS61295458A JP13630185A JP13630185A JPS61295458A JP S61295458 A JPS61295458 A JP S61295458A JP 13630185 A JP13630185 A JP 13630185A JP 13630185 A JP13630185 A JP 13630185A JP S61295458 A JPS61295458 A JP S61295458A
Authority
JP
Japan
Prior art keywords
hot water
deviation
target temperature
temperature
pid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13630185A
Other languages
Japanese (ja)
Other versions
JPH0692837B2 (en
Inventor
Masahiko Shibayama
雅彦 柴山
Masaki Higashida
東田 正希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP13630185A priority Critical patent/JPH0692837B2/en
Publication of JPS61295458A publication Critical patent/JPS61295458A/en
Publication of JPH0692837B2 publication Critical patent/JPH0692837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a supply hot water temperature from varying and also prevent uncomfortable feeling with respect to warm water from being imparted to the user by providing differentiation constant changeover means which changes over to substantially zero the differentiation constant of D action control means in proportional integration-differentiation (PID) control means when the deviation is less than a predetermined value. CONSTITUTION:In the combustion controller for a hot-water supplier, comprising target temperature setting means 17 with respect to the supply hot water temperature, supply hot water detection means 18, and PID control means 25 for computing the opening of the fuel control value 4 on the basis of the deviation between the target temperature signal from target temperature setting means 17 and the detected temperature signal from the supply hot water temperature detection means 18 and outputting the value current to the fuel control valve 4, differentiation constant in saud PID control means substantially to zero when the deviation is less than the predetermines value.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、出湯温度についての目標温度設定手段と、出
湯温度検出手段と、前記目標温度設定手段からの目標温
度信号と前記出湯温度検出手段からの検出温度信号との
偏差に基づいて燃料制御弁の開度を演算しこの燃料制御
弁に弁駆動電流を出力するPTD(比例積分微分)制御
手段とを備えた給湯器の燃焼制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention includes a target temperature setting means for the hot water outlet temperature, a hot water outlet temperature detecting means, a target temperature signal from the target temperature setting means, and a target temperature signal from the hot water outlet temperature detecting means. The present invention relates to a combustion control device for a water heater including a PTD (proportional integral derivative) control means that calculates the opening degree of a fuel control valve based on a deviation from a detected temperature signal and outputs a valve drive current to the fuel control valve.

(発明の概要) 本発明は、目標温度信号と検出温度信号との偏差がかな
り小さい場合に、PID?IJI御手段におけるD(微
分)動作制御手段の微分定数を実質上ゼロに切換えるこ
とにより、目標温度の変更がない状態で水量変化が小さ
い場合であっても、出湯温度の不安定な変動を防止する
とともに、省エネルギーを図り、かつ、水量変化が所定
値以上の場合には、出>a ?FA度の高い応答性を確
保するようにしたものである。
(Summary of the Invention) The present invention provides PID? when the deviation between the target temperature signal and the detected temperature signal is quite small. By switching the differential constant of the D (differential) operation control means in the IJI control means to virtually zero, unstable fluctuations in the outlet temperature are prevented even when the change in water volume is small with no change in the target temperature. At the same time, in order to save energy, and when the water amount change is more than a predetermined value, output > a ? This is to ensure responsiveness with a high degree of FA.

(従来技術とその問題点) (発明の分野)の項で述べた構成を有する従来の給湯器
の燃焼制御装置の動作を第7図のフローチャートに基づ
いて説明する。
(Prior Art and its Problems) The operation of the conventional combustion control device for a water heater having the configuration described in the section (Field of the Invention) will be explained based on the flowchart of FIG.

ステップ■で目標温度設定手段において目標温度TSを
入力し、ステップ■で出湯温度検出手段からの検出温度
TNを人力し、ステップ■でPID演算を実行してPI
D出力M7を算出する。ステップ■では、PID出力出
力に基づいて燃料制御弁に対する弁駆動電流を算出し、
ステップ■で、その弁駆動電流によって燃料制御弁を駆
動して、その弁開度を検出温度TNが目標温度TSにな
るように制御する。
In step 2, the target temperature TS is inputted into the target temperature setting means, in step 2 the detected temperature TN from the hot water temperature detection means is manually input, and in step 2 PID calculation is executed to set the PI.
Calculate D output M7. In step ■, the valve drive current for the fuel control valve is calculated based on the PID output output,
In step (2), the fuel control valve is driven by the valve drive current, and the valve opening degree is controlled so that the detected temperature TN becomes the target temperature TS.

