JPS6215536A - Determining method for readout condition of radiation image information - Google Patents

Determining method for readout condition of radiation image information

Info

Publication number
JPS6215536A
JPS6215536A JP15584385A JP15584385A JPS6215536A JP S6215536 A JPS6215536 A JP S6215536A JP 15584385 A JP15584385 A JP 15584385A JP 15584385 A JP15584385 A JP 15584385A JP S6215536 A JPS6215536 A JP S6215536A
Authority
JP
Japan
Prior art keywords
point
interest
reading
irradiation field
image information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15584385A
Other languages
Japanese (ja)
Other versions
JPH0584500B2 (en
Inventor
Yuma Adachi
足立 祐馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP15584385A priority Critical patent/JPS6215536A/en
Priority to EP89106513A priority patent/EP0328165B1/en
Priority to DE3588169T priority patent/DE3588169T2/en
Priority to EP85109602A priority patent/EP0170270B1/en
Priority to US06/760,862 priority patent/US4851678A/en
Priority to DE8585109602T priority patent/DE3576898D1/en
Publication of JPS6215536A publication Critical patent/JPS6215536A/en
Priority to US07/164,654 priority patent/US4931644A/en
Publication of JPH0584500B2 publication Critical patent/JPH0584500B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Processing Or Creating Images (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To determine optimum readout condition by recognizing the size of a closed curve formed by connecting aimed points obtained so far in order as an irradiation field when the aimed points are searched for successively and the 1st aimed point is reached, and determining primary readout condition on the basis of preread image information in the irradiation field. CONSTITUTION:Digital data are obtained at respective positions on a sheet and differentiated to form a differential image and the contour of the irradiation field is detected on the basis of the differential image. One of presence positions of the irradiation field is detected as the 1st aimed point and the contour of the irradiation field is traced from the 1st aimed point to recognize the irradiation field. In this tracing, the position which has the largest differential value among peripheral positions adjoining to the 1st aimed point is searched for as the 2nd aimed point and then the position having the largest differential value among peripheral positions adjoining to the 1st aimed point except said aimed point (1st aimed point) is searched for as the 3rd aimed point. Thus when the position adjoining to the 1st aimed point is searched for as a new aimed point, the aimed points obtained so far are connected to form the closed curve, whose inside area is recognized as the irradiation field.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、医療用診断等に用いる蓄積f11蛍光体利用
の放射線画像情報i日録再生システトにおいて使用覆る
放射線画像情報の読取条イ′1決定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method for determining reading conditions for radiation image information used in a radiation image information diary playback system using storage f11 phosphor used for medical diagnosis, etc. Regarding.

(発明の技術的費用及び従来技術) ある種の蛍光体に放射線(X線、α線、β線。(Technical cost of invention and prior art) Certain types of phosphors are exposed to radiation (X-rays, α-rays, β-rays.

γ線、電子線、紫外線等)を照射すると、このhり射線
エネルギーの一部が蛍光体中に蓄積され、この蛍光体に
可視光等の励起光を照Q・1するど、蓄積されたエネル
ギーに応じて蛍光体が輝尽発光を示でことが知られてお
り、このような性質を示J蛍光体は蓄積性蛍光体と呼ば
れる。
When irradiated with γ-rays, electron beams, ultraviolet rays, etc., a part of this ray energy is accumulated in the phosphor, and when the phosphor is irradiated with excitation light such as visible light, the energy is accumulated. It is known that phosphors exhibit stimulated luminescence depending on energy, and phosphors exhibiting this property are called stimulable phosphors.

この蓄積↑tt蛍光体を利用して、人体等の被写体の放
射線画像情報を一11シート状の蓄積f勺蛍光体に記録
し、その後、この蓄積性蛍光体シートをレーザ光等の励
起光で走査して輝尽発光光を生【!′シめ、この輝尽発
光光を光電的に読み取つ−U 1illl倣悟号を行、
この画像信号に基づき被写体の放射線画像を写真感光材
料等の記録材料、CRT等の表示装置に可視像として出
力させる放射線画像情報記録再生システムが本出願人に
よりづでに提案されている(特開昭55−12429弓
、同56−113958イ1と)。
Using this accumulation ↑tt phosphor, radiation image information of a subject such as a human body is recorded on a sheet-shaped accumulation phosphor, and then this stimulable phosphor sheet is exposed to excitation light such as a laser beam. Scan and generate photostimulated light [! 'Then, read this stimulated luminescent light photoelectrically.
The applicant has proposed a radiation image information recording and reproducing system that outputs the radiation image of the subject as a visible image to a recording material such as a photographic light-sensitive material or to a display device such as a CRT based on this image signal. 1985-12429 bow, 56-113958-1).

上記放射線画像情報記録再生システムの一態様どして、
被写体の放射線画像情報がh々射線−1ネルギーレベル
を媒体として蓄積記録されている蓄積性蛍光体シートを
励起光にJ、リノ!=査し、この走査により前記シート
から発せられた輝尽発光光を光電読取手段により読み取
って診断用可視像を再ノ1するための電気的画像信8を
得る[本読み1に先で1つて、予めこの本読みに用いら
れる励起光よりも低レベルの励起光により前記シー1〜
を走査してこのシートに蓄積記録された画像情報の概略
を読み取る[先読み1を行い、この先読みにより行Iう
れた画像情報に基づいて前記本読みを行う際の読取条件
を決定し、この読取条件に従って前記本読みを行い、こ
の本読みによりiqられた画像信号を画像処理手段に入
力し、この画像処理手段で撮影部位および撮影方法等に
応じて診断目的に適した−3 = 出力画像が得られる様に画像信号を処理し、この画像信
号を9貞感光14利等に可視出力画像として再生り−る
システムが知られており、ICとえぼ本出願人が外に出
願し、既に出願公開された特開昭58−67240号公
報に開示され−Cいる。
One aspect of the radiation image information recording and reproducing system described above includes:
A stimulable phosphor sheet, in which radiation image information of a subject is stored and recorded using the h-ray-1 energy level as a medium, is used as excitation light.J, Reno! = scanning, and by this scanning, the stimulated luminescence light emitted from the sheet is read by a photoelectric reading means to obtain an electrical image signal 8 for reproducing a visible image for diagnosis. Therefore, in advance, the above-mentioned Sea 1 to
scan to read the outline of the image information accumulated and recorded on this sheet. The main reading is performed according to the main reading, and the image signal q'd by this main reading is input to the image processing means, and the image processing means obtains an output image suitable for the diagnostic purpose according to the imaging site, imaging method, etc. A system is known that processes an image signal on a computer and reproduces this image signal as a visible output image on a photosensitive and optical system. It is disclosed in Japanese Unexamined Patent Publication No. 58-67240.

ここで読取条件とは、読取りにおIする輝尽発、発光の
光量と読取装置の出力との関係に影響を47える各種の
条ヂ1を総称するものであり、例えば入出力の関係を定
める読取ゲイン(感磨)、スケールファクタ(ラチチュ
ード)あるいは、読取りにお(プる励起光のパワー等を
意味するものである。
Here, the reading conditions are a general term for various conditions that affect the relationship between the photostimulation and the amount of light emitted during reading and the output of the reading device, for example, the relationship between input and output. It refers to the read gain (sensitivity), scale factor (latitude), or power of excitation light used for reading.

