JPS62157014A - Optical logic element - Google Patents

Optical logic element

Info

Publication number
JPS62157014A
JPS62157014A JP29910685A JP29910685A JPS62157014A JP S62157014 A JPS62157014 A JP S62157014A JP 29910685 A JP29910685 A JP 29910685A JP 29910685 A JP29910685 A JP 29910685A JP S62157014 A JPS62157014 A JP S62157014A
Authority
JP
Japan
Prior art keywords
optical
level
semiconductor laser
optical output
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29910685A
Other languages
Japanese (ja)
Other versions
JPH0413689B2 (en
Inventor
Masanobu Watanabe
正信 渡辺
Hideo Ito
日出男 伊藤
Seiji Mukai
向井 誠二
Hiroyoshi Yajima
矢嶋 弘義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP29910685A priority Critical patent/JPS62157014A/en
Publication of JPS62157014A publication Critical patent/JPS62157014A/en
Publication of JPH0413689B2 publication Critical patent/JPH0413689B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an element which has a high-grade function and a large number of degrees of freedom, by receiving a part of the optical output of a double electrode semiconductor laser by a photodetector and feeding back positively it to the double electrode semiconductor laser. CONSTITUTION:If an optical input Pi is increased from 0 to P2 P4 P1 P3 continuously when an optical feedback rate (f) is relatively high and a triple stable point exists, the characteristic line of a photodetector 2 is moved right in the figure. An optical output P0 is in the level L first because light is not emitted, and the optical output P0 is switched from the level L to the level M when the optical input Pi exceeds P1, and the optical output P0 is switched from the level M to the level H when the optical input Pi exceeds P3. If the optical input Pi is reduced continuously, the optical output P0 is switched from the level H to the level M when the optical input Pi is smaller than P4, and the optical output P0 is switched from the level M to the level L when the optical input Pi is smaller than P2. Thus, this element can be used as a ternary storage element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、二電極型半導体レーザと、光検出器とを結
合した光論理素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical logic element that combines a two-electrode semiconductor laser and a photodetector.

〔従来の技術〕[Conventional technology]

第7図は従来の二電極型半導体レーザの一例を示す模式
図で、1は二電極型半導体レーザ(以下、特に必要なと
ころ以外は単に半導体レーザという)、2は電極、Po
ば前記半導体レーザ]の光出力、IN、Irは前記電極
2に注入する?li流である。
FIG. 7 is a schematic diagram showing an example of a conventional two-electrode semiconductor laser, in which 1 is a two-electrode semiconductor laser (hereinafter simply referred to as a semiconductor laser except where particularly necessary), 2 is an electrode, and Po
For example, is the optical output of the semiconductor laser], IN, and Ir injected into the electrode 2? It's the li style.

従来の半導体レーザ1は上記のように構成されており、
一方の電流Irを適当な値に固定して他方の電流It’
を変化させると、しきい値電流以上における利得特性に
非線型性を作り出し得ろことが本発明者等の研究により
判明した。これを第8図(a)の半導体レーザ1の注入
電流に対する光出力の特性図に示す。
The conventional semiconductor laser 1 is configured as described above,
One current Ir is fixed at an appropriate value and the other current It'
It has been found through research by the present inventors that by changing , nonlinearity can be created in the gain characteristics above the threshold current. This is shown in the characteristic diagram of optical output versus injection current of the semiconductor laser 1 in FIG. 8(a).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、最近の半導体デバイスの製造技術の発展は著
しく、集積度は年々向上し、高密度かつ大規模になって
きている。ところが、単純に各素子をさらに小さくして
集積度を上げても、あ士りメリッ1−が得られないレベ
ルに達(7つつある。
Incidentally, the recent development of semiconductor device manufacturing technology has been remarkable, and the degree of integration is increasing year by year, and devices are becoming more dense and large-scale. However, even if we simply make each element smaller and increase the degree of integration, we have reached a level where we cannot obtain any benefits.