前記PID演算は、次式によって行われる。The PID calculation is performed using the following equation.

M、l(χ’)−Kp  −e、。M, l(χ')-Kp-e,.

+ Σに、・ell +)(Il(e、l−6fl−1)  −・−−−−・
−・111式(])において、M、はサンプリングタイ
ミングt7における燃料制御弁の開度制御のための操作
量即ちPID出力、e、はタイミング1における目標温
度TS、と検出温度TNnとの偏差、即ち、 e、””TSa   TNfi       ”・・・
・”””(21である。
+ Σ, ・ell +) (Il(e, l-6fl-1) −・----・
- In formula 111 (]), M is the manipulated variable for controlling the opening of the fuel control valve at sampling timing t7, that is, the PID output, and e is the deviation between the target temperature TS and the detected temperature TNn at timing 1. That is, e, "TSa TNfi"...
・""" (21.

また、第1項のに、・e7は比例項、K、は比例定数で
ある。第2項の Σに1 ・eゎ は積分項、K1は積分定数である。第3項のK。
Also, in the first term, .e7 is a proportional term, and K is a proportional constant. The second term Σ is 1·eゎ is an integral term, and K1 is an integral constant. K in the third term.

(e、、”+1−1 )は微分項で、ea−1はタイミ
ング【7−7における温度偏差、Koは微分定数である
(e,,"+1-1) is a differential term, ea-1 is the temperature deviation at the timing [7-7, and Ko is a differential constant.

微分項Mo =Ko  (+!n  em−+ )は、
急激な変化に対する応答性を高くするためのものである
The differential term Mo = Ko (+!n em-+ ) is
This is to increase responsiveness to sudden changes.

例えば、水量が変化したときに、出湯温度(検出温度T
N)の安定化を速やかに行う。
For example, when the amount of water changes, the outlet temperature (detected temperature T
N) will be stabilized promptly.

式(2)から、 en−+ −TS、l−+ −TNa−+    −・
=−−(3+従って、 M6 =Ko  (el16a−1) =Ko  (TSRTS、−+ ) + Kn  (T Na−+  T N、l)  ・・
・・・・・・・・・・(4)となる。
From formula (2), en−+ −TS, l−+ −TNa−+ −・
=--(3+Therefore, M6 =Ko (el16a-1) =Ko (TSRTS,-+) + Kn (T Na-+ T N, l) ・・
・・・・・・・・・・・・(4)

目標温度TSの変更がなく、 TSnxTS、l−。There is no change in target temperature TS, TSnxTS, l-.

の場合には、 Ma −Kn  (TNll−+  TN−)  ・・
・・・・・・・・・・(5)となる。
In the case of Ma −Kn (TNll−+ TN−) ・・
・・・・・・・・・・・・(5)

目標温度TSの変更がない場合において、第8図に示す
ように、水量が増加した結果、出湯温度(検出温度TN
)が低下したとすると(TN、l−+>TN、) 、式
(5)により微分項MDが増大する。
In the case where the target temperature TS is not changed, as shown in Fig. 8, as a result of the increase in water volume, the outlet temperature (detected temperature TN
) decreases (TN, l-+>TN, ), the differential term MD increases according to equation (5).

これによって、燃料制御弁の弁開度が増大し、出湯温度
が上昇し、微分項MDが次第に減少する。
As a result, the opening degree of the fuel control valve increases, the tapping temperature rises, and the differential term MD gradually decreases.

出湯温度が元の出湯温度まで上昇して、T N、 = 
T N、l−r となって、出湯温度が安定化すると、微分項M0がゼロ
となる。
The hot water temperature rises to the original hot water temperature, and T N, =
When T N,l-r and the tapping temperature becomes stable, the differential term M0 becomes zero.

応答性を高いものにするためには、微分定数K。In order to have high responsiveness, the differential constant K.

を大きく設定しておく必要がある。水量変化がある程J
jlLI:!1人きい場合には、この高い応答性によっ
て、出湯温度の立ち上がり特性が良好なものとなる。
It is necessary to set it large. The more the amount of water changes
jlLI:! When only one person is working, this high responsiveness results in good hot water temperature rise characteristics.

しかしながら、このような構成を有する従来例には、次
のような問題点がある。
However, the conventional example having such a configuration has the following problems.

即ち、目標温度の変更がない状態で水量変化が小さい場
合にも、その水量変化に対応した出湯温度の変動量に応
じて微分項MIlが作用することになる。微小な水量変
化は、例えば、その家のなかでの温水使用量の微妙な変
化や、近所の家庭での温水使用量の微妙な変化によって
、絶えず生じているのが常である。
That is, even when the change in water volume is small without any change in the target temperature, the differential term MIl acts in accordance with the amount of variation in outlet temperature corresponding to the change in water volume. Small changes in the amount of water are constantly occurring, for example, due to subtle changes in the amount of hot water used within one's home or in the amount of hot water used by neighboring households.

第9図に示すように、このような微小な水量変化が絶え
ず生じている状態では、出湯温度も微妙に変動するため
、微′分項M0も頻繁に作用し、結果として出湯温度が
絶えず変動して安定化しないという事態が発生する。
As shown in Fig. 9, in a state where such small water volume changes are constantly occurring, the hot water temperature also changes slightly, so the differential term M0 also acts frequently, and as a result, the hot water temperature constantly fluctuates. A situation may occur in which the temperature is not stabilized.

このような状態において、温水を使用すると、その温水
による機能自体も不安定になってしまう。
If hot water is used in such a state, the function of the hot water itself will become unstable.

特に、シャワーを使用している場合には、不快感が大き
いという問題がある。また、燃料制御弁を顧緊に駆動し
てバーナ出力を調整するため、エネルギー消費に無駄が
発生するという問題がある。
Particularly, when using a shower, there is a problem of great discomfort. Furthermore, since the burner output is adjusted by carefully driving the fuel control valve, there is a problem in that energy consumption is wasted.

この問題を避けるには、微分定数に、を小さく設定して
おけば良いのであるが、そうすると、出湯温度の応答性
が悪化してしまうという根本的な問題がある。
In order to avoid this problem, it is sufficient to set the differential constant to a small value, but if this is done, there is a fundamental problem that the responsiveness of the hot water temperature will deteriorate.

(発明の目的) 本発明は、このような事情に鑑みてなされたものであっ
て、微小な水量変化が絶えず生じている状態であっても
、出湯温度の不安定な変動を防止し、かつ、水量変化が
所定値以上の場合には、出湯温度の高い応答性を確保す
るようにして、温水の使用者に不快感を与えないように
するとともに、省エネルギーを図ることを目的とする。
(Object of the Invention) The present invention has been made in view of the above circumstances, and is capable of preventing unstable fluctuations in the temperature of hot water even when minute changes in water volume are constantly occurring. The purpose is to ensure high responsiveness of the hot water temperature when the water amount change is greater than a predetermined value, so as not to cause discomfort to users of hot water, and to save energy.

(発明の構成と効果) 本発明は、このような目的を達成するために、次のよう
な構成をとる。
(Configuration and Effects of the Invention) In order to achieve the above object, the present invention has the following configuration.

即ち、本発明の給湯器の燃焼制御装置は、第1図に示す
ように、 出湯温度についての目標温度設定手段17と、出tq 
l!、!l I!3−l %山手段18と、前記目標温
度設定手段17からの目標温度信号と前記出湯温度検出
手段18からの検出温度信号との偏差に基づいて燃料制
御弁4の開度を演算しこの燃料制御弁4に弁駆動Ti流
を出力するPID制御手段25とを備えた給湯器の燃焼
制御装置において、 前記偏差が所定値以下のときにfi?i記PID制御手
段25におけるD動作制御手段24の微分定数を実質上
ゼロに切換える微分定数切換手段27を備えたものであ
る。
That is, the combustion control device for a water heater of the present invention, as shown in FIG.
l! ,! I! 3-l % peak means 18 calculates the opening degree of the fuel control valve 4 based on the deviation between the target temperature signal from the target temperature setting means 17 and the detected temperature signal from the hot water temperature detection means 18, and calculates the opening degree of the fuel control valve 4. In the combustion control device for a water heater, which includes a PID control means 25 that outputs a valve-driving Ti flow to the control valve 4, when the deviation is less than or equal to a predetermined value, fi? The differential constant switching means 27 is provided for switching the differential constant of the D operation control means 24 in the i-th PID control means 25 to substantially zero.

この構成による作用は、次の通りである(第6図参照)
The effects of this configuration are as follows (see Figure 6)
.

微小な水を変化が絶えず生じている状態では、出湯温度
も微妙に変動するため、目標温度信号と検出温度信号と
の偏差が生じる。
In a state where minute changes are constantly occurring in the water, the temperature of the hot water also varies slightly, resulting in a deviation between the target temperature signal and the detected temperature signal.

しかし、その偏差が所定値以下であるため、微分定数切
換手段27が微分定数につを実質上ゼロに切換える。従
って、微分項Mnは作用せず、その結果として出湯温度
の不安定な変動が防止され、安定状態に維持される。ま
た、出湯温度の不安定な変動の防止によって、省エネル
ギーが図られる。
However, since the deviation is less than the predetermined value, the differential constant switching means 27 switches the differential constant to substantially zero. Therefore, the differential term Mn does not act, and as a result, unstable fluctuations in the tapping temperature are prevented and a stable state is maintained. In addition, energy savings can be achieved by preventing unstable fluctuations in the temperature of the hot water.

以上のことから、微分定数に、を小さく設定する必要が
なく、大きな値に設定することができる。
From the above, it is not necessary to set the differential constant to a small value, and it is possible to set it to a large value.

そして、比較的大きな水量変化があり、目標温度信号と
検出温度信号との偏差が所定値を超えると、大きな値に
設定された微分定数に0をもつ微分項M0が作用し、燃
料制御弁4の弁開度が制御される。従って、水量変化に
起因して生じる出湯温度の変動を短時間の内に抑制する
ことになる。
When there is a relatively large change in the amount of water and the deviation between the target temperature signal and the detected temperature signal exceeds a predetermined value, a differential term M0 having a value of 0 acts on the differential constant set to a large value, and the fuel control valve 4 The valve opening degree is controlled. Therefore, fluctuations in the tapping temperature caused by changes in water amount can be suppressed within a short time.

即ち、応答性を高い状態に維持して、出湯温度の立ち上
がり特性を良好なものにする。
That is, responsiveness is maintained in a high state and the rising characteristic of the tapping temperature is made good.

以上のように、本発明によれば、微小な水量変化が絶え
ず生じている状態であっても、出湯温度の不安定な変動
を防止し、かつ、水量変化が所定値以上の場合には、出
湯温度の高い応答性を確保して、温水の使用者に不快感
を与えないようにすることができるとともに、出湯温度
の不安定な変動の防止によって、省エネルギーを図るこ
とができるという効果が発揮される。
As described above, according to the present invention, even in a state where minute changes in the amount of water constantly occur, unstable fluctuations in the tapping temperature can be prevented, and when the change in the amount of water is equal to or greater than a predetermined value, It is possible to ensure high responsiveness of the hot water temperature so as not to cause discomfort to users of hot water, and it is also effective in saving energy by preventing unstable fluctuations in the hot water temperature. be done.

(実施例の説明) 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
(Description of Examples) Hereinafter, the present invention will be described in detail based on examples shown in the drawings.

第2図は本発明を適用する給湯器のプロ・ツク回路図、
第3図は本発明の実施例に係る給湯器の燃焼制御装置の
ブロック図である。
Figure 2 is a professional circuit diagram of a water heater to which the present invention is applied;
FIG. 3 is a block diagram of a combustion control device for a water heater according to an embodiment of the present invention.

