JPS6215541A - Determining method for readout condition of radiation image information - Google Patents

Determining method for readout condition of radiation image information

Info

Publication number
JPS6215541A
JPS6215541A JP60155848A JP15584885A JPS6215541A JP S6215541 A JPS6215541 A JP S6215541A JP 60155848 A JP60155848 A JP 60155848A JP 15584885 A JP15584885 A JP 15584885A JP S6215541 A JPS6215541 A JP S6215541A
Authority
JP
Japan
Prior art keywords
point
interest
reading
image information
irradiation field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60155848A
Other languages
Japanese (ja)
Other versions
JPH0584504B2 (en
Inventor
Yuma Adachi
足立 祐馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP60155848A priority Critical patent/JPS6215541A/en
Priority to US06/760,862 priority patent/US4851678A/en
Priority to EP85109602A priority patent/EP0170270B1/en
Priority to DE8585109602T priority patent/DE3576898D1/en
Priority to DE3588169T priority patent/DE3588169T2/en
Priority to EP89106513A priority patent/EP0328165B1/en
Publication of JPS6215541A publication Critical patent/JPS6215541A/en
Priority to US07/164,654 priority patent/US4931644A/en
Publication of JPH0584504B2 publication Critical patent/JPH0584504B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To determine optimum readout condition at any time by deciding an optional position where a differential value is larger than a maximum or specific value as the 1st aimed point and a position where a differential value is largest or larger than a specific value among peripheral points adjoining to the 1st aimed point as the 2nd aimed point, and repeating this process and finding new aimed points one after another. CONSTITUTION:Digital image data at respective positions on a sheet are obtained and a differential image obtained by differentiation is scanned to find an optional point where the differential value is largest or larger than the specific point as the 1st aimed point. The contour of an irradiation field is traced from the 1st aimed point to recognize the irradiation field. This tracing a position where the differential value is larger than the specific value is found as the 2nd aimed point among peripheral positions adjoining to the 1st aimed point and then a point where the differential value is larger than the specific value is found as the 3rd aimed point among peripheral positions adjoining to the 2nd aimed point except said aimed point (1st aimed point). Thus, new aimed points are searched for one after another and when a position adjoining to the 1st aimed point is searched for as a new aimed point, the aimed points obtained so far are connected to draw a closed curve and the area inside of the curve is recognized as the irradiation field.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、医療用診断等に用いる蓄積性蛍光体利用の放
射線画像情報記録再生システムにおいて使用する放射線
画像情報の読取条件決定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method for determining reading conditions for radiographic image information used in a radiographic image information recording and reproducing system using a stimulable phosphor used for medical diagnosis and the like.

(発明の技術的背景及び従来技術) ある秤の・蛍光体に放射1i!(X線、α線、β線。(Technical background of the invention and prior art) A certain scale's phosphor emits 1i! (X-rays, α-rays, β-rays.

γ線、電子線、紫外線等)を照射すると、この放射線エ
ネルギーの一部が蛍光体中に蓄積され、この蛍光体に可
視光等の励起光を照射すると、蓄積されたエネルギーに
応じて蛍光体が輝尽発光を示寸ことが知られており、こ
のにうな性質を示ず蛍光体は蓄積性蛍光体と呼ばれる。
When irradiated with γ-rays, electron beams, ultraviolet rays, etc., a part of this radiation energy is accumulated in the phosphor, and when this phosphor is irradiated with excitation light such as visible light, the phosphor changes depending on the accumulated energy. is known to exhibit stimulated luminescence, and phosphors that do not exhibit this characteristic are called stimulable phosphors.

この蓄積性蛍光体を利用して、人体等の被写体の放fl
11線画像情報を−Hシー1〜状の蓄積性蛍光体に記録
し、その後、この蓄積性蛍光体シートをレーザ光等の励
起光で走査して輝尽発光光を生ぜしめ、この輝尽発光光
を光電的に読み取って画像信号を得、この画像信号に基
づぎ被写体の放射線画像を写真感光材料等の記録材料、
CRT等の表示装置に可視像として出力させる放射線画
像情報記録再生システムが本出願人によりすでに提案さ
れている(特開昭55−12429号、同56−113
95号など)。
Using this stimulable phosphor, the radiation of a subject such as a human body can be
The 11-line image information is recorded on a stimulable phosphor sheet in the form of -H sheet 1~, and then this stimulable phosphor sheet is scanned with excitation light such as a laser beam to generate stimulated luminescence light. The emitted light is read photoelectrically to obtain an image signal, and based on this image signal, a radiation image of the subject is recorded on a recording material such as a photographic light-sensitive material,
The present applicant has already proposed a radiation image information recording and reproducing system that outputs a visible image to a display device such as a CRT (Japanese Patent Laid-Open Nos. 55-12429 and 56-113).
95 etc.).

上記放射線画像情報記録再生システムの一態様として1
、被写体の放射線画像情報が放射線エネルギーレベルを
媒体として蓄積記録されている蓄積性蛍光体シートを励
起光により走査し、この走査により前記シー1〜から発
せられた輝尽発光光を光電読取手段により読み取って診
断用可視像を再生するための電気的画像信号を得る「本
読み」に先立って、予めこの本読みに用いられる励起光
よりも低レベルの励起光により前記シートを走査してこ
のシートに蓄積記録された画像情報の概略を読み取る「
先読み」を行い、この先読みにより得られた画像情報に
基づいて前記本読みを行う際の読取条件を決定し、この
読取条件に従って前記本読みを行い、この本読みにより
得られた画像信号を画像処理手段に入力し、この画像処
理手段で撮影部位および撮影方法等に応じて診断目的に
適した出力画像が得られる様に画像信号を処理し、この
画像信号を写真感光材料等に可視出力画像として再生ず
るシステムが知られており、たとえば本出願人が先に出
願し、既に出願公開された特開昭58−672404公
報に開示されている。
As one aspect of the radiation image information recording and reproducing system described above, 1
, a stimulable phosphor sheet in which radiation image information of a subject is stored and recorded using radiation energy level as a medium is scanned with excitation light, and stimulated luminescence light emitted from the sheets 1 through this scanning is read by a photoelectric reading means. Prior to "book reading" to obtain electrical image signals for reading and reproducing visible images for diagnosis, the sheet is scanned in advance with excitation light of a lower level than the excitation light used for this book reading. Read an overview of stored image information
The reading conditions for performing the main reading are determined based on the image information obtained by this pre-reading, the main reading is performed according to the reading conditions, and the image signal obtained by this main reading is sent to an image processing means. The image processing means processes the image signal to obtain an output image suitable for diagnostic purposes according to the region to be photographed, the method of photographing, etc., and reproduces this image signal as a visible output image on a photosensitive material, etc. A system is known, and is disclosed in, for example, Japanese Patent Laid-Open No. 58-672404, which was previously filed by the present applicant and has already been published.

ここで読取条イ′1とは、読取りにお()る輝尽発光光
の光量と読取装置の出力との関係に影響を与える各種の
条件を総称するものであり、例えば人出ツノの関係を定
める読取ゲイン(感度)、スケールファクタ(ラヂチコ
ード)あるいは、読取りにお(プる励起光のパワー等を
意味するものである。
Here, the reading strip A'1 is a general term for various conditions that affect the relationship between the amount of stimulated luminescence light used for reading and the output of the reading device, such as the relationship of the number of people. It refers to the reading gain (sensitivity), scale factor (radich code), or the power of excitation light used for reading.

また、先読みに用いられる励起光が本読みに用いられる
励起光にリーム低レベルであるとは、先読みの際に蓄積
性蛍光体シー1へが単位面積当りに受(プる励起光の有
効エネルギーが本読みの際のそれよりも小さいことを意
味する。先読みの励起光を本読みの励起光にりも低レベ
ルとする方法として、レーザ光源等の励起光光源の出力
を小とする方法、光源より放射された励起光をその光路
においてNDフィルタ、ΔoM等によって減衰させる方
法、および先読み用の光源と本読み用の光源とを別個に
設け、前者の出力を後者の出力よりも小とする方法が挙
げられ、さらには励起光のビーム径を大とする方法、励
起光の走査速度を大とする方法、蓄積性蛍光体シートの
移送速度を大とする方法等が挙げられる。
Furthermore, the fact that the excitation light used for pre-reading is at a lower level than the excitation light used for main reading means that the effective energy of the excitation light received per unit area by the stimulable phosphor sheet 1 during pre-reading is It means that it is smaller than that during main reading.As a way to make the excitation light for pre-reading lower than the excitation light for main reading, there is a method of reducing the output of the excitation light source such as a laser light source, and a method of emitting light from the light source. Examples include a method of attenuating the excitation light in its optical path with an ND filter, ΔoM, etc., and a method of providing a light source for pre-reading and a light source for main reading separately and making the output of the former smaller than the output of the latter. Further examples include a method of increasing the beam diameter of the excitation light, a method of increasing the scanning speed of the excitation light, and a method of increasing the transport speed of the stimulable phosphor sheet.