その理由は第1に、集積度の向上につれて、論理素子や
記憶素子が搭載されている千ツブ内部の配線が著しく複
雑化することである。
The first reason for this is that, as the degree of integration increases, the wiring inside the circuit board in which logic elements and memory elements are mounted becomes significantly more complex.

第2に、サイズが小さくなるにつれて、配線間の漏話の
問題が深刻になることである。
Second, as the size decreases, the problem of crosstalk between wires becomes more serious.

第3に、信号の伝播遅延の問題である。ずなオ)ち、チ
ップ内の素子と配線を、さらに小さくしていった場合、
素子そのものの応答はtt6小率に比例して速(なるが
、素子間の伝達遅延時間は速くならず一定である。これ
らすべての問題点を解決する有力な候補として光の重要
性が広く認識されており、コンピュータの素子を光素子
に置き換えていこうとする試みが多く行われている。
Thirdly, there is the problem of signal propagation delay. (Zunao) If the elements and wiring inside the chip are made even smaller,
The response of the element itself is faster in proportion to the tt6 fraction (however, the transmission delay time between elements does not increase and remains constant.The importance of light is widely recognized as a promising candidate to solve all of these problems. Many attempts have been made to replace computer elements with optical elements.

一方、最小単位の論理素子が二値のものでなく、多値(
三値以上)であれば、必要な計算処理能力に対するチッ
プ内の素子数は少なくてすむ。当然、配線数も少なくて
すむため、上記の問題点は著しく緩和される。これらの
ことから多値の光論理素子の実現が待ち望まれろところ
であるが、研究報告例は非常に少なく、特に、将来の集
積化に適した半導体素子による文献は皆無といってよい
On the other hand, the minimum unit logic element is not a binary one, but a multi-value one (
(three values or more), the number of elements in the chip can be reduced for the required computational processing power. Naturally, since the number of wiring lines can be reduced, the above-mentioned problems are significantly alleviated. For these reasons, the realization of multi-level optical logic devices is eagerly awaited, but there are very few research reports, and in particular, there are no documents on semiconductor devices suitable for future integration.

この発明は、上記の問題点を解決するためになされたも
ので、この光出力の一部を光検出器で受けてし・−ザに
帰還をかけることにより、三重安定性を始めとする種々
の機能を持った光論理素子を得ろことを目的とずろ。
This invention was made in order to solve the above problems, and by receiving a part of this optical output with a photodetector and feeding it back to the The objective is to obtain an optical logic element with the following functions.

一方、第8図(b)の特性図に示すように、しきい値電
圧以上での利得が線型である通常の半導体レーザと光検
出器との組み合わせにより双安定素子を作れることは知
られており (光双安定半導体レーザ、小用洋他、応用
物理1983年10月号。
On the other hand, as shown in the characteristic diagram in Figure 8(b), it is known that a bistable device can be created by combining a normal semiconductor laser whose gain is linear above the threshold voltage and a photodetector. (Optical bistable semiconductor laser, Hiroshi Koyo et al., Applied Physics, October 1983 issue.

59頁参照)、シたがって、この発明では、このうちの
半導体レーザを特殊な特性のものに置き換えることに相
当するが、これにより、はるかに(幾能が高度で、自由
度の1傷い素子を得ることを目的とするっ 〔問題点を解決するための手段〕 この発明にかかる光論理素子は、横モードの変化により
しきい値以上の電流値において、注入電流に対して光出
力が非線型性を有する二電極型半導体レーザと、乙の二
電極型半導体レーザの光出力の一部を受光して正帰還を
かける光検出器とからなるものである。
Therefore, this invention corresponds to replacing one of these semiconductor lasers with one with special characteristics. [Means for solving the problem] The optical logic device according to the present invention has a structure in which the optical output increases with respect to the injected current at a current value equal to or higher than a threshold value due to a change in the transverse mode. It consists of a two-electrode semiconductor laser having nonlinearity and a photodetector that receives a part of the optical output of the two-electrode semiconductor laser and applies positive feedback.

〔作用〕[Effect]

二電極型半導体レーザの光出力の一部を光検出器に受光
して二電極型半導体レーザに正帰還をか〔実施例〕 第1図はこの発明の一実施例を示す構成図で、第7図と
同一符号は同一部分を示し、3は光検出’h:4.4は
T4流増幅器、Plは前記光検出器3への光入力、fP
oは前記光出力Poの一部で、fは前記半導体レーザ1
の光出力Poのうち光検出器3へ入射する割合を示す光
帰還率である。
A part of the optical output of the two-electrode semiconductor laser is received by a photodetector to provide positive feedback to the two-electrode semiconductor laser. The same reference numerals as in Fig. 7 indicate the same parts, 3 is photodetector'h: 4.4 is the T4 flow amplifier, Pl is the optical input to the photodetector 3, fP
o is a part of the optical output Po, and f is a part of the semiconductor laser 1.
This is an optical feedback rate indicating the proportion of the optical output Po that enters the photodetector 3.

Ipは前記光検出器3から半導体レーザ1への帰還電流
、I)+ばバイアス電流である。
Ip is a feedback current from the photodetector 3 to the semiconductor laser 1, and I)+ is a bias current.

まず、光入力および光出力素子として使用する場合につ
いて説明する。
First, the case where it is used as a light input and light output element will be described.

半導体レーザ1からの光出力Poの一部fP。Part fP of the optical output Po from the semiconductor laser 1.

を光検出器3で受け、電流増幅器4を通して電流■eに
帰還する。電流Irとバイアス電流Ibは固定し、光検
出器3への光入力Piを変化させる。
is received by the photodetector 3 and fed back to the current e through the current amplifier 4. The current Ir and the bias current Ib are fixed, and the optical input Pi to the photodetector 3 is varied.

半導体レーザ1の特性を第2図(a)のように単純化し
て P o=O(0< Ip +ib< It)” ” (
rp十’b  Ij     (L<Ip+Ib<L)
= M([2< lp +lb< Ia)= b (I
p十lb −Is) 十M  (13< Ip十Ib)
・・・・・・・・・・・ (1) とする。ここで、aおよびbばそれぞれの領域での微分
量子効率、I、、I2.I、は前記半導体レーザ1の注
入電流IJに対する光出力Poの特性線上の折曲点に対
応する電流である。
The characteristics of the semiconductor laser 1 are simplified as shown in FIG.
rp 10'b Ij (L<Ip+Ib<L)
= M([2<lp +lb<Ia)=b(I
p 10 lb - Is) 10 M (13< Ip 10 Ib)
・・・・・・・・・・・・ (1) Here, a and b are the differential quantum efficiencies in the respective regions, I, , I2. I is a current corresponding to a bending point on the characteristic line of the optical output Po with respect to the injection current IJ of the semiconductor laser 1.

一方、光検出器3の特性も第2図(b)のように単純化
して、帰還電流■ρを I  p−Ak(P  i+  f  Po)    
 (P  i + チ po<Psi=Ak Ps  
     (Ps(P i+f Po)・・・−・・・
−(2) とする。ここで、には前記光検出器3の光入力P iに
対する帰還電流Ipの変換係数、Aは前記増幅器4の電
流増幅率、Psは前記光検出器3の出力電流が飽和する
入力光パワーである。
On the other hand, the characteristics of the photodetector 3 are also simplified as shown in FIG. 2(b), and the feedback current
(P i + Chi po<Psi=Ak Ps
(Ps(P i+f Po)・・・−・
−(2). Here, is the conversion coefficient of the feedback current Ip for the optical input P i of the photodetector 3, A is the current amplification factor of the amplifier 4, and Ps is the input optical power at which the output current of the photodetector 3 is saturated. be.

第(1)式および第(2)式から帰還電流■ρを消去す
れば光入力P1と光出力Poとの関係がわかるが、さら
に、わかり易くずろため、図式解法により説明する。
Although the relationship between the optical input P1 and the optical output Po can be understood by eliminating the feedback current ■ρ from the equations (1) and (2), the relationship between the optical input P1 and the optical output Po can be understood.However, to make it easier to understand, a graphical solution will be used.

第3図は光帰還率fが比較的高く、三重安定点が存在す
る場合の例を示している。
FIG. 3 shows an example where the optical feedback factor f is relatively high and a triple stable point exists.

この図において、o、、o2.o:l、o4は半導体1
ノーザ1の注入= 7th I pに対する光出力PO
の特性線上の折曲点、e、、12.el、14はそれぞ
れ折曲点0+ −02−Oa 、Oaを通る光検出器の
特性線、Pl p P 21 P 3 p p 4はそ
れぞれ特性tl’+ + 1!z + Rz r la
 ノ光検出’M43ノ特性を与えろ人力光パワー、L、
M、Hは出力光−人力特性が平た7しになる領域の出力
光パワーのレベル(以下単にレベルという)である。
In this figure, o, , o2. o:l, o4 is semiconductor 1
Noser 1 injection = light output PO for 7th I p
The bending point on the characteristic line, e, , 12. el, 14 are the characteristic lines of the photodetector passing through the bending points 0+ -02-Oa and Oa, respectively, and Pl p P 21 P 3 p p 4 are the characteristics tl'+ + 1!, respectively. z + Rz r la
Light detection 'Give the characteristics of M43, human power light power, L,
M and H are output light power levels (hereinafter simply referred to as levels) in a region where the output light-human power characteristics are flat.

半導体レーザ1の特性線と光検出器3の特性線の交点の
うち安定な点が動作点となり得る。第3図て光入力Pi
を0からP2→P4→P1→P3と連続的に増加させた
場合、光検出器3の特性線は図中右の方へ移動してゆく
。ただし、飽和′lt流値A kP sは変わらない。
A stable point among the intersections of the characteristic line of the semiconductor laser 1 and the characteristic line of the photodetector 3 can be the operating point. Figure 3: Optical input Pi
When increasing continuously from 0 to P2→P4→P1→P3, the characteristic line of the photodetector 3 moves to the right in the figure. However, the saturation 'lt flow value A kP s remains unchanged.

最初は発光していないので光出力Po−=Lであり、光
入力PiがPlを越左ろ時に光出力、PoはレベルLか
らレベルMへ飛び、さらに光入力P1がP3を越える時
に光出力P。
At first, no light is emitted, so the optical output Po-=L, and when the optical input Pi exceeds Pl, the optical output is output. Po jumps from level L to level M, and when the optical input P1 exceeds P3, the optical output is output. P.

はレベルMからレベルHへ飛ぶ。次に光入力PIを連続
的に減少させていくと、光入力P1がP4より小さくな
った瞬間に光出力POはレベル1(からし・ベルMへ飛
び、光入力P1がP2より小さくなった時に光出力PO
はレベルMからレベル1−へ飛ぶ。またし・ベルMにあ
る時に、PlをP4と1)。
jumps from level M to level H. Next, when the optical input PI is continuously decreased, the moment the optical input P1 becomes smaller than P4, the optical output PO jumps to level 1 (mustard/bell M), and the optical input P1 becomes smaller than P2. Sometimes optical output PO
jumps from level M to level 1-. Also, when in Bell M, Pl is P4 and 1).

の間の値にした場合は、しベルはMに止まっている。乙
の様子は第4図(a)に示されている4、これば三値の
記憶素子として使走る。逆の典ヤ的な例として、光帰還
率fが十分低い場合には特性線の傾きが変わり、入力光
パワーP 1< P 2 < P J< P aとなり
、第4図(b)に示すよう(コ履歴現象は生ぜず、微分
利得特性となる。同図では分り易くするためにPlとP
2の間、P3とP4の間の線を斜めに描いであるが、こ
ればほと/しど垂直にすことが可能である。P□とP2
をほぼ等しく、P3とP4をほぼ等しくすればよい。こ
れは三値のアナログーデノクル変換素子、論理演算素子
として使える。半導体レーザ1の微分量子効率a、bお
よび光帰還率[の値に応じて入力光パワーP1〜P4の
大小関係は(P2<I’3の関係を除いて)変わり、第
4図(a)〜(乏)に示したように、全部で12通りの
場合が存在する。第4図(、)は三重安定性、(b)は
2個所の微分利得性、(f)と(1)は特殊な三重安定
性、(h)は双安定性、(g)は2個所の双安定性、そ
の他(c)p (d)F (eL l)、 (k)、 
(e )は双安定性と微分利得性の両方を持っている。
If the value is set between , the signal stays at M. The condition of B is shown in FIG. 4(a), and it is used as a ternary storage element. As a typical example of the opposite, when the optical feedback factor f is sufficiently low, the slope of the characteristic line changes and the input optical power becomes P1<P2<PJ<Pa, as shown in Figure 4(b). (The co-hysteresis phenomenon does not occur and the differential gain characteristic is obtained. In the figure, Pl and P
2, the line between P3 and P4 is drawn diagonally, but it is possible to make it almost perpendicular. P□ and P2
It is sufficient to make P3 and P4 substantially equal. This can be used as a three-value analog-to-denocle conversion element and a logical operation element. Depending on the values of the differential quantum efficiencies a, b and optical feedback rate [of the semiconductor laser 1], the magnitude relationship of the input optical powers P1 to P4 changes (except for the relationship P2<I'3), as shown in FIG. 4(a). As shown in ~ (poor), there are 12 cases in total. Figure 4 (,) shows triple stability, (b) shows differential gain in two places, (f) and (1) show special triple stability, (h) shows bistability, and (g) shows two places. Bistability, etc. (c) p (d) F (eL l), (k),
(e) has both bistability and differential gain property.

この発明の光論理素子をモノリシックに集積化するには
、具体的には、例えば第5図のように半導体し・−ザ1
と光検出器3を、同じ基板上の隣接する場所に収り付け
ればよい(前述の小用氏の文献参考)。この場合電流の
帰還は素子内部で行われろ。
In order to monolithically integrate the optical logic element of this invention, specifically, for example, as shown in FIG.
and the photodetector 3 may be placed adjacent to each other on the same substrate (see the above-mentioned article by Mr. Koyo). In this case, current feedback should be performed inside the element.

上記の説明では、光帰還率(第(2)式のf)を変えろ
ことにより第4図の12通りの特性の1つを選ぶことと
してきたが、この方式の場合には第5図のような集積回
路を作った後での特性の変更は難しい。そこで、電流増
幅率(第(2)式のA)を変えろことにすれば第4図(
a)〜(兇)の12通りの特性が得られ、しかも光検出
器3から半導体レーザ1への帰還電流Ipが外部を通る
ようにしておくと、集積回路作成後に外部から特性を選
へる5Lうにすることも可能である。ただし、電流増幅
率Aを変える場合には、第4図におけろ出力光P。
In the above explanation, one of the 12 characteristics shown in Figure 4 was selected by changing the optical feedback rate (f in equation (2)), but in the case of this method, the characteristics shown in Figure 5 are as follows. It is difficult to change the characteristics of an integrated circuit after it has been created. Therefore, if we decide to change the current amplification factor (A in equation (2)), Figure 4 (
If the 12 characteristics a) to (b) are obtained, and the feedback current Ip from the photodetector 3 to the semiconductor laser 1 is routed through the outside, the characteristics can be selected from the outside after the integrated circuit is fabricated. It is also possible to use 5L. However, when changing the current amplification factor A, the output light P in FIG.

のレベル[Iの値が変わることになる。The level of [I will change.

また乙の発明の素子は電流人力−光出力素子として使用
することもできる。この用途には、第1図の光入力Pi
は固定(0てもよい)してバイアス電流Ibを変化させ
る。この場合にも、第4図(a)〜(2)の12通りに
ほぼ対応する特性が得られるが、光出力POの一番上の
レベルHの値がバイアス電流Ibに対して変化ずろこと
のみが異なる点である。−例として、第4図(a)に対
応する特性を第6図に示す。
Further, the device of the invention of B can also be used as a current/light output device. For this purpose, the optical input Pi shown in Fig.
is fixed (may be 0) and the bias current Ib is varied. In this case as well, characteristics almost corresponding to the 12 patterns shown in FIGS. 4(a) to (2) can be obtained, but the value of the top level H of the optical output PO does not change with respect to the bias current Ib. The only difference is that - As an example, the characteristics corresponding to FIG. 4(a) are shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明にかかる光論理素子は、
横モードの変化によりしきい値以上の電流値において注
入電流に対して光出力が非綿型性を有する二電極型半導
体レーザと、この二電極型半導体レーザの光出力の一部
を受光(7て正帰還をかける光検出器とて構成したので
、従来、例がなかった半導体材料による三重安定光論理
素子を始めとする種々の論理素子が114られろ。この
発明の素子の機能は、細かく見れば12通りを有し、し
かも、これらのうちどの機能を持たせるかは、帰Jhl
 Mの514 i’rとのみでよく、非常に簡単であり
、またパラメータとして固定しておく電流の値を変える
ことによっても機能の変更はFil能であるっこのよう
に、この発明に、Lす、84積化が可能な半導体材料で
、機能が高く、かつ柔軟性に富んt!光論理素子ri!
得ることができる利点がある。
As explained above, the optical logic element according to the present invention is
A two-electrode semiconductor laser has a non-cotton-shaped optical output with respect to the injected current at a current value above the threshold due to changes in the transverse mode, and a part of the optical output of this two-electrode semiconductor laser is received (7 Since the device is configured as a photodetector that provides positive feedback, various logic elements including a triple stable optical logic element made of semiconductor materials, which has never been seen before, can be used.The functions of the device of this invention will be described in detail. If you look at it, there are 12 ways, and it is up to you to decide which function to have among these.
It is very easy to use only 514 i'r of M, and the function can also be changed by changing the value of the current fixed as a parameter. It is a semiconductor material that can be stacked with 84 layers, and is highly functional and flexible. Optical logic element ri!
There are benefits that can be gained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成図、第2図(a
)は半導体レーザの単純化した特性曲線を示す図、第2
図()j)は光検出器の単純化した特性曲線を示す図、
第3図は第1図の光論理素子の動作説明図、第4図(a
)〜(乏)は第1図の光論理素子の光入力に対する光出
力特性を示す図、第5図はこの発明の光論理素子を七ノ
リシックに集積化した場合を示す構成図、第6図はこの
発明の光論理素子の電流入力に対する光出力の特性を示
す図、第7図は従来の半導体レーザの一例を示す模式図
、第8図(、)は従来の半導体レーザの注入電流に対す
る光出力特性を示す図、第8図(b)は通常の半導体レ
ーザの注入電流に対する光出力特性を示す図である。 図中、1は半導体し・−ザ、2は電極、3は光検出器、
4は電流増幅器である。 第1図 (a)                     (
b)IT   +2  13 − If(lp÷lb)              
  −1p第3図 ヨ AI:P1 第4図 (a)     (b)     (C)(d)   
 (e)     (f)(9)     (hl  
   (i)(i)     (k)     (+)
P+     p、     P+ 第5図 ジ 第6図  Ib
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG. 2 (a
) is a diagram showing a simplified characteristic curve of a semiconductor laser.
Figure ()j) is a diagram showing a simplified characteristic curve of a photodetector,
Figure 3 is an explanatory diagram of the operation of the optical logic element in Figure 1, and Figure 4 (a
) to (poor) are diagrams showing the optical output characteristics with respect to optical input of the optical logic element in Figure 1, Figure 5 is a block diagram showing the case where the optical logic element of the present invention is integrated seven-dimensionally, and Figure 6. FIG. 7 is a schematic diagram showing an example of a conventional semiconductor laser, and FIG. FIG. 8(b) is a diagram showing the optical output characteristics with respect to the injection current of a normal semiconductor laser. In the figure, 1 is a semiconductor, 2 is an electrode, 3 is a photodetector,
4 is a current amplifier. Figure 1(a) (
b) IT +2 13 - If (lp÷lb)
-1p Figure 3 Yo AI: P1 Figure 4 (a) (b) (C) (d)
(e) (f) (9) (hl
(i) (i) (k) (+)
P+ p, P+ Figure 5 Figure 6 Ib

Claims (1)

【特許請求の範囲】[Claims] 横モードの変化により、しきい値以上の電流値において
注入電流に対して光出力が非線型性を有する二電極型半
導体レーザと、この二電極型半導体レーザの前記光出力
の一部を受光して正帰還をかける光検出器とからなるこ
とを特徴とする光論理素子。
A two-electrode semiconductor laser whose optical output has nonlinearity with respect to the injected current at a current value equal to or higher than a threshold due to a change in the transverse mode, and a part of the optical output of this two-electrode semiconductor laser that receives light. and a photodetector that applies positive feedback.
JP29910685A 1985-12-28 1985-12-28 Optical logic element Granted JPS62157014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29910685A JPS62157014A (en) 1985-12-28 1985-12-28 Optical logic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29910685A JPS62157014A (en) 1985-12-28 1985-12-28 Optical logic element

Publications (2)

Publication Number Publication Date
JPS62157014A true JPS62157014A (en) 1987-07-13
JPH0413689B2 JPH0413689B2 (en) 1992-03-10

Family

ID=17868213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29910685A Granted JPS62157014A (en) 1985-12-28 1985-12-28 Optical logic element

Country Status (1)

Country Link
JP (1) JPS62157014A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912421A (en) * 1982-07-13 1984-01-23 Nec Corp Nonlinear type optical bistable element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912421A (en) * 1982-07-13 1984-01-23 Nec Corp Nonlinear type optical bistable element

Also Published As

Publication number Publication date
JPH0413689B2 (en) 1992-03-10

Similar Documents

Publication Publication Date Title
EP0260988B1 (en) An optically bistable photodiode device
US5952683A (en) Functional semiconductor element with avalanche multiplication
JPS62157014A (en) Optical logic element
US5663572A (en) Optical functional semiconductor element
EP0136840B1 (en) Opto-electric logic element
JPH0377677B2 (en)
JPH0797194B2 (en) Optical signal shift circuit
JPH0541534A (en) Resonance tunnel phototransistor
JPH07270730A (en) Optical processor for optical radiation
JPS6165224A (en) Optical inverter
JPS62244185A (en) Semiconductor laser
JPS6130089A (en) Optical logic circuit
JP2508294B2 (en) Optical full adder
JPS61118732A (en) Optical bistable semiconductor element
JPS59207739A (en) Light d latch circuit
Rao et al. Electro-optical hybrid logic gates
Itoh Photonic Spatial Logic Operations Using a Beam Scanning Laser Diode H. Itoh, S. Mukai, M. Watanabe, M. Mori, and H. Yajima Optical Information Section, Electrotechnical Laboratory, Umezono 1-1-4, Tsukuba, Ibaraki 305, Japan
KR20200122964A (en) Multi-bit optical computing system
Itoh et al. Photonic Spatial Logic Operations Using a Beam Scanning Laser Diode
JPS60260178A (en) Optical integrated circuit device
JPS6091688A (en) Optical functional element
JPH0584491B2 (en)
Ohlander et al. Influence of carrier leakage on bistability in an inhomogeneously pumped semiconductor laser
JPS61220491A (en) Optical bistable integrated element
JPS62171181A (en) Semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term