第2図において、1はバーナ、2はバーナ1に連絡され
た燃料供給経路であり、燃料供給経路2にはバーナ1へ
の燃料供給を司る電磁弁(元弁)3および燃料制御弁(
比例弁)4が介装されている。バーナ1の近傍には、点
火プラグ5およびフレームロフト6が配置されている。
In FIG. 2, 1 is a burner, 2 is a fuel supply path connected to the burner 1, and the fuel supply path 2 includes a solenoid valve (main valve) 3 that controls fuel supply to the burner 1 and a fuel control valve (
A proportional valve) 4 is installed. A spark plug 5 and a flame loft 6 are arranged near the burner 1.

バーナ1の上方には燃焼室7が設けられ、燃焼室7に連
通する排気路にファンモータ8が設けられている。ファ
ンモータ8は、排気を司るとともに、バーナ1に燃焼用
空気を供給するものである。
A combustion chamber 7 is provided above the burner 1, and a fan motor 8 is provided in an exhaust path communicating with the combustion chamber 7. The fan motor 8 controls exhaust gas and also supplies combustion air to the burner 1 .

9は、燃焼室7に給水管を巻回することにより構成され
た熱交換器であり、この熱交換器9は、カランやシャワ
ーなどの複数の出湯口10に連絡されている。
Reference numeral 9 denotes a heat exchanger constructed by winding a water supply pipe around the combustion chamber 7, and this heat exchanger 9 is connected to a plurality of hot water outlets 10 such as a boiler or a shower.

11は安定化電源回路、12は電磁弁3の駆動回路、1
3はファンモータ8の制御回路、14は点火プラグ5の
駆動回路、15はフレームロッド6に接続された炎検出
回路、16は本発明の実施例に係る給湯器の燃焼制御装
置である。
11 is a stabilizing power supply circuit, 12 is a drive circuit for the solenoid valve 3, 1
3 is a control circuit for the fan motor 8, 14 is a drive circuit for the spark plug 5, 15 is a flame detection circuit connected to the flame rod 6, and 16 is a combustion control device for a water heater according to an embodiment of the present invention.

この燃焼制御装置16の構成を第3図に基づいて説明す
る。
The configuration of this combustion control device 16 will be explained based on FIG. 3.

第3図において、17は出湯温度についての目標温度設
定手段、18は出湯温度検出手段、19は比例定数に1
.積分定数に1および微分定数K。
In FIG. 3, 17 is a target temperature setting means for the hot water outlet temperature, 18 is a hot water outlet temperature detection means, and 19 is a proportional constant of 1.
.. 1 for the constant of integration and K for the differential constant.

を記憶しているROM (リードオンリメモリ)、20
は、目標温度設定手段17からの目標温度信号すと出湯
温度検出手段18からの検出温度信号aとの偏差e11
に基づいてPID出力出力lを算出するPID演算処理
手段、21はPID出力M7に基づいて燃料制御弁4の
弁駆動電流値iwを算出する弁駆動電流算出手段である
ROM (read only memory) that stores 20
is the deviation e11 between the target temperature signal from the target temperature setting means 17 and the detected temperature signal a from the hot water temperature detection means 18.
21 is a valve drive current calculation means that calculates the valve drive current value iw of the fuel control valve 4 based on the PID output M7.

PID演算処理手段20は、P(比例)動作制御手段2
2.1(積分)動作制御手段23およびD (m分)動
作制御手段24を有していて、これらは、それぞれ偏差
e7に基づいてROM19から比例定数Kp、積分定数
に9.微分定数に0を読み出して、式(1)に示す比例
項、積分項、微分項を算出する。PID演算処理手段2
0は、これらを合計し、PID出力M7を算出する。
The PID calculation processing means 20 is a P (proportional) operation control means 2.
2.1 (integral) operation control means 23 and D (m minute) operation control means 24, which store the proportionality constant Kp and the integral constant 9.1 from the ROM 19 based on the deviation e7, respectively. 0 is read as the differential constant, and the proportional term, integral term, and differential term shown in equation (1) are calculated. PID calculation processing means 2
0 sums these up and calculates the PID output M7.

これらのROM19.PID演算処理手段20および弁
駆動電流算出手段21が、発明の構成にいうPID制御
手段25を構成している。
These ROM19. The PID calculation processing means 20 and the valve drive current calculation means 21 constitute the PID control means 25 referred to in the configuration of the invention.

26は、弁駆動電流算出手段21からの弁駆動電流値i
vに基づいて、その弁駆動電流値ivに対応した弁開度
まで燃料制御弁4を駆動する燃料制御弁駆動手段である
26 is the valve drive current value i from the valve drive current calculation means 21
This is a fuel control valve drive means that drives the fuel control valve 4 based on the valve drive current value iv to the valve opening degree corresponding to the valve drive current value iv.

27は、偏差e7を入力して、その値を所定値Thと比
較し、所定値Th以下のときにD動作禁止信号り、をD
動作制御手段24に出力して、D動作制御手段24の動
作を禁止することにより、D動作制御手段24の微分定
数KDを実質上ゼロに切換える微分定数切換手段である
27 inputs the deviation e7, compares the value with a predetermined value Th, and when it is less than the predetermined value Th, outputs the D operation prohibition signal.
This is a differential constant switching means for switching the differential constant KD of the D operation control means 24 to substantially zero by outputting the signal to the operation control means 24 and prohibiting the operation of the D operation control means 24.

例えば、第4図に示すように、目標温度と検出温度との
偏差e7の絶対値が、所定値Th以下のときには、Ko
−0に設定し、所定値Thを超えるときには、微分定数
に、を例えば、KD−10に設定しである。
For example, as shown in FIG. 4, when the absolute value of the deviation e7 between the target temperature and the detected temperature is less than or equal to the predetermined value Th, Ko
-0, and when the predetermined value Th is exceeded, the differential constant is set to, for example, KD-10.

以下、この燃焼制御装置の動作を第5図のフローチャー
トに基づいて説明する。
The operation of this combustion control device will be explained below based on the flowchart shown in FIG.

ステップ■で目標温度設定手段17において目標温度T
Sを入力し、ステップ■で出湯温度検出手段18からの
検出温度TNを入力し、ステップ■で目標温度TSと検
出温度TNとの偏差e7を算出する。ステップ■で偏差
e1の絶対値が所定値Th以下かどうかを判断する。
In step ■, the target temperature setting means 17 sets the target temperature T.
S is input, the detected temperature TN from the outlet hot water temperature detection means 18 is inputted in step (2), and the deviation e7 between the target temperature TS and the detected temperature TN is calculated in step (2). In step (2), it is determined whether the absolute value of the deviation e1 is less than or equal to a predetermined value Th.

このステップ■での判断がYESの場合、即ち、第6図
の前半部に示すように、微小な水量変化が絶えず生じて
いる場合には、次のフローを実行する。即ち、ステップ
■に移行し、ROM19から、比例定数に1.積分定数
に1を読み出すとともに、微分定数Koを、 K、=0 にセットし、前出の弐(1)に基づいたPID演算を実
行してPID出力M7を算出する。この場合の演算式は
、Ko=0であるため、 M、(χ)=Kp’fl、。
If the determination in step (2) is YES, that is, if minute changes in the amount of water are constantly occurring as shown in the first half of FIG. 6, the following flow is executed. That is, the process moves to step (2), and the proportional constant is set to 1 from the ROM 19. At the same time as reading 1 into the integral constant, the differential constant Ko is set to K,=0, and the PID calculation based on the above-mentioned 2(1) is executed to calculate the PID output M7. Since Ko=0, the arithmetic expression in this case is M, (χ)=Kp'fl.

+ Σに1 ・ell    ・・・・・・・・・・・
・(6)となる。ステップ■では、ステップ■で算出し
たPID出力M7に基づいて燃料制御弁4に対する弁駆
動電流ivを算出し、ステップ■で、その弁駆動電流i
vによって燃料制御弁4を駆動して、その弁開度を検出
温度TNが目標温度TSになるように制御する。
+ 1 to Σ ・ell ・・・・・・・・・・・・
・It becomes (6). In step ■, the valve drive current iv for the fuel control valve 4 is calculated based on the PID output M7 calculated in step ■, and in step ■, the valve drive current i
The fuel control valve 4 is driven by v, and the valve opening degree is controlled so that the detected temperature TN becomes the target temperature TS.

以上のように、偏差e1の絶対値が所定値Th以下の場
合には、微分項M。が作用せず、その結果として出湯温
度の不安定な変動を防止して、安定状態に維持すること
ができる。また、出湯温度の不安定な変動の防止によっ
て、省エネルギーが図られる。
As described above, when the absolute value of the deviation e1 is less than or equal to the predetermined value Th, the differential term M. As a result, unstable fluctuations in the tapped water temperature can be prevented and a stable state can be maintained. In addition, energy savings can be achieved by preventing unstable fluctuations in the temperature of the hot water.

それゆえにまた、微分定数に、を大きな値に設定するこ
とができる。
Therefore, the differential constant can also be set to a large value.

前記ステップ■での判断がNoの場合、即ち、第6図の
後半部に示すように、比較的大きな水量変化があり、目
標温度信号と検出温度信号との偏差87が所定値Thを
超えた場合には、次のフローを実行する。即ち、ステッ
プ■に移行し、ROM+9から、比例定数に6.積分定
数Kl 、m分定数に0を読み出して、前出の式fi+
、Mll (χ)  =Kp  ”3n +  Σに、 ・ el + Ko  (e m  −e A−1)   −−−
・・・(11に基づいた通常のPID演算を実行してP
ID出力Mいを算出する。ステップ■では、ステップ■
で算出したPID出力M、、に基づいて燃料制御弁4に
対する弁駆動電流ivを算出し、ステップ■で、その弁
駆動電流i、によって燃料制御弁4を駆動して、その弁
開度を検出温度TNが目標温度TSになるように制御す
る。
If the determination in step (2) is No, that is, as shown in the second half of FIG. 6, there has been a relatively large change in water volume and the deviation 87 between the target temperature signal and the detected temperature signal has exceeded the predetermined value Th. In this case, execute the following flow. That is, proceed to step (2), and from ROM+9, change the proportionality constant to 6. Read out 0 for the integral constant Kl and the m-minute constant, and use the above formula fi+
, Mll (χ) = Kp ”3n + Σ, ・el + Ko (em −e A-1) −−−
...(Execute the normal PID calculation based on 11 to calculate P
Calculate the ID output M. In step■, step■
Calculate the valve drive current iv for the fuel control valve 4 based on the PID output M, calculated in step (2), drive the fuel control valve 4 with the valve drive current i, and detect the valve opening degree. Control is performed so that the temperature TN becomes the target temperature TS.

以上のように、偏差87が所定値Thを超えた場合には
、大きな値に設定された微分定数KDをもつ微分項M0
が作用し、燃料制御弁4の弁開度が制御される。従って
、水量変化に起因して生じる出湯温度の変動を短時間の
内に抑制することになる。即ち、応答性を高い状態に維
持して、出湯温度の立ち上がり特性を良好なものにする
ことができる。
As described above, when the deviation 87 exceeds the predetermined value Th, the differential term M0 with the differential constant KD set to a large value
acts, and the valve opening degree of the fuel control valve 4 is controlled. Therefore, fluctuations in the tapping temperature caused by changes in water amount can be suppressed within a short time. That is, responsiveness can be maintained in a high state and the rising characteristics of the tapping temperature can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図ないし
第6図は本発明の実施例の給湯器の燃焼制御装置に係り
、第2図は本発明を適用する給湯器のブロック回路図、
第3図は本発明の実施例に係る給湯器の燃焼制御装置の
ブロック図、第4図は微分定数切換えの説明図、第5図
はフローチャート、第6図はタイムチャート、第7図な
いし第9図は従来例に係り、第7図はフローチャート、
第8図および第9図はタイムチャートである。 4・・・燃料制御弁 17・・・目標温度設定手段 18・・・出湯温度検出手段 24・・・D動作制御手段 25・・・PID制御手段 27・・・微分定数切換手段
FIG. 1 is a block diagram showing the configuration of the present invention, FIGS. 2 to 6 relate to a combustion control device for a water heater according to an embodiment of the present invention, and FIG. 2 is a block diagram of a water heater to which the present invention is applied. figure,
Fig. 3 is a block diagram of a combustion control device for a water heater according to an embodiment of the present invention, Fig. 4 is an explanatory diagram of differential constant switching, Fig. 5 is a flowchart, Fig. 6 is a time chart, and Figs. Figure 9 relates to a conventional example, Figure 7 is a flowchart,
FIGS. 8 and 9 are time charts. 4... Fuel control valve 17... Target temperature setting means 18... Hot water temperature detection means 24... D operation control means 25... PID control means 27... Differential constant switching means