また、先読みに用いられる励起光が本読みに用いられる
励起光よりも低レベルであるとは、先読みの際に蓄積性
蛍光体シートが単位面梢当りに受GJる励起光の有効エ
ネルギーが本読みの際のてれよりも小さいことを意味す
る。先読みの励起光を本読みの励起光よりも低レベルど
する方法と【)で、レーザ光源等の励起光光源の出力を
小とするjノ法、光源より放射された励起光をぞの光路
においてNDフィルり、AOM等によって減衰ざ1!る
111人、および先読み用の光源ど本読み用の光源どを
別個にKQ 4−、J、前者の出力を後者の出力J、り
も小どする方法が挙げられ、さらに(よ励起光のビーム
径を人とでる方法、励起光のル査速磨を人とする方法、
蓄積性蛍光体シー1〜の移送迷電を人とする方法等が挙
げられる。
In addition, the fact that the excitation light used for pre-reading is at a lower level than the excitation light used for main reading means that the effective energy of the excitation light that the stimulable phosphor sheet receives per unit surface during pre-reading is lower than the excitation light used for main reading. It means smaller than the edge. A method of lowering the level of the excitation light of the pre-reading than the excitation light of the main reading, a method of reducing the output of the excitation light source such as a laser light source, and a method of lowering the output of the excitation light source such as a laser light source, and a method of reducing the excitation light emitted from the light source in the next optical path. Attenuation due to ND fill, AOM, etc. 1! In addition, there is a method in which the light source for pre-reading and the light source for main reading are separately set, and the output of the former is reduced by the output of the latter. How to make the diameter appear as a human, how to make the scanning speed of the excitation light a human,
Examples include a method of transferring stray electricity of the stimulable phosphor sheet 1 to a person.

この様に、本読みに先X′tつで予め前記シートに蓄積
記録された画像情報の概略を把握し、この画像情報の概
略に基づいて決定した読取条4/1に従って本読みを行
うことににす、被写体や撮影部位の変動あるいは放射練
液ば< fitの変動等に基づく前記シートに蓄積記録
された放射線エネルギーレベル範囲の変動による不都合
を排除し、常に望ましい読取条件で本読みを行なうこと
ができる。
In this way, prior to the main reading, we have grasped the outline of the image information stored on the sheet in advance at This eliminates inconveniences caused by fluctuations in the radiation energy level range accumulated and recorded on the sheet due to fluctuations in the subject or imaging area or fluctuations in the radiation energy level, etc., making it possible to always perform actual reading under desirable reading conditions. .

この様な先読みに31、り得られた画像情報に基づいて
本読みの際の読取条伯を決定する巨体的方法としては、
例えば、先読みにおける輝尽発光光量のヒストグラムを
求めると几にこのヒストグラムからこのヒストグラムに
お(〕る所望画像情報範囲の最人輝尽発光光吊3 ma
xおよび最小輝尽発光光絹3 minを求め、このSm
axおよびS minがそれぞれ、可視出力画像におl
する適正ilJ度鞘囲の最人園度1’) maxおよび
最小濃(fl 11m1nににって決定される画像処即
手段における所望入力信号範囲の111大信号レベルQ
 maxおよび最小信号レベル010に対応する様に本
読みの読取条件を決定する方法が、本出願人により出願
されている(特願昭59−12658号)。
31. As a macroscopic method for determining the reading position during main reading based on the image information obtained from such pre-reading,
For example, if you calculate the histogram of the amount of stimulated luminescence in the look-ahead, you can carefully calculate the maximum amount of stimulated luminescence of the desired image information range from this histogram by 3 ma.
x and the minimum stimulated luminescent light silk 3 min, and this Sm
ax and S min are respectively l in the visible output image.
111 large signal level Q of the desired input signal range in the image processing means determined by the maximum density (1') max and minimum density (fl 11m1n)
The present applicant has filed an application for a method of determining reading conditions for main reading so as to correspond to the maximum and minimum signal levels of 010 (Japanese Patent Application No. 12658/1982).

一方、人道上診断に必要ない部分に放射線を照射しない
ようにするため、あるいは診断に不要な部分に放射線を
あてるとその部分から診断に必要な部分に散乱線が入り
、コントラスト分解能が低下するのでこれを防ぐために
、放射線画像情報記録時には放射線の照射野を絞ること
が好ま1ノい1合が多い。ところが、この様に放射線の
照射野を絞った場合には、通常、蓄積性蛍光体シート1
−の照射野外に照射野の被写体から発生した散乱線が入
射し、高感麿の蓄1竹蛍光体シートはこの散乱線をも蓄
積記録してしまうので、先読みによって求める輝尽発光
光量のヒストグラム中にはこの散乱線に基づく輝尽発光
光量も含まれることとなる。
On the other hand, in order to avoid irradiating radiation to areas that are not necessary for humane diagnosis, or if radiation is applied to areas that are unnecessary for diagnosis, scattered radiation will enter the areas necessary for diagnosis from that area, reducing contrast resolution. To prevent this, it is preferable to narrow down the radiation irradiation field when recording radiation image information. However, when the radiation field is narrowed down in this way, the stimulable phosphor sheet 1
- Scattered rays generated from the subject in the irradiation field enter the field of irradiation, and the highly sensitive phosphor sheet accumulates and records these scattered rays, so the histogram of the amount of stimulated luminescence obtained by looking ahead This includes the amount of stimulated luminescence based on this scattered radiation.

そして、この散乱線に基づくシート十における照射野外
の輝尽発光光量は照射野内の輝尽発光光量よりも大きい
場合もあるので、求められたヒストグラムからはト記照
射野内外の輝尽発光光量の区別を行なうことは困難であ
る。従って、前述のようにヒストグラムからSmax 
、 Sm1nを求め、これから読取条件を決定する場合
に、木来照射野内の輝尽発光光量の最小値がSm1nと
されるべきところ照射野外の散乱線による輝尽発光光量
の最小値がS minとされる場合が生じ得る。そして
、この様に照射野外の輝尽発光光量の最小値がS si
nとされた場合、一般にその値は照射野内の輝尽発光光
5%の最小値よりも低いので、本読みにおいて診断に不
要な散乱線を低lI痩域に収録することとなり、従って
診断に必要な部分の画像の11反が高くなり過ぎ、その
結果コントラストが低下して、満足な診断が困難となる
Based on this scattered radiation, the amount of stimulated luminescence outside the irradiation field on sheet 1 is sometimes larger than the amount of stimulated luminescence inside the irradiation field, so the obtained histogram shows that the amount of stimulated luminescence inside and outside the irradiation field It is difficult to make a distinction. Therefore, as mentioned above, from the histogram, Smax
, Sm1n, and when determining the reading conditions from this, the minimum value of the stimulated luminescence light amount in the Kiri irradiation field should be Sm1n, but the minimum value of the stimulated luminescence light amount due to the scattered radiation outside the irradiation field is Smin. There may be cases where this is done. In this way, the minimum value of the amount of stimulated luminescence outside the irradiation field is S si
If it is n, the value is generally lower than the minimum value of 5% of stimulated luminescence within the irradiation field, so in the main reading, scattered radiation unnecessary for diagnosis will be recorded in the low lI lean area, and therefore necessary for diagnosis. 11 of the image becomes too high, and as a result, the contrast decreases, making it difficult to make a satisfactory diagnosis.

即ら、照射野を絞って撮影を行なった場合、シート上に
おける照射野外に被写体から発生した散乱線が入射し、
先読みにより1ηられた画像情報中には、この散乱線に
基づ(ものも含まれることとなるので、この様な先読み
画像情報に基づいて読取条件を決定しても最適な読取条
nを決定することは困難であり、その結果観察読影適性
に優れた可IA像を得ることが困難となる。
That is, when shooting with a narrowed irradiation field, scattered radiation generated from the subject enters the irradiation field on the sheet,
The image information obtained by 1η by pre-reading includes information based on this scattered radiation, so even if the reading conditions are determined based on such pre-read image information, the optimal reading line n cannot be determined. As a result, it is difficult to obtain an IA image that is suitable for observation and interpretation.

(発明の目的) 本発明の目的は、上記事情に鑑み、先読みによって得ら
れた画像情報に基づいて本読みの際の読取条件を決定す
る方法であって、照射野を絞って撮影した場合であって
も上述した照射野絞りによる不都合を排除し、最適な読
取条件を決定することができる方法を提供することにあ
る。
(Object of the Invention) In view of the above-mentioned circumstances, the object of the present invention is to provide a method for determining reading conditions for main reading based on image information obtained by pre-reading. The object of the present invention is to provide a method that can eliminate the above-mentioned inconvenience caused by narrowing the irradiation field and determine optimal reading conditions.