この様に、本読みに先立って予め前記シートに蓄積記録
された画像情、報の概略を把握し、この画像情報の概略
に基づいて決定した読取条件に従って本読みを行うこと
により、被写体や撮影部位の変動あるいは放射線被ばく
量の変動等に基づく前記シートに蓄積記録された放射線
エネルギーレベル範囲の変動による不都合を排除し、常
に望ましい読取条件で本読みを行なうことができる。
In this way, by understanding the outline of the image information and information stored on the sheet in advance before the actual reading, and performing the actual reading in accordance with the reading conditions determined based on the outline of this image information, it is possible to It is possible to eliminate inconveniences caused by fluctuations in the range of radiation energy levels accumulated and recorded on the sheet due to fluctuations or fluctuations in the amount of radiation exposure, etc., and to always perform main reading under desirable reading conditions.

この様な先読みにより得られた画像情報に基づいて本読
みの際の読取条件を決定する具体的方法としては、例え
ば、先読みにおける輝尽発光光量のヒストグラムを求め
ると共にこのヒストグラムからこのヒストグラムにおけ
る所望画像情報範囲の最大輝尽発光光量S maxおよ
び最小輝尽発光光m S minを求め、この3 ma
xおよび3 minがそれぞれ、可視出力画像における
適正濃度範囲の最大濃度[) WaXおよび最小Ii!
Q [) sinによって決定される画像処理手段にお
ける所望入力信号範囲の最大信号レベルQm、axおよ
び最小信号レベルQ minに対応する様に本読みの読
取条件を決定する方法が、本田願人により出願されてい
る(特願昭59−12658号)。
A specific method for determining the reading conditions for main reading based on the image information obtained by such pre-reading is, for example, to obtain a histogram of the amount of stimulated luminescence in pre-reading, and to obtain desired image information in this histogram from this histogram. The maximum stimulated luminescence light amount S max and the minimum stimulated luminescence light m S min of the range are determined, and this 3 ma
x and 3 min are respectively the maximum density of the appropriate density range in the visible output image [) WaX and the minimum Ii!
A method of determining the reading conditions for main reading so as to correspond to the maximum signal level Qm, ax and the minimum signal level Q min of the desired input signal range in the image processing means determined by Q[)sin was filed by applicant Honda. (Patent Application No. 12658/1982).

一方、人道上診断に必要ない部分に放射線を照射しない
にうにするため、あるいは診断に不要な部分に放射線を
あてるとその部分から診断に必要な部分に散乱線が入り
、コントラスト分解能が低下するのでこれを防ぐために
、放射線画像情報記録時には放射線の照射野を絞ること
が好ましい場合が多い。ところが、この様に放射線の照
射野を絞った場合には、通常、蓄積性蛍光体シート上の
照射野外に照射野の被写体から発生した散乱線が入射し
、高感度の蓄積性蛍光体シートはこの散乱線をも蓄積記
録してしまうので、先読みによって求める輝尽発光光量
のヒストグラム中にはこの散乱線に基づく輝尽発光光量
も含まれることとなる。
On the other hand, in order to avoid irradiating radiation to areas that are not necessary for humane diagnosis, or to avoid irradiating radiation to areas that are unnecessary for diagnosis, scattered rays will enter the areas necessary for diagnosis from that area, reducing contrast resolution. To prevent this, it is often preferable to narrow down the radiation irradiation field when recording radiation image information. However, when the radiation irradiation field is narrowed down in this way, the scattered radiation generated from the subject in the irradiation field usually enters the irradiation field on the stimulable phosphor sheet, and the highly sensitive stimulable phosphor sheet Since this scattered ray is also accumulated and recorded, the histogram of the amount of stimulated luminescence obtained by pre-reading also includes the amount of stimulated luminescence based on this scattered ray.

そして、この散乱線に基づくシート上における照射野外
の輝尽発光光量は照射野内の輝尽発光光間よりも大きい
場合もあるので、求められたヒストグラムからは上記照
射野内外の輝尽発光光量の区別を行なうことは困難であ
る。従って、前述のようにヒストグラムからSmax 
、 3m1nを求め、これから読取条件を決定する場合
に、本来照射野内の輝尽発光光間の最小値がS sin
とされるべきところ照射野外の散乱線による輝尽発光光
量の最小値が31nとされる場合が生じ得る。そして、
この様に照射野外の輝尽発光光量の最小値が3 min
とされた場合、一般にその値は照射野内の輝尽発光光量
の最小値よりも低いので、本読みにおいて診断に不要な
散乱線を低濃度域に収録することとなり、従って診断に
必要な部分の画像のm麿が高くなり過ぎ、その結果コン
トラストが低下して、満足な診断が困難となる。
Since the amount of stimulated luminescence outside the irradiation field on the sheet based on this scattered radiation may be larger than the amount of stimulated luminescence within the irradiation field, the obtained histogram shows that the amount of stimulated luminescence inside and outside the irradiation field is It is difficult to make a distinction. Therefore, as mentioned above, from the histogram, Smax
, 3m1n and determine the reading conditions from this, the minimum value between the stimulated luminescence lights in the irradiation field is S sin
However, there may be cases where the minimum value of the amount of stimulated luminescence due to scattered radiation outside the irradiation field is set to 31n. and,
In this way, the minimum value of the amount of stimulated luminescence outside the irradiation field is 3 min.
In the case of The value of m becomes too high, resulting in a decrease in contrast, making it difficult to make a satisfactory diagnosis.

即ち、照射野を絞って撮影を行なった場合、シート上に
おける照射野外に被写体から発生した敗乱線が入射し、
先読みにより得られた画像情報中には、との散乱線に基
づくものも含まれることとなるので、この様な先読み画
像情報に基づいて読取条件を決定しても最適な読取条件
を決定することは困難であり、その結果観察読影適性に
優れた可視像を得ることが困難となる。
That is, when shooting with a narrowed irradiation field, the rays generated from the subject enter the irradiation field on the sheet,
The image information obtained by pre-reading includes information based on scattered radiation of As a result, it is difficult to obtain visible images that are suitable for observation and interpretation.

(発明の目的) 本発明の目的は、上記事情に鑑み、先読みによって得ら
れた画像情報に基づいて本読みの際の読取条件を決定す
る方法であって、照射野を絞って撮影した場合であって
も上述した照射野絞りによる不都合を排除し、最適な読
取条件を決定することができる方法を提供することにあ
る。
(Object of the Invention) In view of the above-mentioned circumstances, the object of the present invention is to provide a method for determining reading conditions for main reading based on image information obtained by pre-reading. The object of the present invention is to provide a method that can eliminate the above-mentioned inconvenience caused by narrowing the irradiation field and determine optimal reading conditions.

(発明の構成) 本発明に係る読取条件決定方法は、上記目的を達成する
/=め、先読みにより得られた画像情報から蓄積性蛍光
体シート上の各位置にお【ノるデジタル画像データを求
め、このデジタル画像データを微分処理し、得られた微
分値から成る微分画像において、まず微分値が最大もし
くは所定値以上の任意の位置を探し出してこれを第1注
目点とし、次にこの第1注目点に隣接する周囲の位置の
中から微分値が所定値以上である位置を探してこれを第
2注目点とし、続いてこの第2注目点に隣接J−る周囲
の位置であって前の注目点、即ち第1注目点を除く位置
の中から微分値が所定値以上である位置を探してこれを
第3注目点とし、以後のこの第3注目点を探すプロセス
を繰り返して次々と新たな注目点を探し出し、上記第1
注目点に隣接する位置が新たな注目点として探し出され
たら、即ち上記方法で注目点を順次探し出して第1注目
点にまで戻りついたら、それまでの注目点を順次結んで
形成した閉曲線の内側を照射野と認識し、この照射野内
の前記先読み画像情報に基づいて本読みの際の読取条件
を決定することを特徴とする。
(Structure of the Invention) In order to achieve the above-mentioned object, the reading condition determination method according to the present invention applies digital image data to each position on a stimulable phosphor sheet from image information obtained by pre-reading. In the differential image made up of the obtained differential values, first find an arbitrary position where the differential value is the maximum or a predetermined value or more, make this the first point of interest, and then differentiate this digital image data. Search for a position whose differential value is greater than or equal to a predetermined value from among the surrounding positions adjacent to the first point of interest, set this as the second point of interest, and then search for the position that is the second point of interest among the surrounding positions adjacent to the second point of interest. Search for a position whose differential value is greater than a predetermined value from among the positions excluding the previous point of interest, that is, the first point of interest, and set this as the third point of interest, and repeat the process of searching for this third point of interest one after another. and find new points of interest, and
When the position adjacent to the point of interest is found as a new point of interest, that is, when the points of interest are sequentially searched using the above method and the point of interest is returned to the first point of interest, the closed curve formed by sequentially connecting the points of interest up to that point is It is characterized in that the inner side is recognized as an irradiation field, and reading conditions for main reading are determined based on the pre-read image information within this irradiation field.

なお、上記における[注目点に隣接する周囲の位置」と
は、必ずしも注目点に隣接する周囲の位置の全部である
必要はない。例えば予め照射野輪郭がわかっている場合
はその輪郭の形状に応じて決定される一部の位置であっ
ても良い。
Note that the above-mentioned "surrounding positions adjacent to the attention point" do not necessarily include all of the surrounding positions adjacent to the attention point. For example, if the contour of the irradiation field is known in advance, a part of the position may be determined according to the shape of the contour.

(実施態様) 以下、図面を参照しながら本発明の実施態様について詳
細に説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

以下に説明する実施態様は、第1図に示す様に、矩形の
照射野絞りをかけて撮影された1つの原註・1野10を
右Jる蓄積性蛍光体シー1〜12を読み取る場合の読取
条件決定方法である。図中に示すX軸はシート12を走
査して画像情報を先読みする際の主走査方向を示し、y
軸はその副走査方向を示す。
The embodiment described below is for reading stimulable phosphor sheets 1 to 12 from one field 10 photographed with a rectangular irradiation field aperture, as shown in FIG. This is a method for determining reading conditions. The X axis shown in the figure indicates the main scanning direction when scanning the sheet 12 and pre-reading image information, and the y
The axis indicates the sub-scanning direction.

まず、第1図に示す蓄積性蛍光体シー1〜12から前述
の如き先読みを行なうことによって該シート12に蓄積
記録されている画像情報を読み取る。
First, the image information stored and recorded on the stimulable phosphor sheets 1 to 12 shown in FIG. 1 is read by pre-reading as described above.

先読みによって蓄積性蛍光体シート12から画像情報を
読み取るとは、該シート12を先読み励起光走査するこ
とによって該シート12から発せられる輝尽発光光を光
電変換手段で読み取って該シー1へ12上の各走査点(
すなわち各画素)毎の輝尽発光光量に対応する電気信号
から成る情報を入手づ−ることを意味する。
Reading image information from the stimulable phosphor sheet 12 by pre-reading means reading the stimulated luminescence light emitted from the sheet 12 by scanning the sheet 12 with the pre-read excitation light and transferring it to the sheet 1 on the sheet 12. Each scanning point (
That is, it means obtaining information consisting of an electrical signal corresponding to the amount of stimulated luminescence light for each pixel.

次に、上記の如くして読み取られた画像情報からシート
上の各位置にお(プるデジタル画像データを求める。こ
のデジタル画像データを求めるにあたっては、上記先読
みによって読み取られた画像情報から直接的に求めても
良いし、該画像情報に空間フィルタ処理等の前処理を施
して求めても良い。
Next, digital image data is obtained from the image information read in the above manner at each position on the sheet. In order to obtain this digital image data, the image information read in the above-mentioned pre-reading is directly used. The image information may be obtained by performing preprocessing such as spatial filter processing on the image information.

直接的に求める場合は、例えば上記シー1〜上の位置を
上記画素単位で設定し、各位置に対応する画素の上記先
読み画像情報をデジタル化したものをその位置のデジタ
ル画像データとすれば良い。
If you want to obtain it directly, for example, you can set the positions from Sea 1 to above in pixel units, and digitize the pre-read image information of the pixels corresponding to each position as the digital image data for that position. .

空間フィルタ処理等の前処理を施して求める場合には、
例えば一定の関係にある複数画素をまとめて1つの位置
として設定し、この位置に含まれる画素の先読み画像情
報に基づいて、例えばそれらを加算平均して該位置のデ
ジタル画像データを算出するようにしても良いし、ある
いはシート上の位置は上記画素単位で設定し、該位置の
デジタル画像データは該位置およびその周囲位置に対応
する複数画素の先読み画像情報に基づいて算出するよう
にしても良い。この後者の算出方法の1つとしてメジア
ンフィルタ処理を挙げることができる。このメジアンフ
ィルタ処理とは、所定画素(位置)おJ:びその周囲測
索(位置)の画像情報(吊子化レベル)のメジアン値(
中央値)をその所定画素(位置)の画像情報とJる処理
をいう。
When calculating by performing preprocessing such as spatial filtering,
For example, a plurality of pixels in a certain relationship are set together as one position, and based on the pre-read image information of the pixels included in this position, for example, they are averaged to calculate the digital image data of the position. Alternatively, the position on the sheet may be set in units of pixels, and the digital image data at the position may be calculated based on pre-read image information of a plurality of pixels corresponding to the position and surrounding positions. . Median filter processing can be cited as one of the latter calculation methods. This median filter processing is the median value (
This refers to processing in which the median value) is used as the image information of a predetermined pixel (position).

このメジアンフィルタ処理の一具体例を第2図を参照し
ながら説明する。第2図(a )は上記各画素毎の先読
み画像情報から成る原画像14を示す図であり、図中の
1つ1つのます目はそれぞれ1つの画素を示す。第2図
(h)は原画像にお【ノる各画素の画像情報に上記メジ
アンフィルタ処理を施すことによって得られた各位置に
おけるデジタル画像データから成るメジアンフィルタ処
理画像16を示す図である。なお、この具体例において
は画素単位で位置が設定されているので、処理画像16
中の各位置も画素と称する。
A specific example of this median filter processing will be explained with reference to FIG. 2. FIG. 2(a) is a diagram showing an original image 14 consisting of the pre-read image information for each pixel, and each square in the figure represents one pixel. FIG. 2(h) is a diagram showing a median filtered image 16 consisting of digital image data at each position obtained by applying the above median filtering to the image information of each pixel in the original image. Note that in this specific example, the position is set in pixel units, so the processed image 16
Each position therein is also called a pixel.

まず、所定サイズのマスク、例えば縦横3画素分づつの
広さを右する3×3゛リ−イズのマスク18を用い、該
マスク18を該マスクの中央に所定画素(図中斜線で示
した画素)が位置するように原画像14中に配設し、そ
のときそのマスクに含まれる9個の画素の画像情報のメ
ジアン値をデジタル化したものをその所定画素のデジタ
ル画像データとし、この処理を原画像14中の全ての画
素に適用(ただし、最外周に位置する画素には適用不能
であるのでそれらの画素は除<)シてその画素における
デジタル画像データを求め、該データから成るメジアン
フィルタ処理画像16を得る。なお、3×3サイズのマ
スクを用いると上記の如く最外周の画素にメジアンフィ
ルタ処理を施すことができないため処理画像1Gは原画
像14に比べて最外周画素分17だけ小さくなるので、
例えばこの最外周画素部分17には量子化レベルO(零
)を画像データとして代入しておくことができる。上記
マスクのサイズは3×3に限らない。また、処理画像1
Gが小さくなることを防ぐためには、例えば原画像14
の周囲に原画像の最外周画素と同じ母子化レベルを有す
る画素が存在すると仮定してメジアンフィルタ処理を施
せば良い。上記メジアンフィルタ処理を行なえば、ノイ
ズによって周囲の画素に比べて極端に量子化レベルが高
くなりあるいは低くなっている場合のそのノイズを除去
でき、しかも照射野輪郭情報はぼけないという利点があ
る。
First, use a mask 18 of a predetermined size, for example, a 3×3 sized mask 18 that has an area of 3 pixels in the vertical and horizontal directions, and place the mask 18 in the center of the mask with a predetermined pixel (indicated by diagonal lines in the figure). The median value of the image information of the nine pixels included in the mask is digitized as the digital image data of the predetermined pixel, and this processing is performed. is applied to all pixels in the original image 14 (however, it cannot be applied to pixels located at the outermost periphery, so those pixels are excluded), the digital image data at that pixel is obtained, and the median consisting of this data is calculated. A filtered image 16 is obtained. Note that if a 3×3 size mask is used, it is not possible to perform median filter processing on the outermost pixels as described above, so the processed image 1G is smaller than the original image 14 by 17 pixels on the outermost circumference.
For example, a quantization level O (zero) can be assigned to this outermost pixel portion 17 as image data. The size of the mask is not limited to 3×3. Also, processed image 1
In order to prevent G from becoming small, for example, the original image 14
It is sufficient to perform median filter processing on the assumption that there are pixels around which have the same matrix conversion level as the outermost pixels of the original image. By performing the above median filter processing, it is possible to remove noise in cases where the quantization level is extremely high or low compared to surrounding pixels due to noise, and there is an advantage that the irradiation field contour information is not blurred.

なお、上記前処理は、上記メジアンフィルタ処理に限ら
ず、照射野輪郭等の必要とする情報を残し、ノイズ等の
不要な情報を除くような特性を有する空間フィルタ処理
等であればどの様なものでも良い。
Note that the above preprocessing is not limited to the median filter processing described above, but can be any spatial filter processing that has the characteristics of leaving necessary information such as the contour of the irradiation field and removing unnecessary information such as noise. Anything is fine.

上記の如くしてシート上の各位置におけるデジタル画像
データを求めたら、次に該画像データを微分処理して微
分値から成る微分画像を作成する。
After obtaining digital image data at each position on the sheet as described above, the image data is then subjected to differential processing to create a differential image consisting of differential values.

微分処理はとの様な方法で行なっても良い。Differential processing may be performed in the following manner.

第3図(a)、<b)はそれぞれ処理画像を示す図であ
り、図中の1つ1つのます目はそれぞれ1つの位置を示
寸。
Figures 3(a) and <b) are diagrams showing processed images, and each square in the diagram indicates one position.