Claims (1)

【特許請求の範囲】[Claims] (1)出湯温度についての目標温度設定手段と、出湯温
度検出手段と、前記目標温度設定手段からの目標温度信
号と前記出湯温度検出手段からの検出温度信号との偏差
に基づいて燃料制御弁の開度を演算しこの燃料制御弁に
弁駆動電流を出力するPID制御手段とを備えた給湯器
の燃焼制御装置において、 前記偏差が所定値以下のときに前記PID制御手段にお
けるD動作制御手段の微分定数を実質上ゼロに切換える
微分定数切換手段を備えた給湯器の燃焼制御装置。
(1) A target temperature setting means for the hot water outlet temperature, a hot water outlet temperature detecting means, and a fuel control valve control based on the deviation between the target temperature signal from the target temperature setting means and the detected temperature signal from the hot water outlet temperature detecting means. In a combustion control device for a water heater, comprising a PID control means for calculating an opening degree and outputting a valve driving current to the fuel control valve, when the deviation is less than or equal to a predetermined value, the D operation control means in the PID control means is activated. A combustion control device for a water heater equipped with a differential constant switching means for switching a differential constant to substantially zero.
JP13630185A 1985-06-21 1985-06-21 Combustion control device for water heater Expired - Lifetime JPH0692837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13630185A JPH0692837B2 (en) 1985-06-21 1985-06-21 Combustion control device for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13630185A JPH0692837B2 (en) 1985-06-21 1985-06-21 Combustion control device for water heater

Publications (2)

Publication Number Publication Date
JPS61295458A true JPS61295458A (en) 1986-12-26
JPH0692837B2 JPH0692837B2 (en) 1994-11-16

Family

ID=15171983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13630185A Expired - Lifetime JPH0692837B2 (en) 1985-06-21 1985-06-21 Combustion control device for water heater

Country Status (1)

Country Link
JP (1) JPH0692837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231074A (en) * 1987-03-18 1988-09-27 Hitachi Ltd Method and device for flow rate control
JPH02223761A (en) * 1989-02-24 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH043850A (en) * 1990-04-19 1992-01-08 Harman Co Ltd Fluid heating control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012960B1 (en) 2013-11-13 2016-07-15 Oreal USE AS A DEODORANT AGENT OF A SALICYLIC ACID SALICY DERIVATIVE, ALONE OR IN MIXING

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231074A (en) * 1987-03-18 1988-09-27 Hitachi Ltd Method and device for flow rate control
JPH02223761A (en) * 1989-02-24 1990-09-06 Rinnai Corp Temperature control device for hot water supply equipment
JPH043850A (en) * 1990-04-19 1992-01-08 Harman Co Ltd Fluid heating control device

Also Published As

Publication number Publication date
JPH0692837B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
JPS61295458A (en) Combustion controller for hot water supplier
JPS61295457A (en) Combustion control unit of hot water supplier
US4695052A (en) Hot water heating system using a heat consumption meter
KR910002734B1 (en) Combustion control device
JPH0138224B2 (en)
US5775236A (en) Combustion control circuit of combustion apparatus
JP2808852B2 (en) Combustion control device
JPH059704B2 (en)
JPS60263201A (en) Temperature control device
JPH0335955Y2 (en)
KR880004145Y1 (en) Combustion control device
JPH0449478Y2 (en)
JPH0814419B2 (en) Water heater controller
JPH0484209A (en) Combustion controller
JPH0338590Y2 (en)
JPH079296B2 (en) Combustor abnormality detection method
JP2715748B2 (en) Control method of hot water storage water heater
JPH0659743A (en) Control method of water control valve
JPS5830499B2 (en) Combustion amount control method with two types of control modes
JPS6339805B2 (en)
JPS61237916A (en) Combustion controller for hot water supplier
JPH102608A (en) Hot-water supply apparatus
JPH1019378A (en) Water heater
JPS6080019A (en) Burning control device of water heater
JPH043850A (en) Fluid heating control device