(発明の構成) 本発明に係る読取条件決定方法は、上記目的を達成する
ため、先読みにより得られた画像情報から蓄積性蛍光体
シート上の各位置におけるデジタル画像データを求め、
このデジタル画像データを微分処即し、得られた微分倫
から成る微分画像において、まず微分値が最大もしくは
所定値以上の一8= 任意の位置を探し出してこれを第1注目点とし、次にこ
の第1注目点に隣接する周囲の位置の中から微分値が最
大である位置を探してこれを第2注目点とし、続いてこ
の第2注目点に隣接する周囲の位置であって前の注目点
、即ち第1注目点を除(位置の中から微分値が最大であ
る位置を探してこれを第3注目点とし、以後のこの第3
注目点を探すプロセスを繰り返して次々と新たな注目点
を探し出し、上記第1注目点に隣接する位置が新たな注
目点として探し出されたら、即ち上記方法で注目点を順
次探し出して第1注目点にまで戻りついたら、それまで
の注目点を順次結んで形成した閉曲線の内側を照射野と
認識し、この照射野内の前記先読み画像情報に基づいて
本読みの際の読取条件を決定することを特徴とする。
(Structure of the Invention) In order to achieve the above object, the reading condition determination method according to the present invention calculates digital image data at each position on a stimulable phosphor sheet from image information obtained by pre-reading,
This digital image data is subjected to differential processing, and in the differential image made up of the obtained differential equations, first find an arbitrary position where the differential value is the maximum or a predetermined value or more, make this the first point of interest, and then Find the position with the maximum differential value from among the surrounding positions adjacent to this first point of interest, set this as the second point of interest, and then Divide the point of interest, that is, the first point of interest (search for the position with the maximum differential value among the positions, set this as the third point of interest, and then
The process of searching for points of interest is repeated to find new points of interest one after another, and when a position adjacent to the first point of interest is found as a new point of interest, that is, the points of interest are sequentially searched using the above method and the point of interest is searched for as the first point of interest. When it returns to the point, it recognizes the inside of the closed curve formed by sequentially connecting the points of interest up to that point as the irradiation field, and determines the reading conditions for main reading based on the pre-read image information within this irradiation field. Features.

なお、上記における[注目点に隣接する周囲の位置]と
は、必ずしも注目点に隣接する周囲の位置の全部である
必要はない。例えば予め照射野輪郭赫わかっている場合
はその輪郭の形状に応じて決定される一部の位置であっ
ても良い。
Note that the above-mentioned [surrounding positions adjacent to the attention point] do not necessarily have to be all of the surrounding positions adjacent to the attention point. For example, if the contour of the irradiation field is known in advance, a part of the position may be determined according to the shape of the contour.

(実施態様) 以下、図面を参照Lノ’T;がら本発明の実施態様につ
いて詳細に説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

以下に説明する実施態様は、第1図に示M様に、矩形の
照射野絞りをか(Jて1IIi影された1つの照用野1
0を右する蓄積性蛍光体シート12を読み取る用台の読
取条例決定方法である。図中に示寸×輔(よシー1〜1
2を走査して画像情報を先読みりる際の↑走査方向を示
し、y軸はその副走査方向を承り。
The embodiment described below uses a rectangular illumination field diaphragm as shown in FIG.
This is a method for determining the reading regulations of a stand for reading a stimulable phosphor sheet 12 that has a value of 0. Dimensions indicated in the diagram
↑ indicates the scanning direction when scanning 2 and pre-reading image information, and the y-axis indicates the sub-scanning direction.

まず、第1図に示J蓄積f1蛍光体シート12から前述
の如き先読みを行なうことによって該シート12に蓄積
記録されている画像情報を読み取る。
First, the image information accumulated and recorded on the J storage f1 phosphor sheet 12 shown in FIG. 1 is read by performing the above-described pre-reading.

先読みによって蓄積性蛍光体シー1−1.2h目)画像
情報を読み取るとは、該シート12を先読み6nIR光
走査することによって該シート12から光ぜられる輝尽
発光光を光電変換手段(・読み取−)で該シート12上
の各走査点(すなわら各画m、>inの輝尽発光光量に
対応する電気信号から成る情報を入−flることを意味
する。
Reading the image information of the stimulable phosphor sheet 1-1.2h) by pre-reading means scanning the sheet 12 with 6n IR light in advance and converting the stimulated luminescence light emitted from the sheet 12 into a photoelectric conversion means (reading). -) means to input information consisting of an electrical signal corresponding to the amount of stimulated luminescence at each scanning point on the sheet 12 (that is, each image m, >in).

次、に、上記の如くして読み取られた画像情報からシー
ト上の各位置におけるデジタル画像データを求める。こ
のデジタル画像データを求めるにあたっては、上記先読
みによって読み取られた画像情報から直接的に求めても
良いし、該画像情報に空間フィルタ処理等の前処理を施
1)で求めても良い。
Next, digital image data at each position on the sheet is obtained from the image information read as described above. In obtaining this digital image data, it may be obtained directly from the image information read by the above-mentioned pre-reading, or it may be obtained by subjecting the image information to pre-processing such as spatial filter processing (1).

直接的に求める場合は、例えば上記シート上の位置を十
ii[!ii!ii索単位で設定単位各位置に対応する
画素の上記先読み画像情報をデジタル化したものをその
位置のデジタル画像データとすれば良い。
If you want to find it directly, for example, find the position on the sheet 1ii [! ii! The above-mentioned pre-read image information of pixels corresponding to each setting unit position may be digitized in units of 2 lines and used as digital image data at that position.

空間フィルタ処理等の前処理を施して求める場合には、
例えば一定の関係にある複数画素をまとめて1つの位置
として設定し、この位置に含まれる画素の先読み画像情
報に基づいて、例えばそれらを加算平均して該位置のデ
ジタル画像データを算出するようにしても良いし、ある
いはシート上の位置は上記画素単位で設定し、該位置の
デジタル画像データは該位置およびその周囲位踵に対応
でる複数画素の先読み画像情報に基づいて算出するよう
にしても良い。この後者の算出方法の1つとしてメジア
ンフィルタ処理を挙げることができる。このメジアンフ
ィルタ処理とは、所定画素(位置)およびその周囲画素
(位置)の画像情報、(量子化レベル)のメジアど値(
中央値)をそ0所定画素(位置)の画像情報とする処理
をいう。
When calculating by performing preprocessing such as spatial filtering,
For example, a plurality of pixels in a certain relationship are set together as one position, and based on the pre-read image information of the pixels included in this position, for example, they are averaged to calculate the digital image data of the position. Alternatively, the position on the sheet may be set in units of pixels, and the digital image data of the position may be calculated based on pre-read image information of a plurality of pixels corresponding to the position and the heel surrounding the position. good. Median filter processing can be cited as one of the latter calculation methods. This median filter processing consists of image information of a predetermined pixel (position) and its surrounding pixels (position), and the median value (quantization level) of the image information (quantization level).
(median value) as the image information of a predetermined pixel (position).