例えば、第3図<8 )に示す様に、処理画像16中の
所定粒@20のデジタル画像データを微分するにあたっ
て;画素サイズ2×2のマスク22を用い、該マスク2
2を該マスクの左上部分に上記所定位置20が位置する
J:うに配置し、該マスク22中に含まれる4つの位置
のデジタル画像データを図示の如(a 、 b 、 c
 、 clとすると、  。
For example, as shown in FIG. 3<8), in differentiating the digital image data of a predetermined grain @20 in the processed image 16;
2 is placed in the upper left part of the mask so that the predetermined position 20 is located, and the digital image data of the four positions included in the mask 22 are arranged as shown in the figure (a, b, c).
, cl.

なる演算を行なってそのa′を上記所定位置20にお【
)る微分値とし、この微分計算を各位置について行なう
方法で微分処理しても良い。また、上記式の代りに、 
              ゛なる演算を行なって微
分処理”を行なっても良い。
Perform the calculation and place the a' at the predetermined position 20.
), and the differential calculation may be performed for each position. Also, instead of the above formula,
``Differential processing by performing the following calculations'' may also be performed.

もちろんこれら以外の微分式を用いても栴わない。Of course, using differential expressions other than these will not solve the problem.

さらに、上記例は一次微分処理であるが、第3図(b)
に示す様に画素サイズax3のマスク24を用い、該マ
スクを該マスクの中央□に所定位置2Gが位置するよう
に配置し、該マスク中に含まれる9つめ位置゛のデジタ
ル画像データを図示の如ぐa。
Furthermore, although the above example is a first-order differential process, Fig. 3(b)
As shown in the figure, a mask 24 with a pixel size of ax3 is used, the mask is arranged so that the predetermined position 2G is located at the center □ of the mask, and the digital image data of the ninth position included in the mask is transferred as shown in the figure. Nyogu a.

1) 、  C、d  、  e 、  f  、  
g ’、’  h 、  i  とし゛、なる演算を行
なりでそのe′を上記所′定位置26における微分値と
する゛様な各種の二次微分処理であっても良い。
1) , C, d, e, f,
Various types of second-order differential processing may be used, such as performing the following calculations as g', 'h, and i, and then making e' the differential value at the predetermined position 26.

次に、上記の如くして作成した微分画像に基づいそ照射
野輪郭を検出する。上記デジタル画像データはシー1〜
に入射した放射線のエネルギーの大きさに対応するので
、照射野外の画像データは一般に:低い量子レベルとな
り、照射野内の画像データは一般に高い量子レベルとな
る。従って、照射野゛輪郭が存在する位置にお【プる画
像データの微分値は他の位置における画像′データの微
分値よりも一般に゛大きい量子レベルとなり、その結果
′微分画像中において微分値が最大である位置あるいは
所定′値を適当に設定した場合のその所゛走値以上であ
元位置1ま照射野輪郭が存在する位置で゛あるというε
とができる。       ′       □′尿発
明に係る方法は、上記事実に基づいて微分画一中の照射
野輪郭が存在する位置を次から次にと探□し出して追跡
して行(ことによりその照射野輪郭を検出するもの−で
あり、追跡開始点である第1注目点の検出段階と、該第
1注目点から輪郭存右位置を追跡していく追跡段階の2
つから成る。
Next, the contour of the irradiation field is detected based on the differential image created as described above. The above digital image data is Sea 1~
Corresponding to the magnitude of the energy of the radiation incident on the field, image data outside the field will generally have a low quantum level, and image data within the field will generally have a high quantum level. Therefore, the differential value of the image data at the position where the irradiation field contour exists will generally have a larger quantum level than the differential value of the image data at other positions, and as a result, the differential value in the differential image will be If the maximum position or the predetermined value is set appropriately, ε is the position where the irradiation field contour exists and is greater than or equal to the travel value and reaches the original position 1.
I can do it. '□'Urine The method according to the invention is based on the above fact, and is carried out by searching and tracking the positions where the irradiation field outline exists in the differential fraction one after another (by tracing the irradiation field outline). There are two steps: a step of detecting the first point of interest, which is the starting point of tracking, and a tracking step of tracking the right position of the contour from the first point of interest.
Consists of one.

まず、微分画像を走査して微分値が最大であるもしくは
所定値以上である任意の位置を見い出してそれを第1注
目点とする。
First, the differential image is scanned to find an arbitrary position where the differential value is maximum or greater than a predetermined value, and this is set as the first point of interest.

上述の如く、照射野輪郭が存在する位置の微分値は他の
位置のそれよりも大きく、従って適当に設定された所定
値を使用すれば微分値がその所定値1ズ上である位置は
照射野輪郭が存在する位置であると判断することができ
、また勿論微分値が最大である位置も照射野輪郭が存在
する位置であると判断することができる。よって、まず
上記の如き方法によって照射野輪郭存在位置のうちの1
つを検出し、その位置を第1注目点とする。
As mentioned above, the differential value at the position where the irradiation field contour exists is larger than that at other positions. Therefore, if an appropriately set predetermined value is used, the position where the differential value is 1 z above the predetermined value will not be irradiated. It can be determined that this is the position where the field contour exists, and of course, the position where the differential value is maximum can also be determined to be the position where the irradiation field contour exists. Therefore, first, one of the irradiation field contour existing positions is determined by the method described above.
The first point of interest is detected and its position is set as the first point of interest.

次に、この第1注目点から照射野輪郭の追跡を行ない、
照射野を認識する。この追跡は、まず第1注目点に隣接
する周囲の位置の中から微分値が所定Irti以上であ
る位置を探してこれを第2注目点とし、続いてこの第2
注目点に隣接する周囲の位置であって前の注目点(第1
注目点)を除く位置の中から微分値が所定値以上である
位置を探してこれを第3注目点とし、以後この第3注[
1点を探すプロレスを繰り返して次々ど新たな注目点を
探し出すことによって行なわれる。そして、上記第1注
目点に隣接する位置が新たな注目点として探し出された
らそれまでの注目点を結んだ閉曲線の内側を照射野と認
識する。
Next, the irradiation field contour is tracked from this first point of interest,
Recognize the radiation field. This tracking first searches for a position whose differential value is greater than or equal to a predetermined Irti among the surrounding positions adjacent to the first point of interest, sets this as the second point of interest, and then
The surrounding position adjacent to the point of interest and the previous point of interest (first
The position where the differential value is greater than or equal to a predetermined value is searched among the positions excluding the point of interest), and this is set as the third point of interest.
This is done by repeating professional wrestling in search of one point, and finding new points of interest one after another. When a position adjacent to the first point of interest is found as a new point of interest, the inside of the closed curve connecting the previous points of interest is recognized as the irradiation field.

上記追跡においては、上記隣接する周111の位置の中
に微分値が所¥値双」二であるものが1つしか存在しな
いどぎはその1つの位置を次の注目点とすれば良く、2
つ以上あるときは、予めイの隣接する周囲の位置に対し
て付与しておいた一定の優先順位に従って−M優先順位
の早い位置を、あるいはその2つ以上の位置の中の任意
の位置や微分値最大の位置等を適宜法の注目点とすれば
良く、1つも無いときは隣接する周囲の位置の中で最も
微分値の大きいものを次の注目点どすれば良い。
In the above tracking, if there is only one position on the adjacent circumference 111 whose differential value is equal to the value of 2, then that one position can be set as the next point of interest. 2
If there are more than one position, select the position with the highest priority of -M according to a certain priority given in advance to the adjacent surrounding positions of A, or any position among the two or more positions. The position with the maximum differential value may be set as the point of interest in the method as appropriate, and if there is none, the position with the largest differential value among the adjacent surrounding positions may be set as the next point of interest.

勿論、次の汁「1点となる位置は前および別注n点を除
く位置から選ばれるものである。
Of course, the position for the next soup "1 point" is selected from the positions excluding the previous and specially ordered n points.

上記追跡は、例えば第4図や第5図に示す様なマスクを
用いて行なうことができる。
The above tracking can be performed using a mask as shown in FIG. 4 or FIG. 5, for example.

第4図に示ずマスクは、図示の如く3×3位置サイズの
マスクであり、このマスクを用いて行イIう追跡の一例
を第6図を参照しながら説111]vる。
The mask not shown in FIG. 4 is a mask of 3×3 position size as shown in the figure, and an example of tracking performed using this mask will be explained with reference to FIG. 6.

第6図(a)〜(e)はそれぞれ矩形照射野輪郭を有す
る微分画像28を示すと共に該輪郭の追跡方法を順を追
って説明する図である。
FIGS. 6(a) to 6(e) each show a differential image 28 having a rectangular irradiation field contour and sequentially explain a method of tracking the contour.

まず、第6図(a )に示す様に、前述の如くして求め
られた照射野輪郭上に存在する第1注目点△がマスクの
中央(第4図中斜線を施した部分)に位置するように該
マスクを配置し、このマスク内で微分値が所定値以上に
なる位置(勿論第1注目点Aは除く)を次の第2注目点
とする。もし、複数位置の微分値が所定値以上であると
きはそのいずれを第2注目点として選出しても構わない
が、例えばその中の微分値最大の位置を選出すれば良い
。図示例では、マスクのa部とe部が照射野輪郭位置に
該当するのでそのa部とe部の位置の微分値が所定値以
上であり、かつe部の微分値の方が大きいのでそちらが
第2注目点Bとして選出されている。
First, as shown in Fig. 6(a), the first point of interest △ existing on the irradiation field contour obtained as described above is located at the center of the mask (the shaded area in Fig. 4). The mask is arranged so that the position where the differential value is equal to or greater than a predetermined value within this mask (excluding the first point of interest A, of course) is set as the next second point of interest. If the differential values of a plurality of positions are greater than or equal to a predetermined value, any of them may be selected as the second point of interest, but for example, the position with the maximum differential value among them may be selected. In the illustrated example, parts a and e of the mask correspond to the irradiation field contour positions, so the differential values of the positions of parts a and e are greater than a predetermined value, and the differential value of part e is larger, so is selected as the second point of interest B.

次に、第6図(1))に示ず如(、この第2注目点Bが
中央に位置するようにマスクを移動して、同じくこのマ
スクの中で微分値が所定値Jス上になる位置(勿論現在
の第2注目点Bと直前の第1注目点Aは除く)を次の第
3注目点とする。もし、複数位置の微分値が所定値以上
であるときは、予め付与された一定の優先順位に従って
該順位の一番早い位置を次の第3注目点とする。優先順
位の付与の仕方としては種々考えられるが、この具体例
では、第4図に示されている様に、現在の注目点に隣接
J゛る周囲の位置部分a−hに対して直前に注目点であ
った部分、例えばそれをa部とすると、このa部を基点
として半時計回りに、即ちす。
Next, as shown in Fig. 6 (1)), move the mask so that this second point of interest B is located in the center, and similarly, within this mask, the differential value will be above the predetermined value J. (Of course, excluding the current second point of interest B and the immediately preceding first point of interest A) is the next third point of interest.If the differential values of multiple positions are greater than or equal to a predetermined value, According to the specified priority order, the earliest position in the order is set as the next third point of interest.There are various ways to assign the priority order, but in this specific example, the priority order is given as shown in FIG. Similarly, if the part that was the previous point of interest, for example, part a, is a part of the surrounding position a-h adjacent to the current point of interest, then from part a as the base point, counterclockwise, That is.

c、d、e、f、g、hの順の優先順位が付与されてい
る。従って、第6図(11)の例では新たな第3注目点
となり得る部分のうちe部とf部とが所定値以上の微分
値を有し、このうち優先順位の早いe部の位置が第3注
目点Cどして選出されている。
Priorities are given in the order of c, d, e, f, g, and h. Therefore, in the example of FIG. 6 (11), portions e and f of the portions that can become the new third point of interest have differential values greater than a predetermined value, and the position of portion e, which has the highest priority, is The third point of interest is C.

続いて同様の方法で、即ち微分値が所定値以上の位置を
、もし所定値以上の位置が複数あるとぎは上記した優先
順位の早い方の位置を新たな注目点とすることによって
、第6図(c)、(d)に示す如く第4注目点D1第5
注目点Eを選出し、以後も同様にして順次新たな注目点
を選出して行き、第6図(e)に示す様に第1注目点A
に隣接する位置が新たな注目点下として選出されたら、
今までの第1注目点Aから第n注目点Fまでを結んだ閉
曲線30の内側を照射野10と認識する。
Next, in the same way, if there are multiple positions where the differential value is greater than or equal to the predetermined value, the position with the earlier priority is set as the new point of interest, and the sixth As shown in Figures (c) and (d), the fourth point of interest D1, the fifth
Point of interest E is selected, and new points of interest are successively selected in the same manner, and as shown in FIG. 6(e), the first point of interest A is selected.
If the position adjacent to is selected as the new point of interest,
The inside of the closed curve 30 connecting the first point of interest A to the nth point of interest F is recognized as the irradiation field 10.

なお、第6図中の矢印は照射野輪郭の追跡方向を示し、
本具体例では上記優先順位を半時計回りの方向に定めて
いるので追跡方向も半時4回りになっている。しかし、
優先順位は、時計回り方向に定めても良く、その場合は
追跡方向も時計回りになる。
Note that the arrow in Fig. 6 indicates the tracking direction of the irradiation field contour.
In this specific example, the priority order is set in a counterclockwise direction, so the tracking direction is also in a quarter-clockwise direction. but,
The priority order may be set in a clockwise direction, in which case the tracking direction will also be clockwise.

第5図に示すマスクは、第4図に示すマスクが注目位置
に隣接する周囲の全位置(8位置)をカバーするもので
あったのに比べ、その周囲の位置のうちの一部(4位置
)のみをカバーするJ:うに構成されたものであり、こ
のマスクは追跡方向によって向きを変えて使用するもの
である。なお、第4図中の下部に示す矢印は各マスクを
使用するとぎの追跡方向を示す。
The mask shown in Fig. 5 covers all positions (8 positions) surrounding the position of interest, whereas the mask shown in Fig. 4 covers only a portion (4 positions) of the surrounding positions. This mask is configured to cover only the position (position), and this mask is used by changing its orientation depending on the tracking direction. Note that the arrows shown at the bottom of FIG. 4 indicate the tracking direction when using each mask.

このマスクを用いて矩形照射野を追跡する場合について
説明する。
A case will be described in which a rectangular radiation field is tracked using this mask.

まず、最初の追跡方向を決定する。そのためには、例え
ば微分画像を走査して微分値が最大である位置を探し出
し、その位置を第1注目点八とした場合は、第7図(a
 )に示す様に、第1注目点Aに対してX、V軸方向に
隣接する4つの位置■。
First, determine the initial tracking direction. To do this, for example, if the differential image is scanned to find the position where the differential value is maximum and that position is set as the first point of interest 8, then as shown in Figure 7 (a
), there are four positions (■) adjacent to the first point of interest A in the X and V axis directions.

T1.rff、IVの中で微分値が最大の位置を探し出
し、第1注目点Aからその微分値最大位置の方向に向け
て追跡を開始する。図示の場合、位置■が微分値最大で
あったと仮定すると、その位置■に向けて左方向に追跡
を開始する。
T1. The position where the differential value is maximum is found among rff and IV, and tracking is started from the first point of interest A in the direction of the position where the differential value is maximum. In the case shown in the figure, assuming that the differential value is at the maximum at the position (■), tracking is started in the left direction toward the position (■).

この場合の追跡は、追跡方向が左であるから、第5図<
a >に示ず向きのマスクを使用して該マスクの斜線を
施した部分に第1注目点Aが位置するように、即ち第7
ffi (b ’)に示す様に該マスクを配置、該マス
ク内の位置の中で微分値が所定値以上の位置(第1注目
点Aは除く)を探し出してそれを次の第2注目点とする
。図示例の場合は、マスクのb部のみが所定値以上の微
分値であったので、該す部の位置が第2注目点Bとして
選出されている。
In this case, the tracking direction is to the left, so Fig. 5 <
a > using a mask with a direction other than that shown, so that the first point of interest A is located in the diagonally shaded part of the mask, that is, the seventh
Arrange the mask as shown in ffi (b'), find a position (excluding the first point of interest A) where the differential value is greater than or equal to a predetermined value among the positions in the mask, and use it as the next second point of interest. shall be. In the illustrated example, only portion b of the mask has a differential value greater than or equal to the predetermined value, so the position of the corresponding portion is selected as the second point of interest B.

次に、第7図(C)に示すように、このマスクを移動さ
せて該マスクの斜線部に上記第2注目点Bを位置させ、
その状態でマスク内の位置中機分値が所定値以上の位N
(前の注目点である第1′。
Next, as shown in FIG. 7(C), move this mask to position the second point of interest B in the shaded area of the mask,
In that state, the position N within the mask is greater than or equal to the predetermined value.
(The previous point of interest, 1').

第2注目点A、Bを除く)を探し出してそれを第3注目
点とする。この場合、図示例では1)部と0部とが所定
値以−[の微分値を有すると共に、優先順位は第5図(
a、)中に長い矢印T示す様にa。
(excluding the second points of interest A and B) and set it as the third point of interest. In this case, in the illustrated example, part 1) and part 0 have a differential value greater than or equal to a predetermined value, and the priority order is as shown in FIG.
a,) as shown by the long arrow T inside.

b、、c、dの順に付与されているので、優先順位の早
いb部の位置が次の第3注目点Cとして選出されている
Since they are assigned in the order of b, , c, and d, the position of part b, which has the highest priority, is selected as the next third point of interest C.

次に、第4注目点を選出する訳であるが、第2注目点B
から第3注目点Cへの追跡は依然として左方向であるか
ら同様に第5図(a)のマスクを使用し、該マスクの斜
線部に第3注目点Cが位置するように該マスクを移動し
て第7図(d )に示す状態で微分値が所定値以上の位
置を探し、それを次の第4注目点とする。図示例ではd
部のみが所定値以上の微分値となり、そのd部の位置が
第4注目点りとして選出されている。
Next, we will select the fourth point of interest, the second point of interest B.
Since tracking from to the third point of interest C is still in the left direction, similarly use the mask shown in FIG. Then, in the state shown in FIG. 7(d), a position where the differential value is greater than or equal to a predetermined value is searched for, and this is set as the next fourth point of interest. In the illustrated example, d
Only that part has a differential value greater than a predetermined value, and the position of that part d is selected as the fourth point of interest.

次に、第5注「1点Eを選出する訳であるが、今度は第
3注目点C座ら第4注目点りへの追跡は下方向であるか
ら、第5図(Hのマスクを使用し、該マスクの斜線部に
第′4注目点りが位置する様に該゛マスクを移動して第
7図(e)に示す状態で微分値が所定値以上の位置を探
し、それを次の第5注口点とする。図示例ではb部のみ
が所定値以上の微分値と゛なり、そib部の位置が第5
注目点Eとして選出されている。
Next, note 5: ``One point E is selected, but this time the tracking from the third point of interest C to the fourth point of interest is downward, so we use the mask in Figure 5 (H). Then, move the mask so that the '4th point of interest is located in the shaded area of the mask, search for a position where the differential value is greater than a predetermined value in the state shown in FIG. 7(e), and then In the illustrated example, only part b has a differential value greater than a predetermined value, and the position of part ib is the fifth spout point.
It has been selected as Point of Interest E.

以後同様にして順次新たな注目点を探し出して行き、左
下コーナ部の位置が新たな注目点Fとして選出されたら
、第7図(e )に示す如くマスクが配置されて次の注
目点が探索される。そして、この場合図示の如くマスク
のd部のみが所定値以・上の微分°値となり、そ゛のd
部の位置が次の注目点Gとして選出されると共に、さら
に次の注目点を探す場合は追跡方向が右になるので第5
図(C)に示すマスクを使用し、該マスクを該マスクの
斜線部にこの注目点Gが位置する様に、即ち第7図([
)に示す如く配置し、上記と同様の方法で次の注目点H
を選出する。
Thereafter, new points of interest are sequentially searched for in the same manner, and when the lower left corner position is selected as a new point of interest F, a mask is placed as shown in Figure 7(e) and the next point of interest is searched. be done. In this case, as shown in the figure, only the d portion of the mask has a differential value greater than or equal to a predetermined value;
The position of G is selected as the next point of interest, and when searching for the next point of interest, the tracking direction is to the right, so the fifth point is selected as the next point of interest.
Using the mask shown in FIG.
), and use the same method as above to move to the next point of interest H.
Select.

以後同様にしてこの第5図(C)のマスクを使用して注
目点の検出を続けて行ぎ、第7図(f )中に示す様に
右下コーナ部の位置が新たな注目点Iとなったら次の注
目点Jはマスクのd部の位置となるので追跡方向は上に
変わり、次は第7図((] )に示す如く第5図(d 
)のマスクを使用して追跡を続けて行き、同じく第7図
((] )に示す様に右上コーナ部の位置が新たな注目
点にとなったら次の注目点しはまたマスクのd部の位置
となるので追跡方向は左に変わり、次は第7図(1))
に示ず如く第5図<a >のマスクを使用して追跡を続
けて行く。
Thereafter, the mask of FIG. 5(C) is used to continue detecting points of interest in the same manner, and as shown in FIG. 7(f), the position of the lower right corner becomes a new point of interest I. Then, the next point of interest J is the position of the d part of the mask, so the tracking direction changes upward, and the next point J is the position of the d part of the mask, as shown in Fig. 7 (()).
), and as shown in Figure 7 (( )), when the position of the upper right corner becomes a new point of interest, the next point of interest becomes the d section of the mask. The tracking direction changes to the left, and the next position is (1) in Figure 7).
As shown in FIG. 5, tracking is continued using the mask shown in FIG. 5<a>.

そして、第7図(h)に示す如く第1注目点八に隣接す
る位置が新たな第n注目点Mとして選出されたら、今ま
での第1注目点Δから第n注目点Mまでを結んだ閉曲線
30の内側を照射野10と認識する。
Then, as shown in FIG. 7(h), when the position adjacent to the first point of interest 8 is selected as the new nth point of interest M, the previous first point of interest Δ to the nth point of interest M is connected. The inside of the closed curve 30 is recognized as the irradiation field 10.

なお、上記具体例において、照射野輪郭のコーナ部にお
いてはマスク中に微分値が所定値以上である点が複数出
現η−るとし、輪郭の直線部では所定値以上である点は
1つ出現し、かつ前述の如くそれはマスクのb部に出現
すると仮定して話を進めてきたが、いずれの場合にもマ
スク中に微分値が所定値以上である点が複数出現する可
能性があり、その場合も常に上記した優先順位の早いも
のを次の注目点とする。そして、その次の注目点がa、
b、c部に出現するときは追跡方向は同じとして使用す
るマスクは変えず、d部に出現したとぎのみマスクを変
えて追跡を続ければ良い。なお、この点については第4
図に示ずマスクを使用する場合も同様である。ただし、
この第4図に示すマスクの場合は常に同一のマスクを使
用η−る点がこの第5図のマスクの場合と異なる。
In the above specific example, in the corner part of the irradiation field contour, multiple points whose differential value is equal to or greater than a predetermined value appear in the mask η-, and in the straight part of the contour, one point whose differential value is equal to or greater than the predetermined value appears. However, as mentioned above, we have proceeded with the discussion assuming that it appears in part b of the mask, but in any case, there is a possibility that multiple points with differential values greater than or equal to a predetermined value will appear in the mask. In that case, the item with the highest priority above is always the next point of attention. The next point to note is a.
When an object appears in parts b and c, the tracking direction is the same and the mask used is not changed, and only when it appears in part d, the mask can be changed and tracking can be continued. Regarding this point, please refer to the fourth
The same applies to the case where a mask not shown in the figure is used. however,
The mask shown in FIG. 4 differs from the mask shown in FIG. 5 in that the same mask is always used.

上記の具体例は微分画像中の微分値が最大の位置を第1
注目点とした場合であったが、微分値が所定値以上の任
意の点を第1注目点とする場合も上記と同様に追跡すれ
ば良い。ただし、第5図に示すマスクを使用する場合は
、追跡する方向によって使用するマスクが異なるのでそ
の追跡方向を決定する必要があり、前述の方法の他に、
第7図(+)に示す様に第1注目点八を探し出すときの
走査方向く矢印J方向)を追跡方向とし、最初はその方
向のマスクを使用するようにしても良い。
In the above example, the position of the maximum differential value in the differential image is
Although we have described the case where the point of interest is set as the first point of interest, if any point whose differential value is equal to or greater than a predetermined value is set as the first point of interest, tracking may be performed in the same manner as described above. However, when using the mask shown in Figure 5, the mask to be used differs depending on the tracking direction, so it is necessary to determine the tracking direction.
As shown in FIG. 7 (+), the scanning direction (direction of arrow J) when searching for the first point of interest 8 may be set as the tracking direction, and a mask in that direction may be used initially.

上記の如くして照射野を判定したら、先読みによりIJ
られた画像情報のうちこの照射野内の画像情報のみに基
づいて、本読みにおける読取条件を決定する。この読取
条件は照射野内の画像情報に基づいて種々の方法で決定
することができるが、たとえば前述の様に照射野内の輝
尽発光光量のヒストグラムを作成し、このヒストグラム
から所定の最大輝尽発光光量5IIla×及び最小輝尽
発光光量3 minを求め、このSmax 、 Sm1
nに基づいて読取条件を決定することができる。
After determining the irradiation field as described above, the IJ
The reading conditions for the actual reading are determined based only on the image information within this irradiation field among the image information obtained. This reading condition can be determined in various ways based on the image information within the irradiation field. For example, as described above, a histogram of the amount of stimulated luminescence within the irradiation field is created, and from this histogram, a predetermined maximum stimulated luminescence is determined. Determine the light amount 5IIla× and the minimum stimulated luminescence light amount 3 min, and calculate this Smax, Sm1
Reading conditions can be determined based on n.

なお、読取糸付の決定は、上記照射野内の先読み画像情
報のみに基づいて決定する場合に限らず、さらに頭部、
胸部、腹部等の撮影の対象となる被写体の撮影部位や単
純、造影、断層、拡大撮影等の撮影方法等を加味して決
定することもできる。
Note that the decision to attach a reading thread is not limited to the case where it is determined based only on the pre-read image information within the irradiation field.
The determination can also be made in consideration of the part of the subject to be imaged, such as the chest or abdomen, and the imaging method, such as simple, contrast, tomographic, or magnified imaging.

上述のにうにして照射野を判定()、この照射野内の画
像情報に基づいて本読みの読取条件を決定した後に決定
した読取条件に従って本読みを行なうが、この本読みは
、本出願人が先に出願した特開昭60−120346号
に開示されているように、その読取領域を判定1ノた照
射野内に限るのが好ましい。
After determining the irradiation field as described above () and determining the reading conditions for the main reading based on the image information within this irradiation field, the main reading is performed according to the determined reading conditions. As disclosed in Japanese Unexamined Patent Application Publication No. 120346/1988, it is preferable to limit the reading area to the irradiation field within the determination area.

このように本読みの読取領域を照射野内に限ることによ
って、蓄積性蛍光体シートの照射野外に記録された散乱
線によるノイズ成分は読み取られることがなく、優れた
最終画像を得ることができる。
By thus limiting the reading area for the main reading within the irradiation field, noise components due to scattered radiation recorded outside the irradiation field of the stimulable phosphor sheet are not read, and an excellent final image can be obtained.

また、読取領域が絞られることによって、読取時間の短
縮もしくは読取密度の増大が可能となる。
Furthermore, by narrowing down the reading area, it is possible to shorten the reading time or increase the reading density.

なお、前述した第2図(b)に示す如く処理画像16に
おいてその最外周画素部分17にO(@)が代入されて
いる場合は、たとえ照射野が蓄積性蛍光体シートの内側
に絞られていなくても、実質的に照射野輪郭となるべき
最外周部分の画素における微分値は大きくなり、その画
素部分が照射野輪郭として検出される。また、上記の如
く処理画像中の最外周画素部分にO(零)が代入されて
いない場合は、周囲にO(零)が存在すると仮定して微
分処理すれば同様の結果が得られる。
Note that when O (@) is assigned to the outermost pixel portion 17 in the processed image 16 as shown in FIG. 2(b), even if the irradiation field is focused inside the stimulable phosphor sheet. Even if it is not, the differential value at the pixel in the outermost circumferential portion, which should essentially become the irradiation field contour, becomes large, and that pixel portion is detected as the irradiation field contour. Furthermore, if O (zero) is not assigned to the outermost pixel portion in the processed image as described above, a similar result can be obtained by performing differential processing assuming that O (zero) exists in the surrounding area.

上記実施態様では矩形照射野の場合を取扱ったが円その
他の矩形以外の照射野の場合であっても本発明は適用可
能である。
Although the above embodiment deals with the case of a rectangular irradiation field, the present invention is also applicable to the case of a circle or other non-rectangular irradiation field.

また、上記実施態様では1枚の蓄積性蛍光体シート12
上に1つの照射野10が存在する場合を取り扱ったが、
例えば1枚のシートを2つの区分に分割してそれぞれの
区分にそれぞれ照射野絞りをかGJて撮影を行なういわ
ゆる分割撮影の場合にも本発明は適用可能である。即ち
、分割撮影の場合であっても各区分を1つのシートと考
えればその1つのシート上に1つの照射野が存在するこ
ととなり、従って予め分割撮影であるという情報を得る
ことによって本発明をその各区分毎に適用すれば良いも
のである。
Further, in the above embodiment, one stimulable phosphor sheet 12
We have dealt with the case where one irradiation field 10 exists above the
For example, the present invention is applicable to so-called divided imaging in which one sheet is divided into two sections and each section is imaged by applying a GJ to the irradiation field. That is, even in the case of divided imaging, if each section is considered as one sheet, one irradiation field will exist on that one sheet. Therefore, the present invention can be implemented by obtaining information in advance that it is divided imaging. It is sufficient to apply it to each category.

(発明の効果) 本発明に係る方法は、上述の如く、先読み画像情報から
照射野を認識し、この照射野内における先読み画像情報
に基づいて本読み条件を決定するものであり、かつ上記
照射野の認識は、先読み画像情報に基づいて微分画像を
作成し、この画像中の微分値が最大もしくは所定値以上
の任意の点を第1注目点とし、この第1注目点に隣接す
る周囲の位置の中から微分値が所定値以上である位置を
探し出してこれを新たな第2注目点とし、以後同様にし
て次々と新たな注目点を探し出し、上記第1注目点に隣
接する位置が新たな注目点として探し出されたらそれま
での注目点を結んだ閉曲線の内側を照射野と認識するこ
とによって行なうものである。
(Effects of the Invention) As described above, the method according to the present invention recognizes an irradiation field from pre-read image information, determines main reading conditions based on the pre-read image information within this irradiation field, and In recognition, a differential image is created based on pre-read image information, an arbitrary point in this image where the differential value is the maximum or a predetermined value or more is set as the first point of interest, and surrounding positions adjacent to this first point of interest are A position whose differential value is equal to or greater than a predetermined value is found from among them, and this is set as a new second point of interest.From then on, new points of interest are searched one after another in the same manner, and the position adjacent to the first point of interest is set as a new point of interest. When a point is found, this is done by recognizing the inside of the closed curve connecting the points of interest up to that point as the irradiation field.

前述の如く、上記微分画像においては、照射野輪郭が存
在する位置の微分値は他の位置のそれよりも大きくなる
。従って、微分値が最大もしくは適当に設定された所定
値以上の任意の位置である上記第1注目点は照射野輪郭
上の位置であり、またこの第1注目点に隣接する周囲の
位置の中で微分値が所定値以上の位置を次の第2注目点
とし、この方法を繰り返して次々と新しい注目点を探し
出すということは順次照射野輪郭上の位置を追跡してい
くことを意味する。
As described above, in the differential image, the differential value at the position where the irradiation field contour exists is larger than that at other positions. Therefore, the above-mentioned first point of interest, which is an arbitrary position where the differential value is the maximum or more than a predetermined value set appropriately, is a position on the irradiation field contour, and among the surrounding positions adjacent to this first point of interest. The position where the differential value is greater than or equal to a predetermined value is set as the second point of interest, and repeating this method to find new points of interest one after another means sequentially tracking the positions on the irradiation field contour.

従って、本発明に係る方法によれば、照射野を適確に認
識することができ、その結果照射野が絞られている場合
であっても、シート上の照射野外に入射した散乱線によ
る悪影響を排除し、シート上の照射野内の有効画像情報
のみに基づいて読取条件を決定するので、常に最適な読
取条件を決定することができる。
Therefore, according to the method according to the present invention, it is possible to accurately recognize the irradiation field, and as a result, even when the irradiation field is narrowed down, there are no adverse effects caused by scattered radiation incident on the irradiation field on the sheet. Since the reading conditions are determined based only on the effective image information within the irradiation field on the sheet, the optimum reading conditions can always be determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は照射野絞りをかけて撮影した蓄積性蛍光体シー
トを示す図、 第2図(a)は各画素毎の先読み画像情報から成る原画
像を示す図、 第2図(b)は原画像をメジアンフィルタ処理した処理
画像を示す図、 第3図(a)、(b)はそれぞれ処理画像中の位置と微
分処理を行なうときに使用するマスクを示す図、 第4図および第5図(a ’)〜(d )は新たな注目
点を探し出すときに使用するマスクを示す図、第6図(
a )〜(e )は第4図に示すマスクを用いて新たな
注目点を探し出す方法の説明図、第7図(a) 〜(i
>は第5図(a) 〜(d)に示すマスクを用いて新た
な注目点を探し出す方法の説明図である。 10・・・照 射 野  12・・・蓄積性蛍光体シー
ト14・・・原  画  像   16・・・処  理
  画  像28・・・微分画像   30・・・閉 
 曲  線(自発)手続ネ甫正書 特許庁長官 殿           昭和61年10
月1日特願昭60−155848号 2、発明の名称 放射線画像情報の読取条件決定方法 3、補正をする者 事件との関係     特許出願人 任 所   神奈川県南足柄市中沼210番地名 称 
   富士写真フィルム株式会社4、代理人
Figure 1 is a diagram showing a stimulable phosphor sheet photographed with an irradiation field aperture, Figure 2 (a) is a diagram showing an original image consisting of pre-read image information for each pixel, and Figure 2 (b) is a diagram showing a stimulable phosphor sheet photographed with an irradiation field aperture. Figures 3(a) and 5(b) are diagrams showing the positions in the processed images and masks used when performing differential processing, respectively. Figures 4 and 5 are diagrams showing processed images obtained by median filtering the original image. Figures (a') to (d) are diagrams showing masks used when searching for new points of interest, and Figure 6 (
a) to (e) are explanatory diagrams of a method for finding new points of interest using the mask shown in Fig. 4, and Fig. 7 (a) to (i)
> is an explanatory diagram of a method of finding a new point of interest using the masks shown in FIGS. 5(a) to 5(d). 10... Irradiation field 12... Stimulative phosphor sheet 14... Original image 16... Processed image 28... Differential image 30... Closed
Curved (Voluntary) Procedure Nefusho Commissioner of the Patent Office October 1986
Patent Application No. 60-155848 No. 1 dated May 1, 1989 2, Name of the invention, Method for determining reading conditions for radiographic image information 3, Relationship with the case of the person making the amendment Patent applicant Location 210 Nakanuma, Minamiashigara City, Kanagawa Prefecture Name Name
Fuji Photo Film Co., Ltd. 4, Agent

Claims (3)

【特許請求の範囲】[Claims] (1)放射線画像情報が照射野絞りをかけて蓄積記録さ
れている蓄積性蛍光体シートに励起光を照射することに
より、該蓄積性蛍光体シートに蓄積記録されている放射
線画像情報を輝尽発光光として放出せしめ、この輝尽発
光光を光電的に読み取つて可視像を出力するための電気
的画像信号を得る本読みに先立ち、該本読みにおいて用
いられる励起光のエネルギーよりも低いエネルギーの励
起光を用いて前記蓄積性蛍光体シートに蓄積記録されて
いる前記放射線画像情報を読み取る先読みを行ない、こ
の先読みにより得られた画像情報に基づいて前記本読み
における読取条件を決定する放射線画像情報の読取条件
決定方法において、前記先読みにより得られた画像情報
から前記蓄積性蛍光体シート上の各位置におけるデジタ
ル画像データを求め、このデジタル画像データを微分処
理し、得られた微分値から成る微分画像において、まず
微分値が最大もしくは所定値以上の任意の位置を第1注
目点として選出し、次にこの第1注目点に隣接する周囲
の位置の中から微分値が所定値以上である位置を探して
これを第2注目点とし、続いてこの第2注目点に隣接す
る周囲の位置であって前の注目点を除く位置の中から微
分値が所定値以上である位置を探してこれを第3注目点
とし、以後この第3注目点を探すプロセスを繰り返して
次々と新たな注目点を探し出し、上記第1注目点に隣接
する位置が新たな注目点として探し出されたらそれまで
の注目点を結んだ閉曲線の内側を照射野として認識し、
この照射野内における前記先読みにより得られた画像情
報に基づいて前記本読みにおける読取条件を決定するこ
とを特徴とする放射線画像情報の読取条件決定方法。
(1) By irradiating the excitation light onto the stimulable phosphor sheet on which the radiation image information is stored and recorded with an irradiation field aperture, the radiation image information stored on the stimulable phosphor sheet is radiated. Prior to main reading to emit luminescent light and photoelectrically read this stimulated luminescent light to obtain an electrical image signal for outputting a visible image, excitation with energy lower than the energy of the excitation light used in the main reading is performed. Reading the radiation image information by performing pre-reading of the radiation image information stored and recorded on the stimulable phosphor sheet using light, and determining reading conditions for the main reading based on the image information obtained by this pre-reading. In the condition determination method, digital image data at each position on the stimulable phosphor sheet is obtained from the image information obtained by the pre-reading, the digital image data is subjected to differential processing, and a differential image consisting of the obtained differential values is obtained. , first select an arbitrary position where the differential value is the maximum or a predetermined value or more as the first point of interest, and then search for a position whose differential value is greater than or equal to the predetermined value from among the surrounding positions adjacent to this first point of interest. This is set as the second point of interest, and then a position whose differential value is greater than or equal to a predetermined value is searched among the surrounding positions adjacent to this second point of interest, excluding the previous point of interest, and this is selected as the second point of interest. The process of searching for this third point of interest is then repeated to find new points of interest one after another, and when a position adjacent to the first point of interest is found as a new point of interest, the previous point of interest is The inside of the closed curve connecting the is recognized as the irradiation field,
A method for determining reading conditions for radiation image information, characterized in that reading conditions for the main reading are determined based on image information obtained by the pre-reading within the irradiation field.
(2)上記第2注目点以降の新たな注目点を探し出す場
合において上記隣接する周囲の位置の中に微分値が所定
値以上であるものが複数存在するときは、予め該隣接す
る周囲の位置に対して一定の優先順位を付与しておき、
微分値が所定値以上である複数の位置のうち優先順位が
一番早い位置を次の新たな注目点とすることを特徴とす
る特許請求の範囲第1項に記載の放射線画像情報の読取
条件決定方法。
(2) When searching for a new point of interest after the second point of interest, if there are multiple points whose differential value is greater than or equal to the predetermined value among the adjacent surrounding positions, the adjacent surrounding positions must be searched in advance. Give a certain priority to
The reading condition for radiographic image information according to claim 1, characterized in that the position with the earliest priority among the plurality of positions whose differential value is equal to or greater than a predetermined value is set as the next new point of interest. How to decide.
(3)上記第2注目点以降の新たな注目点を探し出す場
合において上記隣接する周囲の位置の中に微分値が所定
値以上であるものが存在しないときは、その隣接する周
囲の位置の中で微分値が最大の位置を次の新たな注目点
とすることを特徴とする特許請求の範囲第1項に記載の
放射線画像情報の読取条件決定方法。
(3) When searching for a new point of interest after the second point of interest, if there is no point among the adjacent surrounding positions whose differential value is greater than or equal to the predetermined value, then The method for determining reading conditions for radiographic image information according to claim 1, characterized in that the position where the differential value is maximum is determined as the next new point of interest.
JP60155848A 1984-07-31 1985-07-15 Determining method for readout condition of radiation image information Granted JPS6215541A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60155848A JPS6215541A (en) 1985-07-15 1985-07-15 Determining method for readout condition of radiation image information
US06/760,862 US4851678A (en) 1984-07-31 1985-07-31 Method of adjusting radiation image read-out conditions
EP85109602A EP0170270B1 (en) 1984-07-31 1985-07-31 Method of adjusting radiation image read-out conditions
DE8585109602T DE3576898D1 (en) 1984-07-31 1985-07-31 METHOD FOR SETTING RADIATION IMAGE READING CONDITIONS.
DE3588169T DE3588169T2 (en) 1984-07-31 1985-07-31 Method for detecting an image exposure area in an image readout process
EP89106513A EP0328165B1 (en) 1984-07-31 1985-07-31 Method of detecting an exposure field of an image in an image read-out process
US07/164,654 US4931644A (en) 1984-07-31 1988-03-07 Method of adjusting radiation image read-out conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60155848A JPS6215541A (en) 1985-07-15 1985-07-15 Determining method for readout condition of radiation image information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61244850A Division JPS62104265A (en) 1986-10-15 1986-10-15 Method for recognizing irradiation field

Publications (2)

Publication Number Publication Date
JPS6215541A true JPS6215541A (en) 1987-01-23
JPH0584504B2 JPH0584504B2 (en) 1993-12-02

Family

ID=15614821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155848A Granted JPS6215541A (en) 1984-07-31 1985-07-15 Determining method for readout condition of radiation image information

Country Status (1)

Country Link
JP (1) JPS6215541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215536A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information
JPH08185525A (en) * 1994-12-28 1996-07-16 Fuji Photo Film Co Ltd Image display device and method for demarcating area in image

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621278A (en) * 1979-07-28 1981-02-27 Fujitsu Ltd Profile pickup system
JPS5919939A (en) * 1982-07-27 1984-02-01 Fuji Photo Film Co Ltd Reading method of radiation picture information
JPS5981642A (en) * 1982-11-01 1984-05-11 Fuji Photo Film Co Ltd Recording system for photographic picture density information
JPS603060A (en) * 1983-06-20 1985-01-09 Mitsubishi Heavy Ind Ltd Collecting device for image contour
JPS60127404A (en) * 1983-12-13 1985-07-08 Matsushita Electric Ind Co Ltd Contour-line detecting method
JPS6215536A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621278A (en) * 1979-07-28 1981-02-27 Fujitsu Ltd Profile pickup system
JPS5919939A (en) * 1982-07-27 1984-02-01 Fuji Photo Film Co Ltd Reading method of radiation picture information
JPS5981642A (en) * 1982-11-01 1984-05-11 Fuji Photo Film Co Ltd Recording system for photographic picture density information
JPS603060A (en) * 1983-06-20 1985-01-09 Mitsubishi Heavy Ind Ltd Collecting device for image contour
JPS60127404A (en) * 1983-12-13 1985-07-08 Matsushita Electric Ind Co Ltd Contour-line detecting method
JPS6215536A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215536A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information
JPH0584500B2 (en) * 1985-07-15 1993-12-02 Fuji Photo Film Co Ltd
JPH08185525A (en) * 1994-12-28 1996-07-16 Fuji Photo Film Co Ltd Image display device and method for demarcating area in image

Also Published As

Publication number Publication date
JPH0584504B2 (en) 1993-12-02

Similar Documents

Publication Publication Date Title
US4851678A (en) Method of adjusting radiation image read-out conditions
US4747052A (en) Radiation image processing
JPH06304159A (en) Method for recognizing picture photographing position
JP4307877B2 (en) Image processing apparatus and image processing method
JP2631737B2 (en) Method for determining image points in subject image
JPS6215541A (en) Determining method for readout condition of radiation image information
JP2598636B2 (en) Image processing condition determination method
JPS6139039A (en) Method for determining reading condition of radiation picture information
JP2961437B2 (en) Image output method
JPH02266477A (en) Method for detecting false image signal
JPH0464222B2 (en)
JP2707355B2 (en) Image recording position recognition device
JPS62115969A (en) Radiation field recognizing method
JPS62104264A (en) Method for recognizing irradiation field
JPH0549143B2 (en)
JP2582666B2 (en) Abnormal shadow detector
JPH04261649A (en) Method and apparatus for analyzing radiation image
JPS6215536A (en) Determining method for readout condition of radiation image information
JPH0464225B2 (en)
JPH01238650A (en) Object recognition method for radiographic image
JPS6215540A (en) Determining method for readout condition of radiation image information
JP2631747B2 (en) Circular pattern determination method and apparatus
JPH0584503B2 (en)
JPH02272530A (en) Method for recognizing divided pattern of radiograph
JPH0584502B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees