JPH0692837B2 - Combustion control device for water heater - Google Patents

Combustion control device for water heater

Info

Publication number
JPH0692837B2
JPH0692837B2 JP13630185A JP13630185A JPH0692837B2 JP H0692837 B2 JPH0692837 B2 JP H0692837B2 JP 13630185 A JP13630185 A JP 13630185A JP 13630185 A JP13630185 A JP 13630185A JP H0692837 B2 JPH0692837 B2 JP H0692837B2
Authority
JP
Japan
Prior art keywords
temperature
deviation
differential
target temperature
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13630185A
Other languages
Japanese (ja)
Other versions
JPS61295458A (en
Inventor
雅彦 柴山
正希 東田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP13630185A priority Critical patent/JPH0692837B2/en
Publication of JPS61295458A publication Critical patent/JPS61295458A/en
Publication of JPH0692837B2 publication Critical patent/JPH0692837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の分野) 本発明は、出湯温度についての目標温度設定手段と、出
湯温度検出手段と、前記目標温度設定手段からの目標温
度信号と前記出湯温度検出手段からの検出温度信号との
偏差に基づいて燃料制御弁の開度を演算しこの燃料制御
弁に弁駆動電流を出力するPID(比例積分微分)制御手
段とを備えた給湯器の燃焼制御装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a target temperature setting means for hot water temperature, a hot water temperature detecting means, a target temperature signal from the target temperature setting means, and a hot water temperature detecting means. The present invention relates to a combustion control device for a water heater including PID (proportional integral derivative) control means for calculating an opening of a fuel control valve based on a deviation from a detected temperature signal and outputting a valve drive current to the fuel control valve.

(発明の概要) 本発明は、目標温度信号と検出温度信号との偏差がかな
り小さい場合に、PID制御手段におけるD(微分)動作
制御手段の微分定数を実質上ゼロに切換えることによ
り、目標温度の変更がない状態で水量変化が小さい場合
であっても、出湯温度の不安定な変動を防止するととも
に、省エネルギーを図り、かつ、水量変化が所定以上の
場合には、D動作制御手段の微分定数を実質上ゼロでな
い微分定数に切換えることにより、出湯温度の高い応答
性を確保するようにしたものである。
(Summary of the Invention) In the present invention, when the deviation between the target temperature signal and the detected temperature signal is fairly small, the target temperature is changed by switching the differential constant of the D (differential) operation control means in the PID control means to substantially zero. Even if the change in water amount is small with no change, the unstable fluctuation of the outlet water temperature is prevented, the energy is saved, and when the change in water amount is more than a predetermined value, the differential of the D operation control means. By switching the constant to a differential constant that is not substantially zero, high responsiveness of the tap water temperature is ensured.

(従来技術とその問題点) (発明の分野)の項で述べた構成を有する従来の給湯器
の燃焼制御装置の動作を第7図のフローチャートに基づ
いて説明する。
(Prior art and its problems) The operation of the conventional combustion control device for a water heater having the configuration described in the field of (Invention) will be described based on the flowchart of FIG.

ステップで目標温度設定手段において目標温度TSを入
力し、ステップで出湯温度検出手段からの検出温度TN
を入力し、ステップでPID演算を実行してPID出力Mn
算出する。ステップでは、PID出力Mnに基づいて燃料
制御弁に対する弁駆動電流を算出し、ステップで、そ
の弁駆動電流によって燃料制御弁を駆動して、その弁開
度を検出温度TNが目標温度TSになるように制御する。
In step, the target temperature TS is input in the target temperature setting means, and in step, the detected temperature TN from the tap water temperature detecting means.
Is input and the PID calculation is executed in step to calculate the PID output M n . In step, the valve drive current for the fuel control valve is calculated based on the PID output M n , and in step, the fuel control valve is driven by the valve drive current, and the valve opening degree is detected temperature TN to the target temperature TS. Control to be.

前記PID演算は、次式によって行われる。The PID calculation is performed by the following equation.

式(1)において、Mnはサンプリングタイミングtnにお
ける燃料制御弁の開度制御のための操作量即ちPID出
力、enはタイミングtnにおける目標温度TSnと検出温度T
Nnとの偏差、即ち、 en=TSn−TNn ……(2) である。
In the equation (1), M n is a manipulated variable or PID output for controlling the opening of the fuel control valve at the sampling timing t n , and e n is the target temperature TS n and the detected temperature T at the timing t n .
The deviation from N n , that is, e n = TS n −TN n (2).

また、第1項のKP・enは比例項、KPは比例定数である。
第2項の は積分項、KIは積分定数である。第3項のKD(en
en-1)は微分項で、en-1はタイミングtn-1における温度
偏差、KDは微分定数である。
Further, the K P · e n of the first term proportional term, the K P is a proportionality constant.
Of the second term Is the integral term and K I is the integration constant. The third term, K D (e n
e n-1 ) is a differential term, e n-1 is a temperature deviation at the timing t n-1 , and K D is a differential constant.

微分項MD=KD(en−en-1)は、急激な変化に対する応答
性を高くするためのものである。例えば、水量が変化し
たときに、出湯温度(検出温度TN)の安定化を速やかに
行う。
The differential term M D = K D (e n −e n-1 ) is for enhancing the response to a sudden change. For example, when the amount of water changes, the outlet heated water temperature (detection temperature TN) is quickly stabilized.

式(2)から、 en-1=TSn-1−TNn-1 ……(3) 従って、 MD=KD(en−en-1) =KD(TSn−TSn-1) +KD(TNn-1−TNn) ……(4) となる。From Equation (2), e n-1 = TS n-1 −TN n-1 (3) Therefore, M D = K D (e n −e n-1 ) = K D (TS n −TS n -1 ) + K D (TN n-1 -TN n ) (4).

目標温度TSの変更がなく、 TSn=TSn-1 の場合には、 MD=KD(TNn-1−TNn) ……(5) となる。No change of the target temperature TS, in the case of TS n = TS n-1 is, M D = K D (TN n-1 -TN n) becomes ...... (5).

目標温度TSの変更がない場合において、第8図に示すよ
うに、水量が増加した結果、出湯温度(検出温度TN)が
低下したとすると(TNn-1>TNn)、式(5)により微分
項MDが増大する。これによって、燃料制御弁の弁開度が
増大し、出湯温度が上昇し、微分項MDが次第に減少す
る。
When the target temperature TS is not changed, as shown in FIG. 8, assuming that the hot water discharge temperature (detected temperature TN) is decreased as a result of the increase in the water amount (TN n-1 > TN n ), equation (5) This increases the differential term M D. Thus, the valve opening degree of the fuel control valve is increased, the hot water temperature rises, the differential term M D gradually decreases.

出湯温度が元の出湯温度まで上昇して、 TNn=TNn-1 となって、出湯温度が安定化すると、微分項MDがゼロと
なる。
Hot water temperature rises to the original hot water temperature, becomes TN n = TN n-1, when the hot water temperature is stabilized, the differential term M D is zero.

応答性を高いものにするためには、微分定数KDを大きく
設定しておく必要がある。水量変化がある程度以上大き
い場合には、この高い応答性によって、出湯温度の立ち
上がり特性が良好なものとなる。
In order to make the response high, it is necessary to set the differential constant K D large. When the change in the amount of water is large to a certain extent or more, the rising characteristic of the hot water outlet temperature becomes good due to this high responsiveness.

しかしながら、このような構成を有する従来例には、次
のような問題点がある。
However, the conventional example having such a configuration has the following problems.

即ち、目標温度の変更がない状態で水量変化が小さい場
合にも、その水量変化に対応した出湯温度の変動量に応
じて微分項MDが作用することになる。微小な水量変化
は、例えば、その家のなかでの湯水使用量の微妙な変化
や、近所の家庭での温水使用量の微妙な変化によって、
絶えず生じているのが常である。
That is, when the amount of water changes with no change of the target temperature is smaller, differential term M D will act in accordance with the variation amount of the hot water temperature corresponding to the amount of water changes. A slight change in the amount of water may be due to, for example, a subtle change in the amount of hot water used in the house or a subtle change in the amount of hot water used in a nearby home.
It is always occurring.

第9図に示すように、このような微小な水量変化が絶え
ず生じている状態では、出湯温度も微妙に変動するた
め、微分項MDも頻繁に作用し、結果として出湯温度が絶
えず変動して安定化しないという事態が発生する。
As shown in FIG. 9, in such a state where a minute change in the amount of water is constantly occurring, the outlet water temperature also slightly changes, so that the derivative term M D also frequently acts, and as a result, the outlet water temperature constantly changes. A situation occurs in which it does not stabilize.

このような状態において、温水を使用すると、この温水
による機能自体も不安定になってしまう。特に、シャワ
ーを使用している場合には、不快感が大きいという問題
がある。また、燃料制御弁を頻繁に駆動してバーナ出力
を調整するため、エネルギー消費に無駄が発生するとい
う問題がある。
When hot water is used in such a state, the function itself by this hot water also becomes unstable. In particular, there is a problem that discomfort is great when using a shower. Further, since the fuel control valve is frequently driven to adjust the burner output, there is a problem in that energy is wasted.

この問題を避けるには、微分定数KDを小さく設定してお
けば良いのであるが、そうすると、出湯温度の応答性が
悪化してしまうという根本的な問題がある。
To avoid this problem, it suffices to set the differential constant K D to a small value, but then there is the fundamental problem that the response of the heated water temperature deteriorates.

(発明の目的) 本発明は、このような事情に鑑みてなされたものであっ
て、微小な水量変化が絶えず生じている状態であって
も、出湯温度の不安定な変動を防止し、かつ、水量変化
が所定値以上の場合には、出湯温度の高い応答性を確保
するようにして、温水の使用者に不快感を与えないよう
にするとともに、省エネルギーを図ることを目的とす
る。
(Object of the Invention) The present invention has been made in view of such circumstances, and prevents unstable fluctuations in the outlet water temperature even in the state where a minute change in the amount of water constantly occurs, and When the change in the amount of water is equal to or larger than a predetermined value, the high responsiveness of the hot water discharge temperature is ensured so that the user of hot water does not feel uncomfortable and energy is saved.

(発明の構成と効果) 本発明は、このような目的を達成するために、次のよう
な構成をとる。
(Structure and Effect of the Invention) In order to achieve such an object, the present invention has the following structure.

即ち、本発明の給湯器の燃焼制御装置は、第1図に示す
ように、 出湯温度についての目標温度設定手段17と、出湯温度検
出手段18と、前記目標温度設定手段17からの目標温度信
号と前記出湯温度検出手段18からの検出温度信号との偏
差に基づいて燃料制御弁4の開度を演算しこの燃料制御
弁4に弁駆動電流を出力するPID制御手段25とを備えた
給湯器の燃焼制御装置において、 前記PID制御手段25におけるD動作制御手段24の微分定
数を、前記偏差が所定値以下のときには、実質上ゼロの
微分定数に、前記偏差が所定値を超えるときには、実質
上ゼロでない微分定数に、切換える微分定数切換手段27
を備えたものである。
That is, as shown in FIG. 1, the hot water heater combustion control apparatus according to the present invention includes a target temperature setting means 17, a hot water outlet temperature detecting means 18, and a target temperature signal from the target temperature setting means 17. And a PID control means 25 for calculating the opening degree of the fuel control valve 4 based on the deviation between the detected temperature signal from the hot water temperature detection means 18 and outputting a valve drive current to the fuel control valve 4. In the combustion control device, the differential constant of the D operation control means 24 in the PID control means 25 is set to a differential constant of substantially zero when the deviation is equal to or less than a predetermined value, and substantially when the deviation exceeds a predetermined value. Differential constant switching means 27 for switching to a non-zero differential constant
It is equipped with.

この構成による作用は、次の通りである(第6図参
照)。
The operation of this configuration is as follows (see FIG. 6).

微小な水量変化が絶えず生じている状態では、出湯温度
も微妙に変動するため、目標温度信号と検出温度信号と
の偏差が生じる。
In a state where a minute change in the amount of water is constantly occurring, the outlet heated water temperature also slightly changes, so that a deviation occurs between the target temperature signal and the detected temperature signal.

しかし、その偏差が所定値以下であるため、微分定数切
換手段27が微分定数KDを実質上ゼロに切換える。従っ
て、微分項MDは作用せず、その結果として出湯温度の不
安定な変動が防止され、安定状態に維持される。また、
出湯温度の不安定な変動の防止によって、省エネルギー
が図られる。
However, since the deviation is less than or equal to the predetermined value, the differential constant switching means 27 switches the differential constant K D to substantially zero. Therefore, the differential term M D does not act, and as a result, unstable fluctuation of the outlet heated water temperature is prevented and the stable state is maintained. Also,
Energy saving is achieved by preventing unstable fluctuations in the tap water temperature.

以上のことから、前記偏差が所定値を超えるときに、微
分定数切換手段27によって切換えられる実質上ゼロでな
い微分定数KDを小さく設定する必要がなく、大きな値に
設定することができる。
From the above, when the deviation exceeds a predetermined value, it is not necessary to set the non-zero differential constant K D that is switched by the differential constant switching means 27 to a small value, and it can be set to a large value.

そして、比較的大きな水量変化があり、目標温度信号と
検出温度信号との偏差が所定値を超えると、大きな値に
設定された微分定数KDをもつ微分項MDが作用し、燃料制
御弁4の弁開度が制御される。従って、水量変化に起因
して生じる出湯温度の変動を短時間の内に抑制すること
になる。即ち、応答性を高い状態に維持して、出湯温度
の立ち上がり特性を良好なものにする。
Then, when there is a relatively large change in water amount and the deviation between the target temperature signal and the detected temperature signal exceeds a predetermined value, the differential term M D having the differential constant K D set to a large value acts and the fuel control valve The valve opening of No. 4 is controlled. Therefore, it is possible to suppress the fluctuation of the outlet heated water temperature caused by the change of the water amount within a short time. That is, the responsiveness is maintained at a high level, and the rising characteristics of the tapping temperature are improved.

以上のように、本発明によれば、微小な水量変化が絶え
ず生じている状態であっても、出湯温度の不安定な変動
を防止し、かつ、水量変化が所定値以上の場合には、出
湯温度の高い応答性を確保して、温水の使用者に不快感
を与えないようにすることができるとともに、出湯温度
の不安定な変動の防止によって、省エネルギーを図るこ
とができるという効果が発揮される。
As described above, according to the present invention, even in the state where a minute change in the amount of water is constantly occurring, an unstable change in the outlet water temperature is prevented, and when the change in the amount of water is a predetermined value or more, It is possible to secure high responsiveness of hot water temperature so as not to make users feel uncomfortable with hot water, and to prevent unstable fluctuations in hot water temperature, resulting in energy saving. To be done.

(実施例の説明) 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
(Description of Embodiments) Hereinafter, the present invention will be described in detail based on embodiments illustrated in the drawings.

第2図は本発明を適用する給湯器のブロック回路図、第
3図は本発明の実施例に係る給湯器の燃焼制御装置のブ
ロック図である。
FIG. 2 is a block circuit diagram of a water heater to which the present invention is applied, and FIG. 3 is a block diagram of a combustion control device for a water heater according to an embodiment of the present invention.

第2図において、1はバーナ、2はバーナ1に連絡され
た燃料供給経路であり、燃料供給経路2にはバーナ1へ
の燃料供給を司る電磁弁(元弁)3および燃料制御弁
(比例弁)4が介装されている。バーナ1の近傍には、
点火プラグ5およびフレームロッド6が配置されてい
る。バーナ1の上方には燃焼室7が設けられ、燃焼室7
に連通する排気路にファンモータ8が設けられている。
ファンモータ8は、排気を司るとともに、バーナ1に燃
焼用空気を供給するものである。
In FIG. 2, reference numeral 1 is a burner, 2 is a fuel supply path connected to the burner 1, and the fuel supply path 2 is a solenoid valve (main valve) 3 for controlling fuel supply to the burner 1 and a fuel control valve (proportional valve). Valve 4 is interposed. In the vicinity of burner 1,
A spark plug 5 and a frame rod 6 are arranged. A combustion chamber 7 is provided above the burner 1, and the combustion chamber 7
A fan motor 8 is provided in an exhaust passage communicating with the.
The fan motor 8 controls exhaust gas and supplies combustion air to the burner 1.

9は、燃焼室7に給水管を巻回することにより構成され
た熱交換器であり、この交換器9は、カランやシャワー
などの複数の出湯口10に連絡されている。
Reference numeral 9 denotes a heat exchanger configured by winding a water supply pipe around the combustion chamber 7, and the exchanger 9 is connected to a plurality of tap holes 10 such as a curran and a shower.

11は安定化電源回路、12は電磁弁3の駆動回路、13はフ
ァンモータ8の制御回路、14は点火プラグ5の駆動回
路、15はフレームロッド6に接続された炎検出回路、16
は本発明の実施例に係る給湯器の燃焼制御装置である。
11 is a stabilized power supply circuit, 12 is a drive circuit for the solenoid valve 3, 13 is a control circuit for the fan motor 8, 14 is a drive circuit for the spark plug 5, 15 is a flame detection circuit connected to the frame rod 6, 16
Is a combustion control device for a water heater according to an embodiment of the present invention.

この燃焼制御装置16の構成を第3図に基づいて説明す
る。
The structure of the combustion control device 16 will be described with reference to FIG.

第3図において、17は出湯温度についての目標温度設定
手段、18は出湯温度検出手段、19は比例定数KP,積分定
数KIおよび微分定数KDを記憶しているROM(リードオン
リメモリ)、20は、目標温度設定手段17からの目標温度
信号bと出湯温度検出手段18からの検出温度信号aとの
偏差enに基づいてPIDの出力Mnを算出するPID演算処理手
段、21はPID出力Mnに基づいて燃料制御弁4の弁駆動電
流値iVを算出する弁駆動電流算出手段である。
In FIG. 3, reference numeral 17 is target temperature setting means for hot water temperature, 18 is hot water temperature detecting means, and 19 is ROM (read only memory) storing proportional constant K P , integral constant K I and differential constant K D. , 20 are PID calculation processing means for calculating the output M n of the PID based on the deviation e n between the target temperature signal b from the target temperature setting means 17 and the detected temperature signal a from the hot water temperature detection means 18, and 21 is It is a valve drive current calculation means for calculating the valve drive current value i V of the fuel control valve 4 based on the PID output M n .

PID演算処理手段20は、P(比例)動作制御手段22,I
(積分)動作制御手段23およびD(微分)動作制御手段
24を有していて、これらは、それぞれ偏差enに基づいて
ROM19から比例定数KP,積分定数KI,微分定数KDを読み
出して、式(1)に示す比例項,積分項,微分項を算出
する。PID演算処理手段20は、これらを合計し、PID出力
Mnを算出する。
The PID calculation processing means 20 includes P (proportional) operation control means 22, I
(Integral) operation control means 23 and D (differential) operation control means
24, each of which is based on the deviation e n
The proportional constant K P , the integral constant K I , and the differential constant K D are read from the ROM 19 and the proportional term, integral term, and derivative term shown in equation (1) are calculated. The PID calculation processing means 20 totals these and outputs the PID.
Calculate M n .

これらのROM19,PID演算処理手段20および弁駆動電流算
出手段21が、発明の構成にいうPID制御手段25を構成し
ている。
The ROM 19, the PID calculation processing means 20, and the valve drive current calculation means 21 constitute PID control means 25 in the configuration of the invention.

26は、弁駆動電流算出手段21からの弁駆動電流値iVに基
づいて、その弁駆動電流値iVに対応した弁開度まで燃料
制御弁4を駆動する燃料制御弁駆動手段である。
26 based on the valve drive current i V of the valve drive current calculating section 21, a fuel control valve drive means for driving the fuel control valve 4 to the valve opening corresponding to the valve drive current i V.

27は、偏差enを入力して、その値を所定値Thと比較し、
所定値Th以下のときにD動作禁止信号DPをD動作制御手
段24に出力して、D動作制御手段24の動作を禁止するこ
とにより、D動作制御手段24の微分定数KDを実質上ゼロ
に切換える微分定数切換手段である。
27, input the deviation e n , compare the value with a predetermined value Th,
And outputs the D operation prohibition signal D P to D operation control unit 24 when more than a predetermined value Th, by prohibiting the operation of the D operation control unit 24, substantially the derivative constant, K D, the D operation control unit 24 It is a differential constant switching means for switching to zero.

この微分定数切換手段27は、偏差enが所定値Thを超える
ときには、D動作禁止信号DPの出力を停止して、D動作
制御手段24の動作を行わせることにより、D動作制御手
段27の微分定数KDを、実質上ゼロでない微分定数に切換
えるものである。
When the deviation e n exceeds the predetermined value Th, the differential constant switching means 27 stops the output of the D operation prohibition signal D P and causes the D operation control means 24 to operate, whereby the D operation control means 27. The differential constant K D of is switched to a non-zero differential constant.

例えば、第4図に示すように、目標温度と検出温度との
偏差enの絶対値が、所定値Th以下のときには、KD=0に
設定し、所定値Thを超えるときには、微分定数KDを例え
ば、KD=10に設定してある。
For example, as shown in FIG. 4, when the absolute value of the deviation e n between the target temperature and the detected temperature is less than or equal to a predetermined value Th, K D = 0 is set, and when the absolute value exceeds a predetermined value Th, the differential constant K is set. the D example, is set to K D = 10.

以下、この燃焼制御装置の動作を第5図のフローチャー
トに基づいて説明する。
The operation of the combustion control device will be described below with reference to the flowchart of FIG.

ステップで目標温度設定手段17において目標温度TSを
入力し、ステップで出湯温度検出手段18からの検出温
度TNを入力し、ステップで目標温度TSと検出温度との
偏差enを算出する。ステップで偏差enの絶対値が所定
値Th以下かどうかを判断する。
In step, the target temperature TS is input to the target temperature setting means 17, in step the detected temperature TN from the tap water temperature detection means 18 is input, and in step, the deviation e n between the target temperature TS and the detected temperature is calculated. In step, it is determined whether the absolute value of the deviation e n is less than or equal to a predetermined value Th.

このステップでの判断がYESの場合、即ち、第6図の
前半部に示すように、微小な水量変化が絶えず生じてい
る場合には、次のフローを実行する。即ち、ステップ
に移行し、ROM19から、比例定数KP,積分定数KIを読み
出すとともに、微分定数KDを、 KD=0 にセットし、前出の式(1)に基づいたPID演算を実行
してPID出力Mnを算出する。この場合の演算式は、KD
0であるため、 となる。ステップでは、ステップで算出したPID出
力Mnに基づいて燃料制御弁4に対する弁駆動電流iVを算
出し、ステップで、その弁駆動電流iVによって燃料制
御弁4を駆動して、その弁開度を検出温度TNが目標温度
TSになるように制御する。
If the determination in this step is YES, that is, if a minute change in the amount of water is constantly occurring as shown in the first half of FIG. 6, the following flow is executed. That is, the process proceeds to step, the proportional constant K P and the integral constant K I are read from the ROM 19, the differential constant K D is set to K D = 0, and the PID calculation based on the above-mentioned equation (1) is performed. Execute to calculate PID output M n . The arithmetic expression in this case is K D =
Since it is 0, Becomes In step, the valve drive current i V for the fuel control valve 4 is calculated based on the PID output M n calculated in step, and in step, the fuel control valve 4 is driven by the valve drive current i V to open the valve. Temperature is the target temperature
Control to become TS.

以上のように、偏差enの絶対値が所定値Th以下の場合に
は、微分項MDが作用せず、その結果として出湯温度の不
安定な変動を防止して、安定状態に維持することができ
る。また、出湯温度の不安定な変動の防止によって、省
エネルギーが図られる。
As described above, when the absolute value of the deviation e n is below the predetermined value Th does not act differential term M D, to prevent the unstable variation of the hot water temperature as a result, it is maintained in a stable state be able to. In addition, energy can be saved by preventing unstable fluctuations in the outlet heated water temperature.

それゆえにまた、偏差enの絶対値が所定値Thを超える場
合の実質上ゼロでない微分定数KDとして大きな値を設定
することができる。
Therefore, it is also possible to set a large value as the substantially non-zero differential constant K D when the absolute value of the deviation e n exceeds the predetermined value Th.

前記ステップでの判断がNOの場合、即ち、第6図の後
半部に示すように、比較的大きな水量変化があり、目標
温度信号と検出温度信号との偏差enが所定値Thを超えた
場合には、次のフローを実行する。即ち、ステップに
移行し、ROM19から、比例定数KP,積分定数KI,微分定
数KDを読み出して、前出の式(1)、 に基づいた通常のPID演算を実行してPID出力Mnを算出す
る。ステップでは、ステップで算出したPID出力Mn
に基づいて燃料制御弁4に対する弁駆動電流iVを算出
し、ステップで、その弁駆動電流iVによって燃料制御
弁4を駆動して、その弁開度を検出温度TNが目標温度TS
になるように制御する。
If the determination in the above step is NO, that is, as shown in the latter half of FIG. 6, there is a relatively large change in water amount, and the deviation e n between the target temperature signal and the detected temperature signal exceeds the predetermined value Th. In that case, the following flow is executed. That is, the process proceeds to step, the proportional constant K P , the integral constant K I , and the differential constant K D are read from the ROM 19, The PID output M n is calculated by executing the normal PID calculation based on In step, PID output M n calculated in step
The valve drive current i V for the fuel control valve 4 is calculated based on the above, and in step, the fuel control valve 4 is driven by the valve drive current i V , and the valve opening degree is detected as the target temperature TS.
Control to become.

以上のように、偏差enが所定値Thを超えた場合には、大
きな値に設定された微分定数KDをもつ微分項MDが作用
し、燃料制御弁4の弁開度が制御される。従って、水量
変化に起因して生じる出湯温度の変動を短時間の内に抑
制することになる。即ち、応答性を高い状態に維持し
て、出湯温度の立ち上がり特性を良好なものにすること
ができる。
As described above, when the deviation e n exceeds a predetermined value Th, acts differential term M D having a differential constant, K D, which is set to a large value, the valve opening degree of the fuel control valve 4 is controlled It Therefore, it is possible to suppress the fluctuation of the outlet heated water temperature caused by the change of the water amount within a short time. That is, it is possible to maintain the high responsiveness and improve the rising characteristics of the tapping temperature.

【図面の簡単な説明】 第1図は本発明の構成を示すブロック図、第2図ないし
第6図は本発明の実施例の給湯器の燃焼制御装置に係
り、第2図は本発明を適用する給湯器のブロック回路
図、第3図は本発明の実施例に係る給湯器の燃焼制御装
置のブロック図、第4図は微分定数切換えの説明図、第
5図はフローチャート、第6図はタイムチャート、第7
図ないし第9図は従来例に係り、第7図はフローチャー
ト、第8図および第9図はタイムチャートである。 4……燃料制御弁 17……目標温度設定手段 18……出湯温度検出手段 24……D動作制御手段 25……PID制御手段 27……微分定数切換手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of the present invention, FIGS. 2 to 6 relate to a combustion control device for a water heater according to an embodiment of the present invention, and FIG. 2 shows the present invention. FIG. 3 is a block circuit diagram of a water heater applied, FIG. 3 is a block diagram of a combustion control device for a water heater according to an embodiment of the present invention, FIG. 4 is an explanatory diagram of differential constant switching, FIG. 5 is a flowchart, and FIG. Is the time chart, 7th
9 to 10 relate to a conventional example, FIG. 7 is a flowchart, and FIGS. 8 and 9 are time charts. 4 ... Fuel control valve 17 ... Target temperature setting means 18 ... Hot water temperature detection means 24 ... D operation control means 25 ... PID control means 27 ... Differential constant switching means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】出湯温度についての目標温度設定手段と、
出湯温度検出手段と、前記目標温度設定手段からの目標
温度信号と前記出湯温度検出手段からの検出温度信号と
の偏差に基づいて燃料制御弁の開度を演算しこの燃料制
御弁に弁駆動電流を出力するPID制御手段とを備えた給
湯器の燃焼制御装置において、 前記PID制御手段におけるD動作制御手段の微分定数
を、前記偏差が所定値以下のときには、実質上ゼロの微
分定数に、前記偏差が所定値を超えるときには、実質上
ゼロでない微分定数に、切換える微分定数切換手段を備
えた給湯器の燃焼制御装置。
1. A target temperature setting means for the outlet heated water temperature,
The outlet temperature of the fuel control valve is calculated based on the deviation between the target temperature signal from the outlet temperature detecting means, the target temperature signal from the target temperature setting means, and the detected temperature signal from the outlet temperature detecting means. In a combustion control device for a water heater provided with a PID control means for outputting the differential constant of the D operation control means in the PID control means, when the deviation is a predetermined value or less, to a differential constant of substantially zero, A combustion control device for a water heater, comprising differential constant switching means for switching to a differential constant that is substantially not zero when the deviation exceeds a predetermined value.
JP13630185A 1985-06-21 1985-06-21 Combustion control device for water heater Expired - Lifetime JPH0692837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13630185A JPH0692837B2 (en) 1985-06-21 1985-06-21 Combustion control device for water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13630185A JPH0692837B2 (en) 1985-06-21 1985-06-21 Combustion control device for water heater

Publications (2)

Publication Number Publication Date
JPS61295458A JPS61295458A (en) 1986-12-26
JPH0692837B2 true JPH0692837B2 (en) 1994-11-16

Family

ID=15171983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13630185A Expired - Lifetime JPH0692837B2 (en) 1985-06-21 1985-06-21 Combustion control device for water heater

Country Status (1)

Country Link
JP (1) JPH0692837B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071374A1 (en) 2013-11-13 2015-05-21 L'oreal Use as a deodorant agent of a salified salicylic acid derivative, alone or in a mixture

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231074A (en) * 1987-03-18 1988-09-27 Hitachi Ltd Method and device for flow rate control
JPH0784943B2 (en) * 1989-02-24 1995-09-13 リンナイ株式会社 Water heater temperature control device
JP2726547B2 (en) * 1990-04-19 1998-03-11 株式会社ハーマン Fluid heating controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071374A1 (en) 2013-11-13 2015-05-21 L'oreal Use as a deodorant agent of a salified salicylic acid derivative, alone or in a mixture

Also Published As

Publication number Publication date
JPS61295458A (en) 1986-12-26

Similar Documents

Publication Publication Date Title
JPH0692837B2 (en) Combustion control device for water heater
JPH0781738B2 (en) Combustion control device for water heater
US4695052A (en) Hot water heating system using a heat consumption meter
JP2988587B2 (en) Heating amount control method of water heater
JP3122525B2 (en) Combustion device and combustion control method thereof
JPH09318153A (en) Hot-water supplier
JP2669662B2 (en) Water heater control device
JPH0449478Y2 (en)
JP3315209B2 (en) Control method of rising water amount at the time of re-water supply in water heater
JP3103674B2 (en) Hot water supply temperature control device
JPH0335955Y2 (en)
US5775236A (en) Combustion control circuit of combustion apparatus
JP3172600B2 (en) Water heater combustion control method
JP3769660B2 (en) Water heater
JP3300150B2 (en) Combustion apparatus and method for updating combustion capacity
JP3589687B2 (en) Combustion control method at the time of re-watering of water heater
JPS6339805B2 (en)
JPS6080019A (en) Burning control device of water heater
JP2850582B2 (en) Hot water outlet temperature control method
JPH0478899B2 (en)
JP3529151B2 (en) Combustion control method at the time of re-watering of water heater
JPS6383547A (en) Control device for hot water feeder
JPS60263201A (en) Temperature control device
JP3271830B2 (en) Water heater and method for setting initial water flow of water control valve
JP2715748B2 (en) Control method of hot water storage water heater