このメジアンフィルタ処理の一見体例を第2図を参照し
ながら説明する。第2図(a)け」ニ記各画素毎の先読
を画像情報から成る原画像14を示づ図であり、図中の
1つ1つのま1目はイれぞれ1つの画素を示す。第2図
(b)は原画、像における各画素の画像情報に上記メジ
アンフィルタ処理を施すことによって得られた各位置に
おけるデジタル画像データから成るメジアンフィルタ処
理画像16を示す図である。なり、こ♀具体例において
は画素単位で位置が設定されているので、処理画像16
中の各位置も画素と称する。 1 まY1所定サイズのマスク、例えば縦横3画素分づ、つ
、の広さを有する3×3す1イズのマスク18を用い、
該マスク18を該マスクの中央に所定画素(図中斜線で
示した画素)が位置するように原画−12= 像14中に配設し、そのときぞのマスクに含まれる9個
の画素の画像情報のメジアン値をデジタル化したものを
その所定画素のデジタル画像データとし、この処理を原
画像14中の全ての画素に適用(ただし、最外周に位置
する画素には適用不能であるのでそれらの画素は除り)
シてその画素にお1ノるデジタル画像データを求め、該
データから成るメジアンフィルタ処理画像16を得る。
A general example of this median filter processing will be explained with reference to FIG. Figure 2 (a) is a diagram showing an original image 14 consisting of image information for pre-reading each pixel, and each square in the figure represents one pixel. show. FIG. 2(b) is a diagram showing a median filtered image 16 consisting of digital image data at each position obtained by performing the above median filtering on the image information of each pixel in the original image. In this specific example, the position is set in pixel units, so the processed image 16
Each position therein is also called a pixel. 1 Using a Y1 predetermined size mask, for example, a 3×3 1 size mask 18 having a width of 3 pixels in the vertical and horizontal directions,
The mask 18 is arranged in the original image -12=image 14 so that a predetermined pixel (the diagonally shaded pixel in the figure) is located in the center of the mask, and at that time, the nine pixels included in each mask are The median value of the image information is digitized and used as the digital image data of the predetermined pixel, and this processing is applied to all pixels in the original image 14 (however, it cannot be applied to pixels located at the outermost periphery, so (excluding pixels)
One piece of digital image data is then obtained for that pixel, and a median filtered image 16 consisting of this data is obtained.

なお、3×3サイズのマスクを用いると上記の如く最外
周の画素にメジアンフィルタ処理を施すことができない
ため処理画像16は原画像14に比べて最外周画素分1
7だけ小さくなるので、例えばこの最外周画素部分17
には量子化レベルO(零)を画像データとして代入して
おくことができる。上記マスクのサイ、ズは3×3に限
らない。また、処理面918が小さくなることを防ぐた
めには、例えば原画[4の周囲に原画像の最外周画素と
同じ量子化レベルを有する画素が存在する、と仮定して
メジアンフィルタ処理を施せば良い。上記メジアンフィ
ルタ処理を行なえば、ノイズによって周囲の画素に比べ
て極端に晶子化レベルが高<<rりあるいは低くなって
いる場合のそのノイズを除去でき、しかも照射野輪郭情
報はぼけないという利点がある。
Note that if a 3×3 size mask is used, it is not possible to perform median filter processing on the outermost pixels as described above, so the processed image 16 is smaller than the original image 14 by one outermost pixel.
7, so for example, this outermost pixel portion 17
A quantization level O (zero) can be substituted as image data. The size of the mask is not limited to 3×3. In addition, in order to prevent the processing surface 918 from becoming smaller, for example, median filter processing may be performed on the assumption that there are pixels around the original image [4 that have the same quantization level as the outermost pixels of the original image]. . By performing the above median filter processing, it is possible to remove noise when the crystallization level is extremely high or low compared to surrounding pixels, and the advantage is that the irradiation field contour information is not blurred. There is.

なお、上記前処理は、上記メジアンフィルタ処理に限ら
ず、照射野輪郭等の必要とする情報を残し、ノイズ等の
不要な情報を除くような特性を有する空間フィルタ処理
等であればどの様なものでも良い。
Note that the above preprocessing is not limited to the median filter processing described above, but can be any spatial filter processing that has the characteristics of leaving necessary information such as the contour of the irradiation field and removing unnecessary information such as noise. Anything is fine.

上記の如くしてシート土の各位置におけるデジタル画像
データを求めたら、次に該画像データを微分処理して微
分値から成る微分画像を作成づる。
After obtaining digital image data at each position of the sheet soil as described above, the image data is then subjected to differential processing to create a differential image consisting of differential values.

微分処理はどの様な方法で行41つでも良い。Differential processing may be performed using any method with 41 rows.

第3図(a)、(b)はそれぞれ処理画像を示す図であ
り、図中の1つ1つのます目はそれぞれ1つのイ11置
を示す。
FIGS. 3(a) and 3(b) are diagrams each showing a processed image, and each square in the diagram represents one A11 position.

例えば、第3図(a)、に示1様に、処理画像16中の
所定位置20のデジタル画像デTりを微分するにあたっ
て、画素サイズ2×2のマスク22を用い、該マスク2
2を該マスクの左上部分に上記所定位置20が位置する
ように配置1ノ、該マスク22中に含まれる4つの位置
のデジタル画像データを図示の如<a、b、C,dとす
ると、 なる演算を行なってイのa′をト記所定位買?Oにおけ
る微分値とし、この微分り粋を各位置について行なう方
法で微分処理しても良い。また、V開式の代りに、 なる演算を行なって微分処理を行、なっても良い。
For example, as shown in FIG. 3(a), when differentiating the digital image data at a predetermined position 20 in the processed image 16, a mask 22 with a pixel size of 2×2 is used.
2 is arranged so that the predetermined position 20 is located in the upper left part of the mask 1, and digital image data at four positions included in the mask 22 are <a, b, C, d as shown in the figure. Do the following calculation and buy a' of A at the specified position? Differential processing may be performed by using a differential value at O and performing this differential value for each position. Further, instead of using the V-open equation, the following calculation may be performed to perform differential processing.

もちろんこれら以外の微分式り用いても構わ4rい。Of course, differential equations other than these may also be used.

さらに、上記例は一次微分処理であるが、第3図(b)
に示す様に画素ザイズ3×3のマスク24を用い、該マ
スクを該マスクの中央に所定位B26が位置するように
配置し、該マスク中に含まれる9つの位置のデジタル画
像データを図示の如<a。
Furthermore, although the above example is a first-order differential process, Fig. 3(b)
As shown in the figure, a mask 24 with a pixel size of 3 x 3 is used, the mask is arranged so that a predetermined position B26 is located in the center of the mask, and the digital image data of the nine positions included in the mask are transferred as shown in the figure. Like<a.

b、c、d、e、f、g、h、i とし、なる演算を行
なってそのe′を一ト記所定位置26における微分値と
する様な各種、の二次微分処理であっても良、い。
b, c, d, e, f, g, h, i, and perform the following calculation to make e' the differential value at a predetermined position 26. good.

、次に、上記の如くして作TRユだ、微分画像に基づい
て照射野輪郭を検出する。上、記デジタル画像データは
シー、トに入射した放射線の1ネルギニの大きさに対応
するので、照射野外の画像デ、−夕は一般に低い量子、
レベルとなり、照射野内の画像データは一般1高い量子
レベルとなる。従って、照射野輪郭が存在する位置にお
ける画像データの微分値は他の位置における画像データ
の微分値よりも一般に大きい量子レベルとな仝。
Next, as described above, the contour of the irradiation field is detected based on the differential image. The above digital image data corresponds to the magnitude of 1 nergini of the radiation incident on the sheet, so the image data outside the irradiation field generally has a low quantum,
level, and the image data within the irradiation field generally has a quantum level that is one higher. Therefore, the differential value of the image data at the position where the irradiation field contour exists is generally at a larger quantum level than the differential value of the image data at other positions.

従、って、微分画像中において微分値が最大である位置
あるいは所定値を適当に設定した場合のその所定準以上
である位置は照射野輪郭であると認識することができる
と共に1.照射野輪郭は1本の閉曲線で形成されるので
、その照射野輪郭が存在する。1つの位置に注目すると
、該位置に隣接する周囲Φ位置の中には必ず照射野輪郭
が存在する位置があり、そや1位置の微分値は他の隣接
する周囲の位置の微分値よりも大きい、換言すれば少な
くとも隣接する周囲の位置の中で最も微分値の大きい位
置には照射野輪郭が存在するということができる。
Therefore, in the differential image, the position where the differential value is maximum or the position where the differential value is greater than or equal to the predetermined standard when the predetermined value is appropriately set can be recognized as the irradiation field contour, and 1. Since the irradiation field contour is formed by one closed curve, the irradiation field contour exists. When focusing on one position, there is always a position where an irradiation field contour exists among the surrounding Φ positions adjacent to the position, and the differential value of the first position is higher than the differential value of other adjacent surrounding positions. In other words, it can be said that the irradiation field contour exists at the position where the differential value is the largest, at least among the adjacent surrounding positions.

本発明に係る方法は、上記事実に基づいて微分画像中の
照射野輪郭が存在する位置を次から次へと探し出して追
跡して・行(ことによりその照射野輪郭を検出するもの
であり、追跡同始点で競る第1注目点の検出段階と、該
第1注目点から輪郭存在位置を追跡していく追跡段階の
2つから成る。
The method according to the present invention is based on the above-mentioned fact, and searches out and tracks the positions where the irradiation field contour exists in the differential image one after another, thereby detecting the irradiation field contour. The tracking process consists of two stages: a detection stage of the first point of interest competing at the same starting point, and a tracking stage of tracing the contour existing position from the first point of interest.

まず、微分画像を走査して微分値が最大であるもしくは
所定値以上で7ある任意の位置を見い出し、てそれを第
1注目点とする。
First, the differential image is scanned to find an arbitrary position where the differential value is the maximum or is greater than or equal to a predetermined value and is set as the first point of interest.

上述の如く、照射野輪郭が存在する5位置の微分値は他
の位置のそれよりも大きく、従って適当に設定された所
定値を使用すれば微分値がその所定1以上である位置は
照射野輪郭が存在する位置であると判断することができ
、また勿論微分値が最大である位置も照射野輪郭が存在
する位置であると判断することができる。よって、まず
上記の如ぎ方法によって照射野輪郭存在位置のうちの1
つを検出し、その位置を第1n目点とする。
As mentioned above, the differential values of the five positions where the irradiation field contour exists are larger than those of the other positions. Therefore, if an appropriately set predetermined value is used, the position where the differential value is greater than or equal to the predetermined 1 is the irradiation field. It can be determined that this is the position where the contour exists, and of course, the position where the differential value is maximum can also be determined to be the position where the irradiation field contour exists. Therefore, first, one of the irradiation field contour existing positions is determined by the method described above.
one point is detected, and that position is set as the 1st nth point.

次に、この第1注目点から照射野輪郭の)n跡を行ない
、照射野を認識する。このjrj跡は、まず第1注目点
に隣接する周囲の位置の中から微分値が最大である位置
を探してこれを第2 il[1貞とし、続いてこの第2
注目点に隣接する周IIIIの位置であって前の注目点
く第1注目点)を除く位置の中から微分値が最大である
位置を探してこれを第3注目点とし、以後この第3注口
点を探すプロ13スを繰り返して次々と新たな注目点を
探し出1ことによって行なわれる。そして、上記第1注
目点に隣接する位置が新たな注口点として探し出された
らそれまでのH目点を結/、だ閉曲線の内側を照射野と
認識する。
Next, n traces of the irradiation field contour are made from this first point of interest to recognize the irradiation field. This jrj trace first searches for the position where the differential value is maximum among the surrounding positions adjacent to the first point of interest, sets this as the second point, and then
The position with the maximum differential value is searched among the positions of the circumference III adjacent to the point of interest, excluding the previous point of interest (the first point of interest), and this is set as the third point of interest. This is done by repeating the process of searching for pouring points and finding new points of interest one after another. Then, when a position adjacent to the first point of interest is found as a new pouring point, the previous H-point is connected and the inside of the curve is recognized as the irradiation field.

上記追跡は、例えば第4図や第5図に示す様なマスクを
用いて行2)うことができる。
The above tracking can be carried out 2) using a mask as shown in FIGS. 4 and 5, for example.

第4図に示すマスクは3×3画素+フイズのマスクであ
り、例えば第6図に示す様な矩形の照射野輪郭を追跡す
る場合、第6図(a)に示す様に、微分画像28にお【
プる十記の如くして求められた照射野輪郭上に存在する
第1注目点△がマスクの中央(第4図中斜線を施した部
分)に位置するように該マスクを配置し、このマスク内
のIi′l alJ?の中で最も微分値の大きい位置(
第1注目点八は除く)を次の注口点、即ら第2注目点B
とし、次に第6図(b)に示す様に第2 ’rt f”
I点Bがマスク中央に位置すべくマスクを移動し、この
マスク内の位置の中で最も微分値の高い位置(前の注目
点である第1および第2注目点△、Bを除く)を次の?
↑目点、即ち第3d目点Cとし、以下同様にして第6図
(C)に示す如く第4H目点り、第6図(d >に示す
如く第5注目貞Fと順次新たな注目点を探し出し、第6
図(e)に示J如く第1ン1目点八に隣接する位置が新
たな第n f11貞「か探し出されI、=ら第1注[]
点△から第n性[]貞[までを結んだ閉曲線30の内側
を照@glP10と認識づる。なお、第6図中の矢印l
JL照躬照射郭の追跡方向を示す。
The mask shown in FIG. 4 is a 3×3 pixel + fiz mask. For example, when tracking a rectangular irradiation field outline as shown in FIG. 6, the differential image 28 is ni [
The mask is placed so that the first point of interest △ on the irradiation field contour obtained as shown in Figure 4 is located at the center of the mask (the shaded area in Figure 4). Ii'l alJ in the mask? The position with the largest differential value among (
(excluding the first attention point 8) to the next pouring point, that is, the second attention point B
Then, as shown in Figure 6(b), the second 'rt f'
Move the mask so that point I B is located in the center of the mask, and find the position with the highest differential value among the positions in this mask (excluding the first and second points of interest △ and B, which are the previous points of interest). next?
↑The eye point, that is, the 3d eye point C, is set as the 4H eye point as shown in Figure 6 (C), and the 5th attention point F as shown in Figure 6 (d >), and new attention is sequentially set. Find the point, 6th
As shown in Figure (e), the position adjacent to the 1st n 1st point 8 is the new nth
The inside of the closed curve 30 connecting the point △ to the nth sex [] is recognized as Teru@glP10. Note that the arrow l in Figure 6
Shows the tracking direction of the JL beam.

第5図に示1マスクは、第4図に示すマスクが注目画素
に隣接する周囲の全画素(8画素〉をカバーする〜1)
のであったのに比べ、その周囲の画素のうちの一部(4
画素)のみをカバーするように構成されたものであり、
このマスクは追跡方向によって向きを変えて使用16も
のである。なお、第4図中の矢印は各マスクを使用する
どきの追跡方向を示す。
1 mask shown in Fig. 5 covers all surrounding pixels (8 pixels) adjacent to the pixel of interest ~ 1)
However, some of the surrounding pixels (4
It is configured to cover only pixels (pixels),
This mask can be used by changing its orientation depending on the tracking direction. Note that the arrows in FIG. 4 indicate the tracking directions when using each mask.

このマスクを用いて矩形照射野を)β跡Jる場合につい
て説明する。
A case will be described in which a rectangular irradiation field is created using this mask.

まず、微分画像を走査して微分Iffが最大である位置
を探し出し、その位置を第1注目点へとした場合は、第
7図<a >に示す様に、第1注1”I r:、+△に
対して×、y軸方向に隣接する1つの位置■。
First, if the differential image is scanned to find the position where the differential Iff is maximum and that position is set as the first point of interest, as shown in Fig. 7<a>, the first note 1"I r: , +△ ×, one position ■ adjacent to the y-axis direction.

TI、III、[Vの中で微分値が最大の位置を探し出
し、第1注目点Aから子の微分値n人位置の方向に向(
〕て追跡を開始する。図示の場合、位tf’?lが微分
値最大であったと仮定すると、その位置■に向(Jて左
方向に追跡を開始する。
TI, III, [Find the position where the differential value is maximum in V, and move from the first attention point A to the position of the child's differential value n people (
] to start tracking. In the case shown, place tf'? Assuming that l has the maximum differential value, tracking begins toward that position (J) and to the left.

この場合の追跡は、追跡方向が左であるから、第5図(
a)に示す向きのマスクを使用し、第7図(b)に示す
様に該マスクを該マスクの斜線を施した部分に第1 t
t゛目点△が存在するように配置し、そのマスク内の位
置の中で最も微分値の大きい位置(第1注目点Aを除く
)を探し出してそれを次の第2注目点Bとし、次に該マ
スクを移動させて該マスクの斜線部にこの第2注目点B
を位置せしめ、その状態でまたマスク内の位置の中で最
も微分値の大きい位置(前の注目点である第1゜第2注
目点A、Bを除く)を探し出してそれを次の第3注目点
とし、このプロセスを繰り返して順次新たな注目点を探
し出づ。ぞして、第7図(b)に示す様に、左上コーナ
部の位置が注口点Cになるまでは、追跡方向が左である
ので、マスク中のb部が常に微分値最大位置となり、そ
の限りにおいてこの第5図(a )のマスクを使用して
注目点の検出を続ける。しかし、左上]−す部の位置C
を注目点として探し出すと、次は下側のd部が微分値最
大となる。この様に第5図(a )のマスクにおいてd
部が微分値最大になると第5図(b)のマスクを用いて
以後の注目点の検出を続行する。
In this case, the tracking direction is to the left, so the tracking direction shown in Fig. 5 (
Using a mask oriented as shown in a), apply the first t to the diagonally shaded part of the mask as shown in FIG. 7(b).
Arrange so that the t'th point △ exists, find the position with the largest differential value among the positions in the mask (excluding the first point of interest A), and set it as the next second point of interest B, Next, move the mask and place this second point of interest B on the diagonal line part of the mask.
In that state, find the position with the largest differential value among the positions in the mask (excluding the previous points of interest 1st and 2nd points A and B) and move it to the next 3rd point. Select points of interest and repeat this process to find new points of interest. Therefore, as shown in Fig. 7(b), until the position of the upper left corner reaches the spout point C, the tracking direction is to the left, so part b in the mask is always the position of the maximum differential value. , to that extent, the detection of the point of interest is continued using the mask shown in FIG. 5(a). However, the position C of the upper left part]
When we search for the point of interest, the lower part d has the maximum differential value. In this way, in the mask of Figure 5(a), d
When the differential value reaches the maximum, detection of subsequent points of interest is continued using the mask shown in FIG. 5(b).

即ち、第7図(C)に示寸態様で第5図(b)のマスク
の斜線部に注目点りを位置させて次の注目jiEの検出
を行なう。そして、左下コーナ部の位置が注目点Fにな
るまでは、追跡方向は下向であり従ってマスク中の1部
が常に微分値最大となり、その限りにおいてこの第5、
図(b)のマスクを使用して注目点の検出を続ける。そ
して、左下コーナ部の位置が注目点Fになると、次はマ
スク中のd部が微分値最大になるので、イうすると、第
7図(d)に示す様に第5図(C)のマスクを使用して
−E記と同様に注目点の検出を衿け、右下コーナ部の位
置が注目点Gになると次はまた同様にマスクのd部が微
分値最大になるので、そうすると第7図(e)に示す様
に第5図(d )のマスクを使用して上記と同様に注目
点の検出を続け、右上コーナ部の位置が注目点1」にな
ると次はまた同様にマスクのd部が微分値最大になるの
で、そうすると第7図(f)に示す様に第5図(a )
のマスクを使用して上記と同様に注目点の検出を続Gプ
、第1注目点八に隣接する位置が新たな注目点Iとして
探し出されたらそれまでの注目点を結んだ閉曲線30の
内側を照射野10であると認識する。なお、図中の矢印
は追跡方向を示す。
That is, the next target jiE is detected by positioning the target point in the diagonally shaded area of the mask in FIG. 5(b) in the manner shown in FIG. 7(C). Then, until the position of the lower left corner becomes the point of interest F, the tracking direction is downward, so one part in the mask always has the maximum differential value, and to that extent, this fifth,
Continue detecting the point of interest using the mask shown in Figure (b). Then, when the position of the lower left corner becomes the point of interest F, the differential value becomes maximum at the d part in the mask. Using a mask, detect the point of interest in the same way as described in -E. When the position of the lower right corner becomes the point of interest G, the d section of the mask will have the maximum differential value, so As shown in Fig. 7(e), continue detecting the point of interest in the same manner as above using the mask of Fig. 5(d), and when the position of the upper right corner becomes the point of interest 1, the next step is to use the mask again in the same way. Since the differential value is maximum at the d part of
Continue detecting the point of interest in the same manner as above using the mask of The inside is recognized as the irradiation field 10. Note that the arrow in the figure indicates the tracking direction.

上記の具体例は微分画像中の微分値が最大の位置を第1
注目点とした場合であったが、微分値が所定値以上の任
意の点を第1注目点とする場合も上記と同様に追跡すれ
ば良い。ただし、第5図に示すマスクを使用する場合は
、追跡づ”る方向によって使用するマスクが衣なるので
その追跡方向を決定1−る必要があり、前述の方法の他
に、第7図((1)に示す様に第1注目点Aを探し出す
ときの走査方向、(矢印J方向)を追跡方向とし、最初
はイの方向のマスクを使用するようにしても良い。
In the above example, the position of the maximum differential value in the differential image is
Although we have described the case where the point of interest is set as the first point of interest, if any point whose differential value is equal to or greater than a predetermined value is set as the first point of interest, tracking may be performed in the same manner as described above. However, when using the mask shown in Figure 5, the mask used depends on the direction of tracking, so it is necessary to determine the tracking direction. As shown in (1), the scanning direction (direction of arrow J) when searching for the first point of interest A may be set as the tracking direction, and the mask in the direction A may be used initially.

上記の如くして照射野を判定したら、先読みにより得ら
れた画像情報のうちこの照射野内の画像情報のみに基づ
いて、本読みにお番ノる読取条件を ゛決定する。この
読取条件は照射野内の画像情報に基づいて種々の方法で
決定することができるが、たとえば前述の様に照射野内
、の暉尽発光光量のヒストグラムを作成し、このヒスト
グラムから所定の最大輝尽発光光量S max及び最小
輝尽発光光間S minを求め、この3max 、 3
m1nに基づいて≠取条件を決定することができる。
After determining the irradiation field as described above, the reading conditions for the main reading are determined based only on the image information within this irradiation field among the image information obtained by pre-reading. These reading conditions can be determined in various ways based on the image information within the irradiation field, but for example, as described above, a histogram of the exhaustion light amount within the irradiation field is created, and from this histogram, a predetermined maximum The amount of emitted light S max and the minimum stimulated emitted light interval S min are determined, and these 3max, 3
Based on m1n, it is possible to determine the ≠ taking condition.

なお、読取条件の決定は、上記照射野内の先読み画像情
報のみに基づいて決定する場合に限らず、さらに頭部、
胸部、腹部等、の撮影の対象となる被写体の撮影部位や
単純、造影、断層、拡大撮影等の撮影方法等を加味して
決定することもできる。
Note that the determination of reading conditions is not limited to the case where the reading conditions are determined based only on the pre-read image information within the irradiation field.
The determination can also be made by taking into account the part of the subject to be imaged, such as the chest or abdomen, and the imaging method, such as simple, contrast, tomographic, or magnified imaging.

−F述のようにして照射野を判定し、この照射野内の画
像情報に基づいて本読みの読取条件を決定した後に決定
した読取条件に従って本読みを行なうが、この本読みは
、本出願人が先に出願した特開昭60−120346号
に開示されているように、その読取領域を判定した照射
野内に限るのが好ましい。
- After determining the irradiation field as described in F and determining the reading conditions for the main reading based on the image information within this irradiation field, the main reading is performed according to the determined reading conditions. As disclosed in Japanese Patent Application Laid-Open No. 120346/1982, it is preferable to limit the reading area to the determined irradiation field.

このように本読みの読取領域を照射野内に限ることによ
って、蓄積性蛍光体シートの照射野外に記録された散乱
線によるノイズ成分は読み取られることがなく、優れた
最終画像を得ることができる。
By thus limiting the reading area for the main reading within the irradiation field, noise components due to scattered radiation recorded outside the irradiation field of the stimulable phosphor sheet are not read, and an excellent final image can be obtained.

また、読取領域が絞られることによって、読取時間の短
縮もしくは読取密度の増大が可能となる。
Furthermore, by narrowing down the reading area, it is possible to shorten the reading time or increase the reading density.

なお、前述した第2図(b)に示す如く処理画像16に
おいてその最外周画素部分11にO(零)が代入されて
いる場合は、たとえ照射野が蓄積性蛍光体シートの内側
に絞られていなく、でも、実質的に照射野輪郭となるべ
き最外周部分の画素における微分値は大きくなり、ぞの
画素部分が照射野輪郭として検出される。また、上記の
如く処理画像中の最外周画素部分に0(零)が代入され
ていない場合は、周囲にO(零)が存在すると仮定して
微分処理すれば同様の結東が得られる。
Note that when O (zero) is assigned to the outermost pixel portion 11 in the processed image 16 as shown in FIG. 2(b), even if the irradiation field is narrowed inside the stimulable phosphor sheet. However, the differential value at the pixel at the outermost circumferential portion, which should essentially be the contour of the radiation field, becomes large, and that pixel portion is detected as the contour of the radiation field. Furthermore, if 0 (zero) is not assigned to the outermost pixel portion in the processed image as described above, a similar result can be obtained by performing differential processing assuming that O (zero) exists around it.

上記実施態様では矩形照射野の場合を取扱ったが円その
他の矩形以外の照射野の場合であっても本発明は適用可
能である。
Although the above embodiment deals with the case of a rectangular irradiation field, the present invention is also applicable to the case of a circle or other non-rectangular irradiation field.

また、上記実施態様では1枚の蓄積性蛍光体シート12
上に1つの照射野10が存在する場合を取り扱ったが、
例えば1枚のシートを2つの区分に分割してそれぞれの
区分にそれぞれ照射野絞りをかけて撮影を行なういわゆ
る分割撮影の場合にも本発明は適用可能である。即も、
分割撮影の場合であっても各区分を1つのシートと考え
ればその1つのシート上に1つの照射野が存在すること
となり、従って予め分割撮影であるという情報を得るこ
とによって本発明をその各区分毎に適用すれば良いもの
である。
Further, in the above embodiment, one stimulable phosphor sheet 12
We have dealt with the case where one irradiation field 10 exists above the
For example, the present invention is also applicable to so-called divided imaging in which one sheet is divided into two sections and each section is imaged with an irradiation field aperture applied. Immediately,
Even in the case of divided imaging, if each section is considered as one sheet, one irradiation field will exist on that one sheet. Therefore, by obtaining information in advance that it is divided imaging, the present invention can be applied to each of the sections. It is sufficient to apply it to each category.

(発明の効果) 本発明に係る方法は、1述の如く、先読み画像情報から
照射野を認識し、この照田野内にお(jる先読み画像情
報に基づいて本読み条f1を決定するものであり、かつ
上記照射野の認識は、先読み画像情報に基づいて微分画
像を作成し、この画像中の微分値が最大もしくは所定仙
以上の任意の点を第1注目点とし、この第1d目点に隣
接覆る周囲の位置の中から微分値が最大である位置を探
し出してこれを新たな第2注目点どし、以後同様にして
次々と新たな注目点を探し出し、上記第1注目点に隣接
する位置が新たな注目点として探し出されたらそれまで
の注目点を結んだ閉曲線の内側を照射野と認識すること
によって行イ1うものである。
(Effects of the Invention) As described in 1, the method according to the present invention recognizes the irradiation field from the pre-read image information, and determines the main reading line f1 within this terutana field based on the pre-read image information. In order to recognize the above-mentioned irradiation field, a differential image is created based on the pre-read image information, an arbitrary point in this image where the differential value is the maximum or a predetermined value or more is set as the first point of interest, and this 1d eye point is set as the first point of interest. Find the position with the maximum differential value among the surrounding positions that are adjacent to and cover it, and make this the new second point of interest.After that, find new points of interest one after another in the same way, and find the position that is adjacent to the first point of interest. When a new point of interest is found, the area inside the closed curve connecting the previous points of interest is recognized as the irradiation field.

前述の如く、」〕記機微分画においては、照射野輪郭が
存在する位置の微分値は他の位置のそれよりも大きくな
る。従って、微分値が最大もしくは適当に設定された所
定値以llのf1意の位置である上記第1注目点は照射
野輪郭上の位置であり、またこの第1注目点に隣接する
周囲のイη買の中で微分値最大の位置を次の第2注目点
とし、この方法を繰り返して次々と新しい注目点を探し
出すということは順次照射野輪郭上の位置を追跡してい
くことを意味乃る。
As described above, in the mechanical differential fractionation, the differential value at the position where the irradiation field contour exists is larger than that at other positions. Therefore, the above-mentioned first point of interest, which is a unique position of f1 with a maximum differential value or a predetermined value set appropriately, is a position on the irradiation field contour, and surrounding objects adjacent to this first point of interest are positions on the irradiation field contour. The position of the maximum differential value in η is set as the second point of interest, and repeating this method to find new points of interest one after another means sequentially tracking the positions on the irradiation field contour. Ru.

従って、本発明に係る方法によれば、照射野を適確に認
識することができ、その結束前61野が絞られている場
合であっても、シート上の照射野外に入用した散乱線に
よる悪影費を排除し、シー1へ十の照訃1野内の有効画
像情報のみに基づいて読取条f1を決定するので、常に
最適な読取条件を決定することができる。
Therefore, according to the method according to the present invention, it is possible to accurately recognize the irradiation field, and even when the 61 fields are narrowed down before bundling, the scattered rays applied to the irradiation field on the sheet Since the reading condition f1 is determined based only on the effective image information within the field of view 1, the optimum reading condition can always be determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図【よ照射野絞りをかCノて踊影1ノた蓄積f■蛍
光体シートを示す図、 第2図(a)は各画素毎の先読み画像情報から成る原画
像を示す図、 第2図(b)は原画像をメジアンフィルタ処理した処理
画像を示す図、 第3図(a)、(b)はそれぞれ処理画像中の位置と微
分処理を行なうときに使用するマスクを示す図、 第4図および第5図(a )〜(d )は新たな注目点
を探し出すときに使用するマスタを示す図、第6図(a
)〜(e )は第4図に示M7スクを用いて新たな注目
点を探【ノ出す方法の説明図、第7図(a )〜((]
 )は第5図(a)〜(d >に示すマスクを用いて新
たな注目点を探し出す方法の説明図である。 10・・・照 射 野  12・・・蓄積性蛍光体シー
1〜14・・・原  画  像   16・・・処  
理  画  像28・・・微分画像   30・・・閉
  曲  線ト0 ■ 「0 鴫 の 第71 (d)(e)2日 2日 F −辛 d(CJ) (C) (f)28 ぐ
Figure 1 shows the phosphor sheet; Figure 2 (a) shows the original image consisting of pre-read image information for each pixel; Figure 2 (b) is a diagram showing a processed image obtained by median filtering the original image, and Figures 3 (a) and (b) are diagrams each showing the position in the processed image and the mask used when performing differential processing. , Figures 4 and 5 (a) to (d) are diagrams showing the master used when searching for new points of interest, and Figure 6 (a).
) to (e) are shown in Fig. 4. An explanatory diagram of how to find new points of interest using the M7 screen, and Fig. 7 (a) to (()
) is an explanatory diagram of a method for finding new points of interest using the masks shown in FIGS. 5(a) to (d).・・・Original image 16...place
Image 28...Differential image 30...Closed curve 0 ■ 0 Shizu no No. 71 (d) (e) 2nd 2nd F - Shin d (CJ) (C) (f) 28 Gu

Claims (1)

【特許請求の範囲】 放射線画像情報が照射野絞りをかけて蓄積記録されてい
る蓄積性蛍光体シートに励起光を照射することにより、
該蓄積性蛍光体シートに蓄積記録されている放射線画像
情報を輝尽発光光として放出せしめ、この輝尽発光光を
光電的に読み取って可視像を出力するための電気的画像
信号を得る本読みに先立ち、該本読みにおいて用いられ
る励起光のエネルギーよりも低いエネルギーの励起光を
用いて前記蓄積性蛍光体シートに蓄積記録されている前
記放射線画像情報を読み取る先読みを行ない、この先読
みにより得られた画像情報に基づいて前記本読みにおけ
る読取条件を決定する放射線画像情報の読取条件決定方
法において、 前記先読みにより得られた画像情報から前記蓄積性蛍光
体シート上の各位置におけるデジタル画像データを求め
、このデジタル画像データを微分処理し、得られた微分
値から成る微分画像において、まず微分値が最大もしく
は所定値以上の任意の位置を第1注目点として選出し、
次にこの第1注目点に隣接する周囲の位置の中から微分
値が最大である位置を探してこれを第2注目点とし、続
いてこの第2注目点に隣接する周囲の位置であって前の
注目点を除く位置の中から微分値が最大である位置を探
してこれを第3注目点とし、以後この第3注目点を探す
プロセスを繰り返して次々と新たな注目点を探し出し、
上記第1注目点に隣接する位置が新たな注目点として探
し出されたらそれまでの注目点を結んだ閉曲線の内側を
照射野として認識し、この照射野内における前記先読み
により得られた画像情報に基づいて前記本読みにおける
読取条件を決定することを特徴とする放射線画像情報の
読取条件決定方法。
[Claims] By irradiating excitation light onto a stimulable phosphor sheet in which radiation image information is accumulated and recorded with irradiation field aperture,
The radiation image information stored and recorded on the stimulable phosphor sheet is emitted as stimulated luminescence light, and this stimulated luminescence light is read photoelectrically to obtain an electrical image signal for outputting a visible image. Prior to this, pre-reading is performed to read the radiation image information accumulated and recorded on the stimulable phosphor sheet using excitation light with an energy lower than that of the excitation light used in the main reading, and the information obtained by this pre-reading is performed. In the method for determining reading conditions for radiation image information in which reading conditions for the main reading are determined based on image information, digital image data at each position on the stimulable phosphor sheet is obtained from the image information obtained by the pre-reading, and Digital image data is subjected to differential processing, and in a differential image consisting of the obtained differential values, an arbitrary position where the differential value is the maximum or a predetermined value or more is selected as the first point of interest,
Next, search for the position with the maximum differential value from among the surrounding positions adjacent to this first point of interest and set this as the second point of interest, and then Search for the position with the maximum differential value from among the positions excluding the previous point of interest, define this as the third point of interest, and then repeat the process of searching for this third point of interest to find new points of interest one after another.
When a position adjacent to the first point of interest is found as a new point of interest, the inside of the closed curve connecting the previous points of interest is recognized as the irradiation field, and the image information obtained by the pre-reading within this irradiation field is used. A method for determining reading conditions for radiation image information, characterized in that reading conditions for the main reading are determined based on the main reading.
JP15584385A 1984-07-31 1985-07-15 Determining method for readout condition of radiation image information Granted JPS6215536A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15584385A JPS6215536A (en) 1985-07-15 1985-07-15 Determining method for readout condition of radiation image information
EP89106513A EP0328165B1 (en) 1984-07-31 1985-07-31 Method of detecting an exposure field of an image in an image read-out process
DE3588169T DE3588169T2 (en) 1984-07-31 1985-07-31 Method for detecting an image exposure area in an image readout process
EP85109602A EP0170270B1 (en) 1984-07-31 1985-07-31 Method of adjusting radiation image read-out conditions
US06/760,862 US4851678A (en) 1984-07-31 1985-07-31 Method of adjusting radiation image read-out conditions
DE8585109602T DE3576898D1 (en) 1984-07-31 1985-07-31 METHOD FOR SETTING RADIATION IMAGE READING CONDITIONS.
US07/164,654 US4931644A (en) 1984-07-31 1988-03-07 Method of adjusting radiation image read-out conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15584385A JPS6215536A (en) 1985-07-15 1985-07-15 Determining method for readout condition of radiation image information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61244846A Division JPS62115968A (en) 1986-10-15 1986-10-15 Radiation field recognizing method

Publications (2)

Publication Number Publication Date
JPS6215536A true JPS6215536A (en) 1987-01-23
JPH0584500B2 JPH0584500B2 (en) 1993-12-02

Family

ID=15614707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15584385A Granted JPS6215536A (en) 1984-07-31 1985-07-15 Determining method for readout condition of radiation image information

Country Status (1)

Country Link
JP (1) JPS6215536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215541A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621278A (en) * 1979-07-28 1981-02-27 Fujitsu Ltd Profile pickup system
JPS5919939A (en) * 1982-07-27 1984-02-01 Fuji Photo Film Co Ltd Reading method of radiation picture information
JPS5981642A (en) * 1982-11-01 1984-05-11 Fuji Photo Film Co Ltd Recording system for photographic picture density information
JPS603060A (en) * 1983-06-20 1985-01-09 Mitsubishi Heavy Ind Ltd Collecting device for image contour
JPS60127404A (en) * 1983-12-13 1985-07-08 Matsushita Electric Ind Co Ltd Contour-line detecting method
JPS6215541A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621278A (en) * 1979-07-28 1981-02-27 Fujitsu Ltd Profile pickup system
JPS5919939A (en) * 1982-07-27 1984-02-01 Fuji Photo Film Co Ltd Reading method of radiation picture information
JPS5981642A (en) * 1982-11-01 1984-05-11 Fuji Photo Film Co Ltd Recording system for photographic picture density information
JPS603060A (en) * 1983-06-20 1985-01-09 Mitsubishi Heavy Ind Ltd Collecting device for image contour
JPS60127404A (en) * 1983-12-13 1985-07-08 Matsushita Electric Ind Co Ltd Contour-line detecting method
JPS6215541A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215541A (en) * 1985-07-15 1987-01-23 Fuji Photo Film Co Ltd Determining method for readout condition of radiation image information
JPH0584504B2 (en) * 1985-07-15 1993-12-02 Fuji Photo Film Co Ltd

Also Published As

Publication number Publication date
JPH0584500B2 (en) 1993-12-02

Similar Documents

Publication Publication Date Title
JP2012203504A (en) Image processing device, image processing method, and image processing program
JPS63257879A (en) Method for recognizing split pattern of radiation image
JPH06304159A (en) Method for recognizing picture photographing position
JP2867055B2 (en) Edge determination method and apparatus
JP2004283281A (en) Image processor and image processing method
JPH057579A (en) Irradiation area extractor for radiation image
JP2598636B2 (en) Image processing condition determination method
JPS6215536A (en) Determining method for readout condition of radiation image information
JPS6139039A (en) Method for determining reading condition of radiation picture information
JPH0464222B2 (en)
JPS6215541A (en) Determining method for readout condition of radiation image information
JPH0549143B2 (en)
JPS62104264A (en) Method for recognizing irradiation field
JPS62115969A (en) Radiation field recognizing method
JPH0464225B2 (en)
JPH0279177A (en) Method and detecting contour of breast in radiation picture
JPH03133278A (en) Method and apparatus for forming energy subtraction picture
JPS6329621A (en) Method for determining image processing condition of radiation image information
JPS6285561A (en) Method for deciding reading condition of radiograph information
JPH0584503B2 (en)
JPH02272530A (en) Method for recognizing divided pattern of radiograph
JPH02296235A (en) Radiograph divided pattern recognizing method
JPH0281278A (en) Desired picture area determining method
JPH0551223B2 (en)
JPS6215540A (en) Determining method for readout condition of radiation image information

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees