JPS62157507A - Apparatus for measuring three-dimensional shape - Google Patents

Apparatus for measuring three-dimensional shape

Info

Publication number
JPS62157507A
JPS62157507A JP29784185A JP29784185A JPS62157507A JP S62157507 A JPS62157507 A JP S62157507A JP 29784185 A JP29784185 A JP 29784185A JP 29784185 A JP29784185 A JP 29784185A JP S62157507 A JPS62157507 A JP S62157507A
Authority
JP
Japan
Prior art keywords
measured
optical axis
sensor
objective lens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29784185A
Other languages
Japanese (ja)
Other versions
JPH0629714B2 (en
Inventor
Keiji Watanabe
渡辺 啓治
Koji Narumi
鳴海 広治
Tetsushi Nose
哲志 野瀬
Yukichi Niwa
丹羽 雄吉
Hitoshi Fukuda
仁 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29784185A priority Critical patent/JPH0629714B2/en
Publication of JPS62157507A publication Critical patent/JPS62157507A/en
Publication of JPH0629714B2 publication Critical patent/JPH0629714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure a three-dimensional shape due to a minute spot at a high speed with high accuracy and high stroke, by arranging a support means so that the center of the curvature of the surface to be inspected of an object almost coincides with a rotary axis. CONSTITUTION:Difference is generated between lights reaching a sensor 38 by the angle of inclination of the surface of an article 50 to be measured. That is, when it is assumed that the surface of the article 50 to be measured is inclined by an angle alpha with respect to the surface vertical to the optical axis X at the position on the optical axis X, the reflected beam from a projected light spot has the center in a direction forming an angle 2alpha with respect to the optical axis X to be incident to an objective lens 20. The beam incident to the objective lens 20 advances in parallel to the optical axis X and the center of said beam is separated by h fsin2alpha from the optical axis X. As the sensor 38, a sensor for detecting the center of gravity position of the beam, a called position sensor is used and, by measuring the above mentioned (h) by said sensor, the angle alpha can be calculated.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は三次元形状測定装置に関し、特に非接触にて高
速に形状測定を行ない得る三次元形状測定装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a three-dimensional shape measuring device, and particularly to a three-dimensional shape measuring device that can perform shape measurement at high speed in a non-contact manner.

〔従来技術〕[Prior art]

従来、物体の三次元形状即ち立体的形状を非接触にて測
定するために種々の方法が用いられている。この様な測
定方法としては、コヒーレント元を利用した干渉計測法
や、スリット元による光切断像を読取る方法等が用いら
れている。  −しかしながら、干渉計測法は被測定物
の表面全体を同時に精度良く測定できるという利点を有
する反面、被測定物表面の凹凸が光の波長に対してかな
シ大きい場合には測定が困難であるという欠点がある。
Conventionally, various methods have been used to measure the three-dimensional shape of an object in a non-contact manner. As such a measurement method, an interferometric method using a coherent source, a method of reading a light cut image by a slit source, etc. are used. -However, while interferometry has the advantage of being able to simultaneously measure the entire surface of the object to be measured with high precision, it is difficult to measure when the irregularities on the surface of the object are significantly larger than the wavelength of the light. There are drawbacks.

また、光切断像を読取る方法は光の波長のオーダーの凹
凸形状の測定は困難であり従って高精度は望めないとい
う欠点がある。
Furthermore, the method of reading a photocut image has the disadvantage that it is difficult to measure the uneven shape on the order of the wavelength of light, and therefore high accuracy cannot be expected.

そこで、内部光源を有する合焦状態判別光学系を移動台
上に載置し、該光学系を被測定物表面に7オーカクング
せしめるべく移動台を移動せしめることによシ、該移動
台の移動量から三次元形状を測定する方式が提案されて
いる(特公昭46−40231号公報)。これによれば
、被測定物表面の凹凸の程、Vによらず、かなυの精度
で形状測定を行なうことができる。
Therefore, by placing a focusing state determination optical system having an internal light source on a movable table and moving the movable table so as to bring the optical system into contact with the surface of the object to be measured, the amount of movement of the movable table can be adjusted. A method for measuring three-dimensional shapes has been proposed (Japanese Patent Publication No. 46-40231). According to this, shape measurement can be performed with an accuracy of kana υ, regardless of the degree of unevenness of the surface of the object to be measured.

しかしながら、この様な移動台を相対的に走査させる方
法では、被検物体が非球面レンズや曲率の大きなレンズ
等、開角が大きい物体である場合には走査方向に於る被
測定面の傾角が大きくなる。従って、この種の光学的測
定装置では該装置の対物レンズの瞳に被測定面からの反
射光が入ることが出来ず測定が出来ない。又。
However, in this method of relatively scanning a movable table, if the object to be measured has a large aperture angle, such as an aspherical lens or a lens with a large curvature, the inclination angle of the surface to be measured in the scanning direction becomes larger. Therefore, in this type of optical measuring device, the reflected light from the surface to be measured cannot enter the pupil of the objective lens of the device, and measurement cannot be performed. or.

測定が可能であっても副長のストロークを大きく取らな
ければならないという欠点を有していた。
Even if measurement is possible, it has the disadvantage that the stroke of the sub-length must be large.

一方、この種の問題点を改善した装置が特開昭60−1
04206号公報に開示されている。
On the other hand, a device that improved this kind of problem was published in Japanese Patent Application Laid-open No. 60-1
It is disclosed in Japanese Patent No. 04206.

該公開公報によれば、レーザ光を対物レンズで被測定面
上に集光し、その反射光の周波数の被測定面の移動に伴
ない生ずるドツプラーシフトを検出して面形状を測定す
る装置であって、被測定物を回転可能にしてX方向とθ
方向に被測定物を移動させて上記方法で測定することに
ょシ、被測定物の被測定面での傾角が大きい場合でも全
面の測定を可能にしている。
According to the publication, there is a device that measures a surface shape by focusing a laser beam onto a surface to be measured using an objective lens and detecting the Doppler shift of the frequency of the reflected light that occurs as the surface to be measured moves. The object to be measured is rotatable and the X direction and θ
By moving the object to be measured in the above-described method, it is possible to measure the entire surface of the object even when the angle of inclination of the surface of the object to be measured is large.

しかしながら、この方式は被測定面の移動に伴なうドツ
プラーシフトを利用し、被測定面から直接反射してくる
光を位置情報を備えた室体光として同一光源から出射し
他の光路を介して得た参照元との重ね合わせにょシ信舟
を検出しておシ、被測定面にキズやほこり等の欠陥が存
する場合、反射光が散乱してしまい、連続的な測定が不
可能となっていた。
However, this method utilizes the Doppler shift caused by the movement of the surface to be measured, and the light directly reflected from the surface to be measured is emitted from the same light source as room light with positional information, and other optical paths are transmitted. However, if there are defects such as scratches or dust on the surface to be measured, the reflected light will be scattered, making continuous measurement impossible. It became.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の種々の欠点に鑑み、高精)l且つ
高速に如何なる面形状の被測定をも測定し得、且つ、被
測定面にキズやほこシ等が存していても連続して測定が
可能な3次元形状測定装置を提供することにある。
In view of the above-mentioned various drawbacks of the conventional art, the present invention is capable of measuring any surface shape to be measured with high accuracy and high speed, and is capable of continuously measuring even if there are scratches, dust, etc. on the surface to be measured. An object of the present invention is to provide a three-dimensional shape measuring device capable of performing measurements.

〔発明の要旨〕[Summary of the invention]

本発明によれば、上記目的は、内部光源を有し少なくと
も一部を移動させることが可能な可動部を有する合焦状
態判別光学系と、該可動部の移IDtを測定する手段と
、該合焦状態判別光学系の対物レンズの光軸と交わシ且
つ該光軸に対し略直交する回転軸を中心に旋回可能な被
検物体の支持手段とを有し、該被検物体の曲率中心が該
回転軸に存することによシ達成される。
According to the present invention, the above objects include: a focus state determination optical system having a movable part that has an internal light source and is movable at least in part; a means for measuring the displacement IDt of the movable part; a support means for a test object that is rotatable about a rotation axis that intersects with the optical axis of the objective lens of the focus state determination optical system and is substantially orthogonal to the optical axis, and a center of curvature of the test object. This is achieved by the fact that the rotation axis is located at the rotating shaft.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照しつつ本3次元形状測定装置の実施例
を説明する。
Hereinafter, embodiments of the present three-dimensional shape measuring device will be described with reference to the drawings.

第1図(A)、(B)は本発明に係る3次元形状測定装
定装置の第1の実施例を示す概略構成図であシ、第1図
(A)は上面図、第1図(B)は側面図を示す。尚、第
1図(Blに於ては理解を図る為に光学系の概略構成を
示している。ここで、2は合焦状態判別光学系であり、
4は傾斜角測定光学系である。光学系2及び4はケーシ
ング6に組込まれている。
1(A) and 1(B) are schematic configuration diagrams showing a first embodiment of a three-dimensional shape measuring device according to the present invention, FIG. 1(A) is a top view, and FIG. (B) shows a side view. In addition, in FIG. 1 (Bl), a schematic configuration of the optical system is shown for the sake of understanding. Here, 2 is a focus state determination optical system,
4 is a tilt angle measuring optical system. Optical systems 2 and 4 are incorporated into casing 6.

合焦状態判別光学系2において、8は光源であシ、10
はコリメーターレンズであシ、12はナイフェツジであ
υ、14は偏光ビームスプリッタ−であシ、16はハー
フミラ−であり。
In the focus state determination optical system 2, 8 is a light source, 10
is a collimator lens, 12 is a knife lens, 14 is a polarizing beam splitter, and 16 is a half mirror.

18は1/4波長板であシ、20は対物レンズでアシ、
22はバンドパスフィルターであシ、24はレンズであ
シ、26は光学的センサーである。
18 is a quarter wavelength plate, 20 is an objective lens,
22 is a band pass filter, 24 is a lens, and 26 is an optical sensor.

傾斜角測定光学系4において、28は光源であシ、30
及び32はレンズであシ% 34は偏光ビームスプリッ
タ−であ、り、36はバンドパスフィルターであシ、3
8は光学的センサーである。尚、この光学系4Vcおい
てはハーフミラ−16,1/4波長板18及び対物レン
ズ20は光学系2と共用されている。
In the tilt angle measurement optical system 4, 28 is a light source;
and 32 are lenses; 34 is a polarizing beam splitter; 36 is a bandpass filter;
8 is an optical sensor. In this optical system 4Vc, the half mirror 16, quarter wavelength plate 18, and objective lens 20 are shared with the optical system 2.

ケーシング6は外部に固設されたアクチュエーター40
に接続されている。該アクチュエーター40を駆動せし
めることによシ、ケーシング6は対物レンズ20の光軸
Xに沿って移動することができる。アクチュエーター4
0としては高精度な移動量コントロールを実現すべく流
体移動軸受スライド機構を備えたもの等を用いるのが好
ましい。
The casing 6 has an actuator 40 fixed to the outside.
It is connected to the. By driving the actuator 40, the casing 6 can be moved along the optical axis X of the objective lens 20. Actuator 4
It is preferable to use a device equipped with a fluid movement bearing slide mechanism to achieve highly accurate control of the amount of movement.

ケーシング6にはまたその移動量を測定するための測長
手段42が付設されている。測長手段42としてはたと
えば格子干渉測長方式によるもの(Oplns Fi、
1981年4月号p84〜)が用いられ、この場合、第
1図における44はケーシング6に固定された基準格子
であシ、46は外部に固設された格子ピッチ読取装置で
ある。
The casing 6 is also provided with length measuring means 42 for measuring the amount of movement thereof. The length measuring means 42 may be, for example, one based on a grating interferometric length measuring method (Oplns Fi,
(April 1981 issue, p. 84~) is used; in this case, 44 in FIG. 1 is a reference grid fixed to the casing 6, and 46 is a grid pitch reading device fixed outside.

50は形状を測定されるべき被測定物である。50 is an object to be measured whose shape is to be measured.

又、60は非球面レンズ等の被測定物50を設置するマ
ウントで、図示する如く被測定物5゜をその曲率中心を
通る回転軸に対しθ方向に回転させることが出来る。従
って被測定物5oはマウント60に組込まれた駆動手段
によシθ方向に旋回し、この時、被測定物50の所定の
断面形状(表面形状)を測定する為に、合焦状態判別光
学系2は該断面の一方の端部から他方の端部までを相対
的にスポット光で走査するととになシ、各走査位置に於
てスポット光が被測定面に対して合焦する様に所定の部
材(対物レンズ20)を元軸方向に移動させる。そして
、この所定の部材の移動量を順次検出して、1を終的に
被測定面の任意の断面での表面形状を得ることが出来る
Reference numeral 60 denotes a mount on which an object to be measured 50 such as an aspherical lens is mounted, and as shown in the figure, the object to be measured 50 can be rotated in the θ direction with respect to a rotation axis passing through its center of curvature. Therefore, the object to be measured 5o is rotated in the θ direction by the driving means built into the mount 60, and at this time, in order to measure a predetermined cross-sectional shape (surface shape) of the object to be measured 50, a focusing state discriminating optical System 2 scans the cross section from one end to the other end with a spot light, so that the spot light is focused on the surface to be measured at each scanning position. A predetermined member (objective lens 20) is moved in the direction of the original axis. Then, by sequentially detecting the amount of movement of this predetermined member, it is possible to finally obtain the surface shape at an arbitrary cross section of the surface to be measured.

以上の如く被測定物50をその曲率中心を軸として回転
させることによシ、被測定物50の被測定面上に後述す
る対物レンズ20の光軸に対して大きな傾角が存在して
いても、笑質的−に測定時の被測定面の傾きが小さくな
る。従って非球面レンズ、曲率の大きなレンズ等の開角
の大きなレンズの測定も容易となる。
By rotating the object to be measured 50 around its center of curvature as described above, even if there is a large inclination angle on the surface of the object to be measured 50 with respect to the optical axis of the objective lens 20, which will be described later. , the inclination of the surface to be measured during measurement becomes qualitatively smaller. Therefore, it becomes easy to measure lenses with large aperture angles such as aspherical lenses and lenses with large curvatures.

更に本実施例では後に詳述する如く、対物レンズ20の
如き部材の移動量を測定する為の測長系が被測定物50
と分離されており、又、合焦状態判別光学系とは異なる
系から成っている。
Furthermore, in this embodiment, as will be described in detail later, the length measuring system for measuring the amount of movement of members such as the objective lens 20 is connected to the object to be measured 50.
The optical system is separated from the optical system for determining the focusing state, and is composed of a system different from the optical system for determining the focusing state.

従って、従来の装置では被測定物50の被測定面にキズ
やホコリ等がある場合に測定が中断されていたのに対し
、本発明によればスポット光の連続走査によシ中断され
ることなく測定可能である。
Therefore, whereas in the conventional apparatus, the measurement is interrupted when there are scratches, dust, etc. on the surface to be measured of the object to be measured 50, according to the present invention, the measurement is interrupted by continuous scanning of the spot light. It is measurable.

従って、被測定面上のある箇所に欠陥が生じの表面形状
の情報に基づき欠陥が存する断面の表面形状をも修正し
て得ることが出来る。
Therefore, the surface shape of the cross section where the defect exists can also be corrected and obtained based on the information of the surface shape where the defect occurs at a certain location on the surface to be measured.

尚、本実施例では第1図(AIに於ける紙面面内方向へ
被測定物50を旋回させているが、この旋回方向は、回
転中心が被測定物50の曲率中心と略々一致しておシ且
つ対物レンズ200光軸に存していれば如何なる方向で
も構わない。
In this embodiment, the object to be measured 50 is rotated in the direction in the plane of the paper in FIG. It may be in any direction as long as it is on the optical axis of the objective lens 200.

又、被測定物5ot旋回させる為の各部材や駆動機構も
如何なる構成であっても構わない。
Furthermore, the various members and drive mechanism for rotating the object to be measured by 5 ot may have any configuration.

更に、被測定物50の被測定面に於る複数断面の形状を
測定する為には、例えば被測定物50を対物レンズ20
の光軸のまわシに相対的に回転させる機構を設ければ良
い。この様な機構を設けることにより、被測定物5oに
於る被測定面の所定方向へのスポット光束の走査が終わ
シ次第、続いて被測定物50を任意の角度対物レンズ2
0の元軸のまわシに回転させ、被測定面上をスポット光
束によシ再び走査すれば、複数の断面の表面形状を得る
ことが出来る。
Furthermore, in order to measure the shapes of multiple cross sections on the surface to be measured of the object to be measured 50, for example, the object to be measured 50 is placed under the objective lens 20.
What is necessary is to provide a mechanism for rotating the optical axis relative to the rotation axis of the optical axis. By providing such a mechanism, as soon as the scanning of the spot light beam in a predetermined direction of the surface to be measured of the object to be measured 5o is completed, the object to be measured 50 can be moved to the objective lens 2 at an arbitrary angle.
By rotating it about the original axis of 0 and scanning the surface to be measured again with the spot light beam, it is possible to obtain surface shapes of a plurality of cross sections.

尚、本実施例では後述する様に合焦、状態判別光学系2
の他に被測定物50の被測定面の傾き−を測定する傾斜
角測定光学系4を配し、面形状測定の精度を更に向上さ
せている。以下、この2つの光学系に関し詳述する。
In this embodiment, as described later, the focusing and state determining optical system 2
In addition, an inclination angle measuring optical system 4 for measuring the inclination of the surface to be measured of the object to be measured 50 is arranged to further improve the accuracy of surface shape measurement. These two optical systems will be explained in detail below.

本実施例における合焦状態判別光学系2の合焦状態判別
法につき以下説明する。
The focus state determination method of the focus state determination optical system 2 in this embodiment will be described below.

光源8から発せられた元はコリメーターレンズ10によ
り平行光束とされ、該平行光束は偏光ビームスプリッタ
−14を透過してハーフミラ−16によシ反射されて、
1/4波長板18を透過し対物レンズ20に入射する。
The light emitted from the light source 8 is converted into a parallel light beam by the collimator lens 10, and the parallel light beam is transmitted through the polarizing beam splitter 14 and reflected by the half mirror 16.
The light passes through the quarter-wave plate 18 and enters the objective lens 20.

尚、コリメーターレンズ10を出た平行光束はナイフェ
ツジ12によシ一部遮光され、対物レンズ20にはその
光軸Xを通る境界面により2分される2つのゾーンのう
ちの一方(図においては上半分のゾーン)Kのみ入射す
る。かくして、対物レンズ20により集束せしめられた
光は被測定物50の表面上にスポットを結ぶ。該スポッ
トから反射された光は、再び対物レンズ20を透過し、
1/4波長板1Bを経てハーフミラ−16により反射せ
しめられ、ビームスプリッタ−14により反射せしめら
れ、バンドパスフィルター22及びレンズ24を透過し
た後、センサー26に到達する。
Note that the parallel light beam exiting the collimator lens 10 is partially blocked by the knife lens 12, and the objective lens 20 has one of two zones divided into two by a boundary plane passing through the optical axis X (in the figure). is the upper half zone) Only K is incident. Thus, the light focused by the objective lens 20 forms a spot on the surface of the object to be measured 50. The light reflected from the spot passes through the objective lens 20 again,
The light passes through the quarter-wave plate 1B, is reflected by the half mirror 16, is reflected by the beam splitter 14, and passes through the bandpass filter 22 and lens 24 before reaching the sensor 26.

しかして、この際、被測定物50の表面と対物レンズ2
0との距離によシセンサー26に到達する光に差が生ず
る。即ち、第2図に示される様に、被測定物500表面
がちょうど対物レンズ20の焦点位置に存在する場合(
図中のイの位置)には、被測定物50の表面におけるス
ポットはちょうど光軸X上にその中心が位置する九め、
反射光はセンサー26において光軸Y上に中心をもって
位置することになる。また、被測定物50の表面が対物
レンズ20の焦点位置よシも遠くに位置する場合(図中
の口の位置)には、被測定物50の表面におけるスポッ
トは元軸Xからずれた図におけるAゾーン内に中心をも
って位置する様になるため、その反射光はセンサー26
において光軸Yからずれた図におけるにシー/に中心を
もって位置することになる。一方、被測定物50の表面
が対物レンズ20の焦点位置よりも近くに位置する場合
(図中のハの位置)には、被測定物50の表面における
スポットは光軸Xからずれた図におけるBゾーンに中心
をもって位置する様になるため、その反射光はセンサー
26において光軸Yからずれた図におけるぎゾーンに中
心をもって位置することになる。
At this time, the surface of the object to be measured 50 and the objective lens 2
A difference occurs in the light reaching the sensor 26 depending on the distance from the sensor 26. That is, as shown in FIG. 2, when the surface of the object to be measured 500 is located exactly at the focal position of the objective lens 20 (
At position A in the figure), the spot on the surface of the object to be measured 50 is located at the ninth position, whose center is exactly on the optical axis X.
The reflected light is centered on the optical axis Y at the sensor 26. Furthermore, when the surface of the object to be measured 50 is located far away from the focal point of the objective lens 20 (the position of the mouth in the figure), the spot on the surface of the object to be measured 50 is located at a position shifted from the original axis X. Since the center is located within the A zone, the reflected light is reflected by the sensor 26.
The center of the optical axis is located at 1/ in the diagram deviated from the optical axis Y. On the other hand, when the surface of the object to be measured 50 is located closer to the focal point of the objective lens 20 (position C in the figure), the spot on the surface of the object to be measured 50 is shifted from the optical axis X. Since the center will be located in the B zone, the reflected light will be centered in the A zone in the diagram shifted from the optical axis Y in the sensor 26.

センサー26としてはCOD (Charge C!o
upledDeyice’)等のアレイセンサーが用い
られる。第3図はこの様なセンサー26の平面図である
The sensor 26 is COD (Charge C!o
An array sensor such as an upledDeyice') is used. FIG. 3 is a plan view of such a sensor 26.

この図は第2図におけるセンサー26を左方から見たも
のである。図中、斜線を付した部分はセンサー七グメン
ト間を分離しているチャンネルストッパ一部を示す。第
3図のセンサー26には、被測定物50の表面位置が第
2図のイ。
This figure shows the sensor 26 in FIG. 2 viewed from the left. In the figure, the shaded area shows a part of the channel stopper that separates the sensor segments. The sensor 26 in FIG. 3 detects the surface position of the object to be measured 50 as shown in FIG. 2.

口又はハである場合のスポット位置及びその光量分布の
グラフが記されている。
A graph of the spot position and its light intensity distribution in the case of mouth or ha is shown.

センサー26において、A′ゾーンにおける全センサー
セグメントの出力の和を工Atとし、Wゾーンにおける
全センサーセグメントの出力の和をIB/とすると、光
学系2の被測定物50に対する合焦状態に応じてΔI=
AA/−rB/が変化する。
In the sensor 26, if the sum of the outputs of all sensor segments in the A' zone is denoted by At, and the sum of the outputs of all the sensor segments in the W zone is denoted by IB/, then ΔI=
AA/-rB/ changes.

その関係を第4図に示す。第4図から分る様に、7オー
カシングが完全にカされている場合(上記イの状態)の
近傍においてはΔIはほぼリニアに変化する。この特性
を利用することによって光学系2が前ピント外れ状態で
あるか、完全フォーカシング状態であるか、後ピント外
れ状態であるかが判別できる。
The relationship is shown in FIG. As can be seen from FIG. 4, ΔI changes almost linearly in the vicinity of the case where 7 orcasings are completely filled (state A above). By utilizing this characteristic, it can be determined whether the optical system 2 is in a front out-of-focus state, in a complete focusing state, or in a rear out-of-focus state.

従って、この出力Δ1に基づきΔ工を0にするべくアク
チュエーター40をサーボ駆動せしめることによシ、自
動フォーカシングが実現できる。このののケーシング6
の移動量を測長手段42で測定することによシ被測定物
500表面の元軸Xと交わる部分の位置が測定される。
Therefore, automatic focusing can be realized by servo-driving the actuator 40 to make the Δwork 0 based on the output Δ1. Konono's casing 6
By measuring the amount of movement by the length measuring means 42, the position of the portion of the surface of the object to be measured 500 that intersects with the original axis X is measured.

この位置測定を被測定物表面の全体について行なうこと
により3次元形状が測定できる。
By performing this position measurement on the entire surface of the object to be measured, the three-dimensional shape can be measured.

次に1本実施例における傾斜角測定光学系4の傾斜角測
定法につき以下説明する。
Next, a method for measuring the tilt angle of the tilt angle measuring optical system 4 in this embodiment will be explained below.

光源2日から発せられた光はレンズ30及び32を透過
した後、平行光束となって偏光ビームスプリッタ−34
に入射して反射せしめられ、ハーフミラ−16及び1/
4波長板1Bを透過して、対物レンズ20によシ集束せ
しめられる。
After the light emitted from the light source 2 passes through lenses 30 and 32, it becomes a parallel beam of light and is sent to a polarizing beam splitter 34.
is reflected by the half mirror 16 and 1/
The light passes through the four-wavelength plate 1B and is focused by the objective lens 20.

尚、この光学系4においては対物レンズ20に入射する
光束が光軸X上に中心を有し且つ該光軸Xに平行に入射
する様になっている。かくして対物レンズ20によシ集
束せしめられた光は被測定物50の表面上においてX軸
上に中心を有スるスポットを結ぶ。該スポットから反射
された光束は再び対物レンズ20を透過し、174波長
板18、ハーフミラ−16、偏光ビームスプリッタ−3
4及びバンドパスフィルター36を透過した後、センサ
ー38に到達する。
In this optical system 4, the light beam incident on the objective lens 20 is centered on the optical axis X and is incident parallel to the optical axis X. The light thus focused by the objective lens 20 connects a spot centered on the X-axis on the surface of the object to be measured 50. The light beam reflected from the spot passes through the objective lens 20 again, and passes through the 174 wavelength plate 18, the half mirror 16, and the polarizing beam splitter 3.
4 and a bandpass filter 36, it reaches a sensor 38.

しかして、この際、被測定物500表面の傾斜角によシ
センサー3日に到達する光に差が生ずる。即ち、第5図
に示される様に、被測定物50の表面が光軸X上の位置
において光軸又と垂直の面に対し角度αだけ傾いている
とすると、投光スポットからの反射光束は光軸Xに対し
角度2αをなす方向に中心を有して対物レンズ20に入
射する。かくして、対物レンズ20に入射した光束は光
軸又と平行に進行し、その光速中心は元軸Xからh*f
sin2α(ここで、では対物レンズ20の焦点距離を
あられす)だけ隔てられている。
At this time, a difference occurs in the amount of light that reaches the sensor on the third day depending on the inclination angle of the surface of the object to be measured 500. That is, as shown in FIG. 5, if the surface of the object to be measured 50 is tilted at an angle α with respect to a plane perpendicular to the optical axis at a position on the optical axis enters the objective lens 20 with its center in a direction forming an angle 2α with respect to the optical axis X. In this way, the light beam incident on the objective lens 20 travels parallel to the optical axis, and the center of light velocity is h*f from the original axis
They are separated by sin2α (here, the focal length of the objective lens 20).

センサー3Bとしては光束の重心位置検知センサーいわ
ゆるポジションセンサーなどが用いられ、これにより上
記のhを測定することによって上記αを求めることがで
きる。
As the sensor 3B, a sensor for detecting the position of the center of gravity of the light flux, ie, a so-called position sensor, is used, and by measuring the above h, the above α can be obtained.

以上の説明から分る様に、傾斜角測定に際しては被測定
物50の表面が対物レンズ20の焦点位置にあることが
必要であるが、上記光学系2とアクチュエーター40と
の作用によシ常にフォーカシングがなされているのでこ
の条件は常圧溝たされている。
As can be seen from the above explanation, when measuring the inclination angle, it is necessary that the surface of the object to be measured 50 be at the focal point of the objective lens 20. However, due to the action of the optical system 2 and the actuator 40, Since focusing is performed, this condition is a normal pressure groove.

また、合焦状態判別光学系2と傾斜角測定光学系4とは
一部共通部分を有するので、各光学系において用いる光
源の波長帯域を異ならせたシ、偏光状態を異ならせ九シ
して、クロストークが生じない様にする。このため、バ
ンドパスフィルター22及び36、更には偏光ビームス
プリッタ−14及び34及び174波長板18が用いら
れている。
In addition, since the focusing state determining optical system 2 and the tilt angle measuring optical system 4 have some parts in common, the wavelength bands of the light sources used in each optical system are made different, and the polarization states are made different. , to prevent crosstalk from occurring. For this purpose, bandpass filters 22 and 36, as well as polarizing beam splitters 14 and 34 and a 174-wave plate 18 are used.

以上の如き実施例の3次元形状測定装置の性能につき以
下に評価を試みる。
An attempt will be made below to evaluate the performance of the three-dimensional shape measuring apparatus of the above embodiment.

先ず、位置測定の精度は光学系2の合焦状態判別分解能
と測長手段42の測定精度とによシ定まる。たとえば、
対物レンズ20として焦点距離f= 2.1 mm 、
 NA = 0.9のものを、レンズ10として焦点距
離fl = 6.6 mのものを、レンズ24として焦
点距離f、=85snのものを用い、センサー26とし
てCODセンサーアレイを用い九場合には%第4図のグ
ラフにおけるIJ ニア部分の傾きとして200〜10
00 mV/μmが得られ、更にこの時のΔ工の出力の
ノイズとして1〜2 mV以下が達成される。これによ
り、光学系2の合焦状態判別分解能として0.01〜0
.02μmが得られる。また、測長手段42として格子
干渉測長方式によるものを用いれば0.1〜0.01μ
mの精度が達成される。尚、測長手段42としては、そ
の細光ヘテロダインの干渉方式によるもの(たとえば、
Hewlstt Packard社のレーザー測長機、
0pluaK、1982年12月号p86〜)や、レー
ザー干渉計の波数読取シ方式によるもの等を用いること
もでき、これらによっても同様な精度が達成される。
First, the accuracy of position measurement is determined by the focusing state determination resolution of the optical system 2 and the measurement accuracy of the length measuring means 42. for example,
The objective lens 20 has a focal length f=2.1 mm,
NA = 0.9, lens 10 with focal length fl = 6.6 m, lens 24 with focal length f, = 85 sn, and sensor 26 with a COD sensor array. %IJ in the graph of Figure 4 The slope of the near part is 200 to 10
00 mV/μm is obtained, and furthermore, the noise of the output of the Δ device at this time is 1 to 2 mV or less. As a result, the focusing state determination resolution of the optical system 2 is 0.01 to 0.
.. 02 μm is obtained. Furthermore, if the length measuring means 42 is based on a grating interference length measuring method, the
An accuracy of m is achieved. The length measuring means 42 may be one based on the narrow-light heterodyne interference method (for example,
Hewlstt Packard laser length measuring machine,
(PluaK, December 1982 issue, p. 86~) or a method based on a wave number reading method using a laser interferometer can also be used, and similar accuracy can be achieved by these methods as well.

次に、位置測定のストロークはアクチュエーター40の
ストローク及び測長手段420ストロークによシ決まる
。上記の如き格子干渉測長方式、光ヘテロダイン干渉方
式、レーザー干渉計の波数読取シ方式等はいづれも10
0wm以上の高ストロークを実現することができ、また
アクチュエーターも同様なストロークを実現できる。
Next, the stroke of the position measurement is determined by the stroke of the actuator 40 and the stroke of the length measuring means 420. The above-mentioned grating interference length measurement method, optical heterodyne interference method, laser interferometer wave number reading method, etc. are all 10
It is possible to achieve a high stroke of 0 wm or more, and the actuator can also achieve a similar stroke.

更に、投光スポット径は対物レンズ2oのNAによシ定
まる。たとえば、対物レンズ2oとしてNA=0.8の
ものを用いれば光学系20投光スポツト径φはφ= 2
.44 Fλ+2.38 μm (ここで、F’=2X
 i=1.25 、λ=0.78μmとした)となシ、
2μm程度のスポット計測が可能と々る。
Furthermore, the diameter of the projected light spot is determined by the NA of the objective lens 2o. For example, if an objective lens 2o with NA=0.8 is used, the projection spot diameter φ of the optical system 20 will be φ=2.
.. 44 Fλ+2.38 μm (here, F'=2X
i=1.25, λ=0.78 μm) and
Spot measurement of approximately 2 μm is possible.

尚、スポット径を大きくしたい場合には光学系20投光
有効光束径を小さくして実効的な光束のNAを小さくす
ればよい。
If it is desired to increase the spot diameter, the diameter of the effective beam projected by the optical system 20 may be reduced to reduce the effective NA of the beam.

また、傾斜角測定精度はセンサー380位雪検出精度に
よシ定まる。たとえば、センサー3Bの検出精度0.3
μmで、対物レンズ2oの焦点距離! = 5.311
IIの場合には約デの傾斜角測定精度が実現できる。更
に、傾斜角の測定範囲としては、対物レンズ2oとして
NA= Q、5〜0.9のものを用いれば10〜30″
位まで測定が可能となる。
Further, the inclination angle measurement accuracy is determined by the sensor 380 snow detection accuracy. For example, the detection accuracy of sensor 3B is 0.3
Focal length of objective lens 2o in μm! = 5.311
In the case of II, an inclination angle measurement accuracy of approximately D can be achieved. Furthermore, the measurement range of the tilt angle is 10 to 30'' if the objective lens 2o is NA=Q, 5 to 0.9.
It becomes possible to measure up to

以上の実施例においては自動合焦の方式としていわゆる
TTL−A”F (Through the Taki
ngLens Active Auto Focus)
方式(テレビショア学会誌、第35巻第8号、1981
年、p637〜)を用いた例を示したが自動合焦の方式
としては他の方式たとえばビデオのピックアップに用い
られている方式やカメラのオートフォーカスで使用され
ている方式等を用いることもてきる。
In the above embodiments, so-called TTL-A"F (Through the Taki
ngLens Active Auto Focus)
Method (Television Shore Society Journal, Vol. 35, No. 8, 1981
Although we have shown an example using the autofocus method (2011, p.637~), other methods such as the method used for video pickup or the method used for camera autofocus may also be used. Ru.

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明の3次元形状測定装置によれば、高精
度、高ストロークにて微小スポットによる3次元形状測
定を高速にて行なうことができ、同時に被測定物表面の
欠陥に関係なく行なうことができるので、5次元形状に
関する正確な情報を短時間のうちに得ることができる。
According to the three-dimensional shape measuring device of the present invention as described above, it is possible to perform three-dimensional shape measurement using a micro spot at high speed with high precision and a high stroke, and at the same time, it can be performed regardless of defects on the surface of the object to be measured. Therefore, accurate information regarding the five-dimensional shape can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の構成図であシ、第2図及び第5図
はその部分図であシ、第5図はセンサーの平面図であり
、第4図はセンサーの出力のグラフ である。 2:合焦状態判別光学系 4:傾斜角測定光学系 6:ケーシング 8.28.60:光源 20:対物レンズ 26.3B、76.78 :センサー 40ニアクチユニーター 42:測長手段 50:被測定物 60:マウント 図面の浄3(内容に変更なし1 →ソ一ン ζ  捕π島ハ帖発 手続補正盲動式) %式% 1、事件の表示 昭和60年特許願第 297841号 2、発明の名称 三次元形状測定装置 3、補正をする者 事件との関係     特許出願人 住所 東京都大田区下丸子3−30−2名称 (100
)キャノン株式会社 代表者 賀  来  龍 三 部 4、代理人 居所 〒146東京都大田区下丸子3−30−2明細書
及び図面 6、補正の内容 願書に最初に添付した明細書及び図面を別紙の通り浄書
します。 (内容に変更なし)
Fig. 1 is a block diagram of the device of the present invention, Figs. 2 and 5 are partial views thereof, Fig. 5 is a plan view of the sensor, and Fig. 4 is a graph of the output of the sensor. be. 2: Focus state determination optical system 4: Inclination angle measuring optical system 6: Casing 8, 28, 60: Light source 20: Objective lenses 26.3B, 76.78: Sensor 40 Near actuator 42: Length measuring means 50: Object to be measured 60: Cleaning of mounting drawing 3 (No change in content 1 → SO 1 ζ Captured island Haha procedure correction blind movement type) % formula % 1, Indication of incident 1985 Patent Application No. 297841 2, Name of the invention Three-dimensional shape measuring device 3, relationship with the person making the amendment Patent applicant address 3-30-2 Shimomaruko, Ota-ku, Tokyo Name (100
)Representative of Canon Co., Ltd. Ryu Kaku 3 Part 4 Address of Agent 3-30-2 Shimomaruko, Ota-ku, Tokyo 146 Description and drawings 6, Contents of amendments The specification and drawings originally attached to the application are attached as attached documents. Street engraving. (No change in content)

Claims (1)

【特許請求の範囲】[Claims] 内部光源を有し、少なくとも一部を光軸方向に移動させ
る事が可能な可動部を有する合焦状態判別光学系と、該
可動部の移動量を測定する手段と、該合焦状態判別光学
系の対物レンズの光軸と交わり且つ該光軸に対し略直交
する回転軸を中心に旋回可能な被検物体の支持手段とを
有し、前記被検物体の被検面の曲率中心と前記回転軸と
が略合致するように前記支持手段を配した事を特徴とす
る三次元形状測定装置。
A focusing state determining optical system having an internal light source and a movable part that can move at least a portion in the optical axis direction, means for measuring the amount of movement of the movable part, and the focusing state determining optical system. a supporting means for a test object that is rotatable about a rotation axis that intersects with the optical axis of the objective lens of the system and is substantially orthogonal to the optical axis, and the support means for the test object is rotatable about a rotation axis that intersects with the optical axis of the objective lens of the system and is substantially perpendicular to the optical axis; A three-dimensional shape measuring device characterized in that the supporting means is arranged so that the supporting means substantially coincides with a rotation axis.
JP29784185A 1985-12-28 1985-12-28 Three-dimensional shape measuring device Expired - Lifetime JPH0629714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29784185A JPH0629714B2 (en) 1985-12-28 1985-12-28 Three-dimensional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29784185A JPH0629714B2 (en) 1985-12-28 1985-12-28 Three-dimensional shape measuring device

Publications (2)

Publication Number Publication Date
JPS62157507A true JPS62157507A (en) 1987-07-13
JPH0629714B2 JPH0629714B2 (en) 1994-04-20

Family

ID=17851843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29784185A Expired - Lifetime JPH0629714B2 (en) 1985-12-28 1985-12-28 Three-dimensional shape measuring device

Country Status (1)

Country Link
JP (1) JPH0629714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250008A (en) * 1988-03-30 1989-10-05 Anritsu Corp Aspherical shape measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01250008A (en) * 1988-03-30 1989-10-05 Anritsu Corp Aspherical shape measuring instrument

Also Published As

Publication number Publication date
JPH0629714B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US4983043A (en) High accuracy structured light profiler
JP2000002506A (en) Method and apparatus for optical coherence tomography with coherent dynamic focus
JPH0772683B2 (en) Interfering ball bearing test equipment
JPS61178635A (en) Interference apparatus for measuring wave front aberration
JPH0812127B2 (en) Curvature radius measuring device and method
JP2002039724A (en) Internal hole surface inspecting device
CN114577125A (en) Non-contact optical lens center thickness measuring method and measuring device
JPS6347606A (en) Apparatus for measuring shape of non-spherical surface
JP2618377B2 (en) Apparatus with F-theta corrected telecentric objective for non-contact measurement
JPS5979104A (en) Optical device
JPS62157507A (en) Apparatus for measuring three-dimensional shape
US3832063A (en) Lens axis detection using an interferometer
CA1297285C (en) High accuracy structured light profiler
JPS6117908A (en) Three-dimensional shape measuring instrument
JPH0652168B2 (en) Three-dimensional shape measuring device
TWI575221B (en) Surface roughness measurement system and method using the same
JPS6242327Y2 (en)
JPS63223510A (en) Surface shape measuring instrument
KR910007629Y1 (en) Measuring apparatus
US5838442A (en) Device for determining the shape of the wave surface reflected by a substantially plane component
JP2002005619A (en) Method and device for measuring interference, and object measured thereby
JP2678473B2 (en) Anamorphic lens measuring device
JPS63229314A (en) Shape measuring apparatus
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JPH08166209A (en) Polygon mirror evaluating device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term