JPS62155343A - Vibration energy absorbing device - Google Patents

Vibration energy absorbing device

Info

Publication number
JPS62155343A
JPS62155343A JP29401985A JP29401985A JPS62155343A JP S62155343 A JPS62155343 A JP S62155343A JP 29401985 A JP29401985 A JP 29401985A JP 29401985 A JP29401985 A JP 29401985A JP S62155343 A JPS62155343 A JP S62155343A
Authority
JP
Japan
Prior art keywords
elastic
energy absorbing
vibration energy
end plate
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29401985A
Other languages
Japanese (ja)
Other versions
JPH0660665B2 (en
Inventor
Takashi Fujita
隆史 藤田
Shigeru Fujimoto
滋 藤本
Chiaki Tsuruya
鶴谷 千明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Oiles Industry Co Ltd
Original Assignee
Toshiba Corp
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Oiles Industry Co Ltd filed Critical Toshiba Corp
Priority to JP29401985A priority Critical patent/JPH0660665B2/en
Priority to US06/872,410 priority patent/US4731966A/en
Priority to DE8686108141T priority patent/DE3661558D1/en
Priority to EP86108141A priority patent/EP0206183B1/en
Priority to NZ216587A priority patent/NZ216587A/en
Publication of JPS62155343A publication Critical patent/JPS62155343A/en
Publication of JPH0660665B2 publication Critical patent/JPH0660665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

PURPOSE:To improve the vibration energy absorbing faculty by embedding the first reinforcing member group into an elastic plastic member from the first end plate to the second end plate and embedding the second reinforcing member group, crossing the boundary parts of the end plates. CONSTITUTION:The captioned vibration energy absorbing device 21 is constituted of end plates 24 and 25 supported by members 22 and 23, and an energy absorbing body 26 inserted between these end plates 24 and 25. Each recessed part 27 is formed on the end plates 24 and 25 as shown in the figure. The energy absorbing body 26 is constituted of an elastic plastic member 30 formed into cylindrical form by lead, the first reinforcing member 31a (reinforcing member 32), and the second reinforcing member group 31b and 31c (reinforcing members 33 and 34) which are buried into the elastic plastic member 30 in the direction of axis. Therefore, the generation of cracks at the boundary part R is prevented, and the generation of neck-in and bulging-out of the elastic plastic member 30 is suppressed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、構造物の防振あるいは免震に供される振動エ
ネルギ吸収装置に係り、特に、材料の塑性変形を利用し
て振動エネルギを吸収するようにした振動エネルギ吸収
装置の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a vibration energy absorption device used for vibration isolation or seismic isolation of structures, and particularly to a vibration energy absorption device that utilizes plastic deformation of a material. The present invention relates to an improvement in a vibration energy absorbing device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、地震力によって構造物が破壊されるのを防止する
ために、たとえば基礎と構造物本体との間に各種の振動
エネルギ吸収装置を介在させることが行われている。
Conventionally, in order to prevent structures from being destroyed by seismic force, various vibration energy absorbing devices have been interposed between, for example, a foundation and a structure body.

このような振動エネルギ吸収装置は、エネルギ吸収のメ
カニズムから分類して、流体あるいは粘弾性体の粘性を
利用した粘性方式のものと、材料同志のIIIEWを利
用したI11100ものと、材料の塑性変形を利用した
塑性方式のものとに大別される。
Such vibration energy absorption devices are classified based on the mechanism of energy absorption: viscous type devices that utilize the viscosity of a fluid or viscoelastic body, I11100 devices that utilize IIIEW of similar materials, and type I11100 devices that utilize plastic deformation of materials. It is broadly divided into those using the plastic method.

このうち、塑性方式を採用したものは、金属材料の塑性
変形を利用したものが多く、他の方式のものに比べて構
造が簡単で、低価格であると言う利点を備えている。エ
ネルギ吸収に直接供される弾塑性部材としては通常、鉛
あるいは鉛系合金材や鉄材が使用されている。特に、鉛
系の材料は可塑性に優れており、大変位の伴う振動にお
いても充分な追随特性を有している。
Among these, many of those that employ the plastic method utilize plastic deformation of metal materials, and have the advantage of being simpler in structure and lower in price than those of other methods. Lead or a lead-based alloy material or iron material is usually used as the elastoplastic member directly used for energy absorption. In particular, lead-based materials have excellent plasticity and have sufficient follow-up characteristics even in vibrations accompanied by large displacements.

ところで、材料の剪断変形による弾塑性特性を利用した
従来の撮動エネルギ吸収装置は、一般に。
By the way, conventional imaging energy absorption devices that utilize elastoplastic properties due to shear deformation of materials generally do not.

第10図、@11図および第15図に示すように構成さ
れている。すなわち、第10図に示すものは、対象とす
る2つの構造物の部材1,2にそれぞれ端板3,4を互
いに対面する関係に固定し。
The configuration is as shown in FIGS. 10, 11, and 15. That is, in the structure shown in FIG. 10, end plates 3 and 4 are fixed to members 1 and 2 of two target structures, respectively, so as to face each other.

これら端板3,4間に、たとえば鉛系材料を円柱状に加
工してなる弾塑性部材5を介在させた構造となっている
。なお、各端板3.4と弾塑性部材5とはろう接着等に
よって接合されている。また。
The structure is such that an elastic-plastic member 5 made of, for example, a lead-based material processed into a cylindrical shape is interposed between these end plates 3 and 4. Note that each end plate 3.4 and the elastic-plastic member 5 are joined by soldering or the like. Also.

第11図に示すものは、端板3,4に弾塑性部材5と同
径の凹部6.7を形成し、これら凹部6゜7に弾塑性部
材5の両端部を単純挿入、IO!合または挿入接着させ
、これによって弾塑性部材5と各端板3,4とを接合さ
せるようにしている。さらに、第15図に示すものは、
端板3,4藺に1部材1に対して部材2を支持させるた
めの弾性支持体、たとえばラバーベアリング8を介在さ
せるとともにラバーベアリング8に軸方向に延びる貫通
孔9を設け、この貫通孔9内に矩形断面を持つ螺旋状コ
イル10で巻かれた弾塑性部材5を収容したものとなっ
ている。なお、ラバーベアリング8は、金属板11とゴ
ム板12とを交互に積層したものとなっている。
In the case shown in FIG. 11, concave portions 6.7 having the same diameter as the elastic-plastic member 5 are formed in the end plates 3, 4, and both ends of the elastic-plastic member 5 are simply inserted into these concave portions 6.7, IO! The elastoplastic member 5 and each of the end plates 3 and 4 are bonded together by bonding or insertion. Furthermore, what is shown in FIG.
An elastic support, such as a rubber bearing 8, for supporting the member 2 with respect to the member 1 is interposed between the end plates 3 and 4, and a through hole 9 extending in the axial direction is provided in the rubber bearing 8. An elastic-plastic member 5 wound with a helical coil 10 having a rectangular cross section is housed inside. Note that the rubber bearing 8 is made by laminating metal plates 11 and rubber plates 12 alternately.

これらの撮動エネルギ吸収装置にあって、地震等によっ
て構造物が撮動して部材1.2間に相対変位が生じると
1部材1,2間に存在している弾塑性部材5が強制変位
を受ける。弾塑性部材5が塑性変形すると、その塑性変
形に必要な仕事量に等しいエネルギ損失が生じ、この結
果として部材1.2間の(騒動エネルギが吸収され、構
造物全体の撮動応答が減少される。
In these imaging energy absorbing devices, when a structure moves due to an earthquake or the like and a relative displacement occurs between the members 1 and 2, the elastic-plastic member 5 existing between the members 1 and 2 is forcibly displaced. receive. Plastic deformation of the elastic-plastic member 5 results in an energy loss equal to the amount of work required for its plastic deformation, which results in the absorption of turbulence energy between the members 1.2 and a reduction in the imaging response of the entire structure. Ru.

しかしながら、上記のように構成された従来の振動エネ
ルギ吸収装置にあっては次のような問題があった。
However, the conventional vibration energy absorbing device configured as described above has the following problems.

すなわら、地震等によって弾塑性部材5が繰返し横方向
の変形を受けると、第10図に示すものでは第12図中
Pで示すように弾塑性部材5と端板3.4との接合面が
剥がれる虞れが多分にあった。また、第11図に示すも
のにあっては第13図中Qで示すように弾塑性部材5の
両端部で凹部6.7に挿入されている部分との境界部分
Rに亀裂が入り接合状態が解放される虞れが多分にあつ
た。このように接合面が破断したり、亀裂が入ると弾塑
性部材5の破断と同じ状態となりエネルギ吸収装置とし
ての機能を喪失する。また9弾塑性部材5と端板3,4
との接合部を強化しても、第10図および第11図に示
したものにあっては。
That is, when the elastoplastic member 5 undergoes repeated lateral deformation due to earthquakes or the like, the connection between the elastoplastic member 5 and the end plate 3.4 as shown by P in FIG. There was a high risk that the surface would peel off. In addition, in the case shown in FIG. 11, as shown by Q in FIG. 13, there is a crack at the boundary R between the ends of the elastic-plastic member 5 and the part inserted into the recess 6.7, resulting in a bonded state. There was a strong possibility that it would be released. If the bonding surface breaks or cracks occur in this manner, it will be in the same state as the elastoplastic member 5 breaking, and the function as an energy absorbing device will be lost. In addition, 9 elastic-plastic members 5 and end plates 3 and 4
10 and 11, even if the joint with the

弾塑性部材5が繰返し横方向に変形すると、端板3.4
に近い部分と中央部分との間の曲げおよび引張り状態の
相違により、比較的少ない繰返し数で第14図に示すよ
うに端板3.4に近い部分Xにくびれ部が、また中央部
分Yに膨出部が発生する。このため、塑性変形に要する
抵抗力が次第に小さくなり、エネルギ吸収能力が減少す
る。そして、最終的にはくびれ部分で弾塑性部材5が破
断して、エネルギ吸収装置としての機能を喪失する問題
があった。一方、第15図に示すものにあっては1弾塑
性部材5の外周に螺旋上コイル10を、巻き付けている
ので、第14図において説明したような問題は少ない。
When the elastic-plastic member 5 is repeatedly deformed laterally, the end plate 3.4
Due to the difference in bending and tensile conditions between the part near the end plate 3.4 and the central part, a constriction can be formed in the part X near the end plate 3.4 and in the central part Y with a relatively small number of repetitions, as shown in FIG. A bulge develops. Therefore, the resistance force required for plastic deformation gradually decreases, and the energy absorption capacity decreases. There is a problem in that the elastic-plastic member 5 eventually breaks at the constricted portion and loses its function as an energy absorbing device. On the other hand, in the case shown in FIG. 15, the helical coil 10 is wound around the outer periphery of one elastic-plastic member 5, so the problem described in FIG. 14 is less likely to occur.

しかし、このような構造であると、構造物の支持材であ
るラバーベアリング8内に弾塑性部材5を収容している
ので1弾塑性部材5の保守あるいは交換が非常に面倒な
ものとなり2弾塑性部材5のエネルギ吸収性能低下によ
る耐震性の脆弱化に速やかに対応できない問題があった
。すなわち、何度かの地震あるいは撮動により弾塑性部
材5が塑性変、形を繰返すと9弾塑性部材5の組織が変
化してエネルギ吸収能力が低下する。したがって、一般
的には1弾塑性部材5を検査し、所定の特性以下の場合
には取替える必要がある。このような交換を行なわない
と1次回の地震時に所定の耐震性および信頼性が得られ
ず。
However, with such a structure, since the elastoplastic member 5 is housed in the rubber bearing 8 that is the support material of the structure, maintenance or replacement of the 1st elastoplastic member 5 becomes extremely troublesome, and the 2nd part is difficult to maintain or replace. There was a problem in that it was not possible to promptly respond to weakening of the earthquake resistance due to a decrease in the energy absorption performance of the plastic member 5. That is, when the elastoplastic member 5 undergoes plastic deformation and shape repeatedly due to several earthquakes or imaging, the structure of the elastoplastic member 5 changes and the energy absorption capacity decreases. Therefore, it is generally necessary to inspect one elastic-plastic member 5 and replace it if the characteristics are below a predetermined value. If such replacement is not performed, the specified seismic resistance and reliability will not be achieved during the first earthquake.

構造物の安全性に重大な影響を及ぼす。しかし。Significantly affects the safety of the structure. but.

第15図に示す構造であると1弾塑性部材5がラバーベ
アリング8内に位置しているので1弾塑性部材5の特性
を簡単に検査することはできない。
In the structure shown in FIG. 15, since the first elastoplastic member 5 is located within the rubber bearing 8, the characteristics of the first elastoplastic member 5 cannot be easily inspected.

このため、交換のタイミングを誤る虞れが多分にあった
。また1弾塑性部材5の径方向の変形を拘束するととも
に剪断変形を許すために、螺旋状コイル10を弾塑性部
材5の外周に巻回しているのであるが、このような構造
であると1部材1.2間の相対変位で弾塑性部材5が相
対的な変形力を受けて変形したとき、螺旋状コイル10
もそれぞれのコイル間で相対変形を受ける。この場合、
螺旋状コイル10は連続しているので、この螺旋状コイ
ル10にはねじり力が作用することになる。
For this reason, there was a high possibility that the timing of replacement would be incorrect. In addition, in order to restrain the radial deformation of the elastoplastic member 5 and to allow shear deformation, a spiral coil 10 is wound around the outer circumference of the elastoplastic member 5. When the elastoplastic member 5 is deformed by the relative deformation force due to the relative displacement between the members 1 and 2, the helical coil 10
also undergoes relative deformation between each coil. in this case,
Since the helical coil 10 is continuous, a twisting force will act on the helical coil 10.

前)ホのように螺旋状コイル10は弾塑性部材5の径方
向の変形力を受持っているので、結局、この力と上述し
たねじり力とを加えた過大な力が螺旋状コイル10に作
用することになり、螺旋状コイル10が破断する虞れが
ある。もし破断した場合には径方向の変形に対して拘束
力が小さくなるので、第10図および第11図に示した
装置と同様の問題が発生することになる。
Since the helical coil 10 is responsible for the radial deformation force of the elastoplastic member 5 as shown in (E) above, an excessive force consisting of this force and the above-mentioned torsion force is applied to the helical coil 10. This may cause the helical coil 10 to break. If it breaks, the restraining force against radial deformation will be reduced, resulting in the same problem as in the devices shown in FIGS. 10 and 11.

〔発明の目的) 本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、エネルギ吸収に供される弾塑性
部材のエネルギ吸収機能をより長期に亙って持続させる
ことができるとともに保守あるいは交換の容易な振動エ
ネルギ吸収装置を提供することにある。
[Object of the Invention] The present invention was made in view of the above circumstances, and its purpose is to maintain the energy absorption function of an elastoplastic member used for energy absorption for a longer period of time. It is an object of the present invention to provide a vibration energy absorbing device that can be easily maintained or replaced.

〔発明の概要〕[Summary of the invention]

本発明によれば、地震時等に互いに相対運動する2つの
部材に第1および第2の端板を支持させ。
According to the present invention, the first and second end plates are supported by two members that move relative to each other during an earthquake or the like.

この第1および第2の端板に設けられた凹部に両端部が
挿入接合される関係に可塑性を有する弾塑性部材を設け
てなる振動エネルギ吸収装置におい゛ て、前記弾塑性
部材中に前記第1の端板の凹部内から前記第2の端板の
凹部に厘って埋め込まれた第1の補強部材群と、前記弾
塑性部材中に少なくとも前記凹部に挿入されている部分
と挿入されていない部分との境界部分を横切って埋め込
まれた第2の補強部材群とを設けてなる撮動エネルギ吸
収装置が提供される。
In a vibration energy absorbing device comprising an elastoplastic member having plasticity, the ends of which are inserted and joined into the recesses provided in the first and second end plates, the first and second end plates are provided with an elastoplastic member having plasticity. A first reinforcing member group is inserted into the recess of the second end plate from within the recess of the first end plate, and at least a portion of the elastic-plastic member that is inserted into the recess is inserted into the elastic-plastic member. A second group of reinforcing members embedded across a boundary portion with a blank portion is provided.

〔発明の効果〕〔Effect of the invention〕

地震時のように2つの部材間に相対変位が生じる振動力
が加わると1弾塑性部材が上記2つの部材間の相対変位
励に応じた塑性変形を繰返す。このように繰返し変形を
受けると2弾塑性部材と各端板との間の接合部、特に凹
部に挿入されている部分と挿入されていない部分との境
界部分に亀裂を生じさせるような力が作用する。つまり
弾塑性部材と端板との接合部で破断を起こさせるような
力が作用する。しかし0弾塑性部材中には前記関係に第
1および第2の補強部材群が埋め込まれているので1弾
塑性部材の各部で最も変形歪みの大きい上述した境界部
分の強度を大幅に強化でき。
When a vibration force that causes a relative displacement between two members is applied, such as during an earthquake, one elastic-plastic member repeatedly undergoes plastic deformation in response to the relative displacement between the two members. When subjected to repeated deformation in this way, a force that causes cracks is generated at the joint between the two elastoplastic members and each end plate, especially at the boundary between the part inserted into the recess and the part not inserted. act. In other words, a force that causes breakage acts on the joint between the elastic-plastic member and the end plate. However, since the first and second reinforcing member groups are embedded in the 0-elastic-plastic member in the above-mentioned relationship, the strength of the above-mentioned boundary portion where the deformation strain is largest among the parts of the 1-elastic-plastic member can be significantly strengthened.

この部分において亀裂や破断が生じるのを防止できる。Cracks and breaks can be prevented from occurring in this part.

また9弾塑性部材が繰返し変形を受けると。Also, when an elastoplastic member is subjected to repeated deformation.

この弾塑性部材には両端部にくびれ部を、中央部に膨出
部を形成させる力が作用する。しかし1弾塑性部材中に
は前記関係に第1および第2の補強部材群が埋め込まれ
ているので、これら補強部材群の存在によって上述した
くびれ部の発生や膨出部の発生を防止できる。したがっ
て、くびれ部の発生によって少ない繰返し数で弾塑性部
材が破断するのを防止できる。
A force acts on this elastic-plastic member to form constrictions at both ends and a bulge at the center. However, since the first and second reinforcing member groups are embedded in the one elastic-plastic member in the above relationship, the presence of these reinforcing member groups can prevent the above-mentioned constriction and bulge from occurring. Therefore, it is possible to prevent the elastic-plastic member from breaking due to the occurrence of a constricted portion with a small number of repetitions.

このように0弾塑性部材と端板との間の接合強度を大幅
に増加できるとともに弾塑性部材にくびれ部が発生する
のを防止できるので、長期に屋っで安定したエネルギ吸
収機能を発揮させることができる。
In this way, the bonding strength between the elastoplastic member and the end plate can be significantly increased, and the occurrence of constrictions in the elastoplastic member can be prevented, allowing it to exhibit a stable energy absorption function over a long period of time. be able to.

また、 II!!の装置に関連させて弾塑性部材を配置
する必要がないので1弾塑性部材の表面を露出状態、あ
るいは腐蝕を防ぐためのカバーまたは防錆処理膜で覆っ
た状態だけにすることができる。このため、地震終了後
に弾塑性部材の現在の状態や特性を検査することが容易
となり、この結果、交換のタイミングの誤りにも寄与で
きる。さらに。
Also, II! ! Since there is no need to arrange an elastoplastic member in connection with the device, the surface of one elastoplastic member can be left exposed or covered with a cover or antirust treatment film to prevent corrosion. Therefore, it becomes easy to inspect the current state and characteristics of the elastoplastic member after the earthquake has ended, and as a result, this can contribute to errors in the timing of replacement. moreover.

他の装置、たとえばラバーベアリングのような荷重支持
Vl置とは独立して設置することができるので、装置の
交換の容易化にも寄与できる。
Since it can be installed independently of other devices, such as a load support Vl position such as a rubber bearing, it can also contribute to facilitating the replacement of the device.

〔発明の実施例〕[Embodiments of the invention]

以下9本発明の実施例を図面を参照しながら説明する。 Hereinafter, nine embodiments of the present invention will be described with reference to the drawings.

第1図は2本発明の一実席例に係る振動エネルギ吸収装
置21を実際に対象とする2つの構造物の部材22.2
3間に設置した例の側面図である。
FIG. 1 shows two structural members 22.2 that are actually intended for a vibration energy absorbing device 21 according to an actual example of the present invention.
It is a side view of the example installed between 3 rooms.

この撮動エネルギ吸収装置21は、大きく分けて部材2
.2.23に互いに対面する関係に図示しないボルト等
によって支持された端板24.25と、この端板24.
25間に挿設されたエネルギ吸収体26とで構成されて
いる。
This imaging energy absorption device 21 is roughly divided into members 2
.. 2.23, an end plate 24.25 supported by bolts or the like (not shown) in a mutually facing relationship;
25 and an energy absorber 26 inserted between the energy absorbers 25 and 25.

端板24.25には、第2図に示すように、これら端板
24.25をくり抜いて形成された凹部27が設けられ
ている。この実施例の場合、これら凹部27はそれぞれ
貫通孔の形に設けられている。そして、これら凹部27
は1部材22.23とは反対側位置に形成された小径部
分28と、この小径部分28から一旦段付き状に広がっ
た後。
As shown in FIG. 2, the end plates 24,25 are provided with recesses 27 formed by hollowing out the end plates 24,25. In this embodiment, each of these recesses 27 is provided in the form of a through hole. And these recesses 27
A small diameter portion 28 is formed at a position opposite to the first member 22, 23, and after the small diameter portion 28 once widens out in a stepped shape.

部材22.23に近付くにしたがって徐々に瓶口する大
径部分29とで構成されている。
It consists of a large-diameter portion 29 that gradually tapers off as it approaches the members 22 and 23.

一方、エネルギ吸収体26は、、たとえば鉛で円柱状に
形成された弾塑性部材30と、この弾塑性部材30に軸
方向に複数理め込まれた補強部材群31a、31b、3
1cとで構成されている。弾塑性部材30は9両端部が
各端板24.25の凹部27に合致した形状に形成され
、中央部が小径部28の直径と等しい径の円柱状に形成
されている。そして9両端部は各端板24,25の凹部
27に挿入接合されている。すなわち、この弾塑性部材
30は、端板24.25の凹部27の内面を型面の一部
として鋳造によって形成されたものである。そして1弾
塑性部材30の上記各凹部27に挿入されている部分外
面と凹部27の内面とは嵌合あるいはろう付けによって
接合されている。前記補強部材群31a、31b、31
cを構成している補強部材32.33.34は、この実
施例の場合1弾塑性部材30を構成している鉛より引張
り強度が大きい鉄で、かつ構造物の剛性に大きな影響を
与えない程度に弾塑性部材30の径方向の変形に抗する
ことができる太さのものが用いられている。補強部材群
31aを構成している補強部材32は1弾塑性部材30
と同じ長さ、つまり両端部が各端板24.25の凹部2
7内に位置し得る長さを有しており、しかも第3図およ
び第4図に示すように弾塑性部材30内の外側寄りの位
置に周方向に等間隔に埋め込まれている。また、補強部
材群31bを構成している補強部材33は、端板24の
厚みの倍程度の長さに形成されており、前記補強部材群
31aが埋め込まれている位置より内側に、一端側を端
板24の凹部27内に位置させるとともに他端側を端板
24゜25間に位置させ、かつ第4図に示すように周方
向に等間隔に埋め込まれている。補強部材群31Gを構
成している補強部材34も、端板25の厚みの倍程度の
長さに形成されており、前記補強部材群31aが埋め込
まれている位置より内側に、一端側を端板25の凹部2
7内に位置させるとともに他端側を端板24.25間に
位置させ。
On the other hand, the energy absorber 26 includes an elastoplastic member 30 formed in a cylindrical shape, for example, from lead, and a plurality of reinforcing member groups 31a, 31b, 3 inserted into the elastoplastic member 30 in the axial direction.
1c. The elastoplastic member 30 is formed in a shape that matches the concave portion 27 of each end plate 24, 25 at both ends thereof, and is formed in a cylindrical shape having a diameter equal to the diameter of the small diameter portion 28 at the center portion. Both end portions of 9 are inserted and joined into recesses 27 of each end plate 24, 25. That is, this elastic-plastic member 30 is formed by casting using the inner surface of the recess 27 of the end plate 24, 25 as a part of the mold surface. The outer surface of the portion of the elastic-plastic member 30 inserted into each of the recesses 27 and the inner surface of the recess 27 are joined by fitting or brazing. The reinforcing member groups 31a, 31b, 31
In this embodiment, the reinforcing members 32, 33, and 34 that make up part c are made of iron, which has a higher tensile strength than the lead that makes up the first elastic-plastic member 30, and does not have a large effect on the rigidity of the structure. A material having a thickness that can resist radial deformation of the elastic-plastic member 30 to a certain degree is used. The reinforcing members 32 constituting the reinforcing member group 31a are one elastic-plastic member 30
The same length as, that is, both ends are the recesses 2 of each end plate 24.25.
7, and as shown in FIGS. 3 and 4, they are embedded at equal intervals in the circumferential direction at positions closer to the outside of the elastic-plastic member 30. Further, the reinforcing members 33 constituting the reinforcing member group 31b are formed to have a length approximately twice the thickness of the end plate 24, and are placed on one end side inside the position where the reinforcing member group 31a is embedded. are located in the recess 27 of the end plate 24, and the other end is located between the end plates 24° and 25, and are embedded at equal intervals in the circumferential direction as shown in FIG. The reinforcing members 34 constituting the reinforcing member group 31G are also formed to have a length approximately twice the thickness of the end plate 25, and one end is placed inside the position where the reinforcing member group 31a is embedded. Recessed portion 2 of plate 25
7 and the other end side is located between the end plates 24 and 25.

かつ第3図に示すように周方向に等間隔に埋め込まれて
いる。
As shown in FIG. 3, they are embedded at equal intervals in the circumferential direction.

このような構成であると、地震等によって部材22.2
3に第1図中横方向の相対変位が生じると2弾塑性部材
30は第5図に示すような変形を繰返し受ける。このた
め1弾塑性部材30内で塑性変形に必要なエネルギ消費
が起こり、このエネルギ消費によって振動エネルギ吸収
装置としての1幾能が発揮される。
With such a configuration, the member 22.2 may be damaged due to an earthquake or the like.
When a relative displacement in the lateral direction in FIG. 1 occurs at 3, the 2 elastoplastic member 30 repeatedly undergoes deformation as shown in FIG. For this reason, energy consumption necessary for plastic deformation occurs within one elastic-plastic member 30, and one function as a vibration energy absorbing device is exhibited by this energy consumption.

この場合1弾塑性部材30が繰返し変形すると。In this case, if the first elastic-plastic member 30 is repeatedly deformed.

弾塑性部材30ど端板24.25との間の接合部。The joint between the elastic-plastic member 30 and the end plate 24.25.

特に弾塑性部材30の両端部で凹部27との境界部分R
に亀裂を発生させるような力が作用する。
In particular, the boundary R with the recess 27 at both ends of the elastic-plastic member 30
A force is applied that causes a crack to occur.

しかし1弾塑性部材30の両端部で各端板24゜25の
凹部27に挿入されている部分と挿入されていない部分
との境界部分Rには、この境界部分Rを横切るように補
強部材群31a、31b。
However, at both ends of the first elastic-plastic member 30, a group of reinforcing members is provided at the boundary R between the part inserted into the recess 27 of each end plate 24, 25 and the part not inserted. 31a, 31b.

31Gが埋め込まれている。このため、最も変形歪みの
大きい上記境界部分Rの強度を従来のものに比べて非常
に大きくでき、この結果、境界部分Rへの亀裂の発生を
防止することができる。また。
31G is embedded. Therefore, the strength of the boundary portion R, which has the largest deformation strain, can be made much larger than that of the conventional structure, and as a result, the occurrence of cracks in the boundary portion R can be prevented. Also.

操返し変形によって弾塑性部材30にくびれ部や膨出部
が発生しようとしても、この発生力が軸方向の全長に亙
っで埋め込まれた補強部材群31aや補強部材群31b
、31Cによって抑えられ。
Even if a constriction or a bulge is generated in the elastic-plastic member 30 due to repeated deformation, this generated force is applied to the reinforcing member group 31a and reinforcing member group 31b embedded over the entire length in the axial direction.
, suppressed by 31C.

結局、くびれ部や膨出部の発生も抑制される。このよう
に9弾塑性部材30と各端板24.25との間の接合部
の機械的強度を大幅に増加させることができるとともに
くびれ部や膨出部の発生を防止できるので、長期に亙り
で安定したエネルギ吸収機能を発揮させることができる
。さらに、上記構成であると2弾塑性部材30を他の装
置と関連させて設ける必要はない。このため弾塑性部材
30の表面を露出させたり、あるいは腐蝕を防止するた
めのカバーまたは被膜で覆った状態だけにすることがで
きる。したがって、地震終了後に弾塑性部材30の現在
の状態や特性を検査することが容易となり、この結果、
交換のタイミングの誤り防止にも寄与できる。また、前
述のように他の装置、たとえばラバーベアリングのよう
な荷重支持装置とは独立して設置できるので、装置の交
換の容易化にも寄与でき、結局、前述した効果を発揮さ
せることができる。
As a result, the occurrence of constrictions and bulges is also suppressed. In this way, the mechanical strength of the joint between the elastic-plastic member 30 and each end plate 24, 25 can be significantly increased, and the occurrence of constrictions and bulges can be prevented, so that it can be used for a long period of time. It can exhibit stable energy absorption function. Furthermore, with the above configuration, there is no need to provide the two elastic-plastic members 30 in association with other devices. Therefore, the surface of the elastic-plastic member 30 can be exposed or only covered with a cover or coating to prevent corrosion. Therefore, it becomes easy to inspect the current state and characteristics of the elastic-plastic member 30 after the earthquake, and as a result,
This can also contribute to preventing errors in replacement timing. Furthermore, as mentioned above, since it can be installed independently of other devices, such as load supporting devices such as rubber bearings, it can contribute to the ease of replacing the device, and in the end, the above-mentioned effects can be achieved. .

なお1本発明は、上述した実施例に限定されるものでは
なく種々変形することができる。たとえば、第6図に示
すように補強部材u31aの内側に、各端板24.25
の凹部27の中央部間を結ぶ長さと等しい長さを有した
補強部材35からなる補強部材群31dを埋め込むとと
ともに上記補強部材群31dの両端と補強部材群31a
とを連結部材36a、36bで連結し、上記連結部材3
6a、36bで鋳造時の位置保持機能を行なわせるよう
にしてもよい。また、第7図に示すように補強部材群3
1aの外側に補強部材群31b。
Note that the present invention is not limited to the embodiments described above, and can be modified in various ways. For example, as shown in FIG. 6, inside the reinforcing member u31a, each end plate 24.
A reinforcing member group 31d consisting of a reinforcing member 35 having a length equal to the length connecting the center portions of the recess 27 is embedded, and both ends of the reinforcing member group 31d and the reinforcing member group 31a are embedded.
are connected by connecting members 36a and 36b, and the connecting member 3
6a and 36b may perform a position holding function during casting. Further, as shown in FIG. 7, the reinforcing member group 3
A reinforcing member group 31b is provided on the outside of 1a.

31Gを埋め込むようにしてもよい。また、第8図に示
すように補強部材群31a、31b。
31G may be embedded. Further, as shown in FIG. 8, reinforcing member groups 31a and 31b.

31Gを構成する各補強部材32.33.34を湾曲さ
せて埋め込むようにしてもよい。また、軸方向に埋め込
まれた各補強部材群の補強部材を周方向に連結する環状
補強部材を軸方向に複数理め込むようにしてもよい。ま
た、第1図に示した実施例では各端板24.25を各部
材22.23にポル1−等で固定するよう叫しているが
、第9図に示すように部材22.23にそれぞれ支持用
の凹部41.42を設け、これら凹部41,42に各端
板24.25を軸方向に抵抗を生じない程度に嵌め込み
、これによって各端板24.25を相対運動方向のみ拘
束するように支持してもよい。このようにすれば、たと
えば荷重等で部材22゜23間の距離が変動しても、エ
ネルギ吸収装置には軸方向の圧縮または引張り荷重が作
用しないのでエネルギ吸収特性に影胃を与えずに上記変
動分を吸収することができる。さらに2弾塑性部材の形
状は円柱状に限らず角柱状でもよく、その径および長さ
は、このエネルギ吸収装置を実際に設置するときの総数
、対象とする構造物の質量、構造物の剛性、必要とされ
るエネルギ吸収量および使用する弾塑性部材の塑性特性
によって決定される。
Each reinforcing member 32, 33, 34 constituting 31G may be curved and embedded. Further, a plurality of annular reinforcing members may be inserted in the axial direction to connect the reinforcing members of each reinforcing member group embedded in the axial direction in the circumferential direction. Furthermore, in the embodiment shown in FIG. 1, each end plate 24, 25 is instructed to be fixed to each member 22, 23 with a pole 1-, etc., but as shown in FIG. Supporting recesses 41, 42 are provided respectively, and each end plate 24, 25 is fitted into these recesses 41, 42 to such an extent that no resistance occurs in the axial direction, thereby restraining each end plate 24, 25 only in the direction of relative movement. It may be supported as such. In this way, even if the distance between the members 22 and 23 changes due to, for example, a load, no axial compressive or tensile load will be applied to the energy absorbing device, so the energy absorption characteristics will not be affected. Fluctuations can be absorbed. Furthermore, the shape of the 2 elastic-plastic member is not limited to a cylindrical shape but may be a prismatic shape, and its diameter and length are determined by the total number when this energy absorption device is actually installed, the mass of the target structure, and the rigidity of the structure. , determined by the required energy absorption and the plastic properties of the elastoplastic member used.

また9弾塑性部材を形成する材料としては鉛に限らず、
鉛系合金や鉄も使用できる。
In addition, the material for forming the 9 elastic-plastic member is not limited to lead.
Lead-based alloys and iron can also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る振動エネルギ吸収装置
を実際に2つの部材間に設置したときの側面図、第2図
は同振動エネルギ吸収装置の縦断面図、第3図は同振動
エネルギ吸収装置を第1図におけるA −A f4ii
lに沿って切断し矢印方向に見た図、第4図は同振動エ
ネルギ吸収装置を第1図におけるB−B線に沿って切断
し矢印方向に見た図。 第5図は同振動エネルギ吸収装置がエネルギ吸収動作を
行なっているときの縦断面図、第6図は本発明の別の実
施例に係る振動エネルギ吸収装置の縦断面図、第7図お
よび第8図は本発明のさらに異なる実施例に係る振動エ
ネルギ吸収装置をそれぞれ示す縦断面図、第9図は振動
エネルギ吸収装置の設置形態の別の例を説明するための
図、第図 10図および第11はそれぞれ従来の振動エネルギ吸収
装置の縦断面図、第12図から第14図は上記従来装置
の問題点を説明するための図、第15図は従来の撮動エ
ネルギ吸収装置のさらに別の例の縦断面図である。 21・・・振動エネルギ吸収装置、22.23・・・地
震時等に相対運動する部材、24.25・・・端板。 26・・・エネルギ吸収体、27・・・凹部、30・・
・弾塑性部材、31a、31b、31c、31d・・・
補強部材群、32.33.34.35・・・補強部材。 出願人代理人 弁理士 鈴江武彦 1a II 3 図 1a II4図 115rlA I 10因 11 図 、5 %  13 区 第14図 り 15 図
Fig. 1 is a side view of a vibration energy absorbing device according to an embodiment of the present invention when it is actually installed between two members, Fig. 2 is a longitudinal sectional view of the same vibration energy absorbing device, and Fig. 3 is the same. The vibration energy absorption device is A-A f4ii in Fig. 1.
FIG. 4 is a view of the vibration energy absorbing device taken along line B-B in FIG. 1 and viewed in the direction of the arrow. FIG. 5 is a vertical cross-sectional view of the vibration energy absorbing device when it is performing an energy absorption operation, FIG. 6 is a vertical cross-sectional view of a vibration energy absorbing device according to another embodiment of the present invention, and FIGS. 8 is a vertical sectional view showing a vibration energy absorbing device according to a further different embodiment of the present invention, FIG. 9 is a diagram for explaining another example of the installation form of the vibration energy absorbing device, FIG. 10 and 11 is a vertical cross-sectional view of a conventional vibration energy absorbing device, FIGS. 12 to 14 are diagrams for explaining the problems of the conventional device, and FIG. 15 is a further diagram of a conventional imaging energy absorbing device. FIG. 21... Vibration energy absorption device, 22.23... Member that moves relative to each other during an earthquake, etc., 24.25... End plate. 26...Energy absorber, 27...Recess, 30...
- Elastoplastic members, 31a, 31b, 31c, 31d...
Reinforcement member group, 32.33.34.35...Reinforcement member. Applicant's agent Patent attorney Takehiko Suzue 1a II 3 Figure 1a II4 Figure 115rlA I 10 factors 11 Figure, 5% 13 Ward 14 Diagram 15 Figure

Claims (4)

【特許請求の範囲】[Claims] (1)2つの部材間の相対運動時の運動エネルギを吸収
するためのものであつて、前記各部材にそれぞれ支持さ
れるとともにそれぞれに凹部を有した第1および第2の
端板と、両端部が前記第1および第2の端板の前記凹部
に挿入接合されて上記第1の端板と上記第2の端板との
間に挿設された可塑性を有する弾塑性部材とを備えてな
る振動エネルギ吸収装置において、前記弾塑性部材中に
前記第1の端板の凹部内位置から前記第2の端板の凹部
内位置に亙つて埋め込まれた第1の補強部材群と、前記
弾塑性部材中に少なくとも前記凹部に挿入されている部
分と挿入されていない部分との境界部分を横切つて埋め
込まれた第2の補強部材群とを具備してなることを特徴
とする振動エネルギ吸収装置。
(1) The device is for absorbing kinetic energy during relative motion between two members, and includes first and second end plates supported by each of the members and each having a recess, and both ends. an elastoplastic member having plasticity inserted between the first end plate and the second end plate by being inserted and joined into the recesses of the first and second end plates. In the vibration energy absorbing device, a first reinforcing member group embedded in the elastic-plastic member from a position inside the recess of the first end plate to a position inside the recess of the second end plate; A vibration energy absorber comprising a second reinforcing member group embedded in the plastic member at least across the boundary between the part inserted into the recess and the part not inserted. Device.
(2)前記弾塑性部材は、鉛、鉛系合金、鉄の中から選
ばれた1種で形成されてなることを特徴とする特許請求
の範囲第1項記載の振動エネルギ吸収装置。
(2) The vibration energy absorbing device according to claim 1, wherein the elastic-plastic member is made of one selected from lead, a lead-based alloy, and iron.
(3)前記第1および第2の補強部材群は、それぞれ前
記弾塑性部材より材料強度の大きい材料で形成された複
数の補強部材で構成されていることを特徴とする特許請
求の範囲第1項記載の振動エネルギ吸収装置。
(3) The first and second reinforcing member groups are each composed of a plurality of reinforcing members made of a material having higher material strength than the elastic-plastic member. Vibration energy absorbing device as described in .
(4)前記第1および第2の補強部材群を構成している
複数の補強部材は、それぞれ周方向に配列されているこ
とを特徴とする特許請求の範囲第1項記載の振動エネル
ギ吸収装置。
(4) The vibration energy absorbing device according to claim 1, wherein the plurality of reinforcing members constituting the first and second reinforcing member groups are arranged in the circumferential direction. .
JP29401985A 1985-06-19 1985-12-27 Vibration energy absorber Expired - Lifetime JPH0660665B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29401985A JPH0660665B2 (en) 1985-12-27 1985-12-27 Vibration energy absorber
US06/872,410 US4731966A (en) 1985-06-19 1986-06-10 Vibration energy absorber device
DE8686108141T DE3661558D1 (en) 1985-06-19 1986-06-13 A VIBRATION ENERGY ABSORBER DEVICE
EP86108141A EP0206183B1 (en) 1985-06-19 1986-06-13 A vibration energy absorber device
NZ216587A NZ216587A (en) 1985-06-19 1986-06-18 Vibration energy absorber for building foundations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29401985A JPH0660665B2 (en) 1985-12-27 1985-12-27 Vibration energy absorber

Publications (2)

Publication Number Publication Date
JPS62155343A true JPS62155343A (en) 1987-07-10
JPH0660665B2 JPH0660665B2 (en) 1994-08-10

Family

ID=17802201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29401985A Expired - Lifetime JPH0660665B2 (en) 1985-06-19 1985-12-27 Vibration energy absorber

Country Status (1)

Country Link
JP (1) JPH0660665B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114779A (en) * 1986-10-30 1988-05-19 三井建設株式会社 Earthquakeproof damper
US4964624A (en) * 1987-06-23 1990-10-23 Hutchinson Resilient supports with composite cables embedded in elastomeric material
CN101769016A (en) * 2010-03-09 2010-07-07 张德新 Anti-seismic device of building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114779A (en) * 1986-10-30 1988-05-19 三井建設株式会社 Earthquakeproof damper
US4964624A (en) * 1987-06-23 1990-10-23 Hutchinson Resilient supports with composite cables embedded in elastomeric material
US5042783A (en) * 1987-06-23 1991-08-27 Hutchinson Resilient supports
CN101769016A (en) * 2010-03-09 2010-07-07 张德新 Anti-seismic device of building

Also Published As

Publication number Publication date
JPH0660665B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
EP0206183B1 (en) A vibration energy absorber device
US6385918B1 (en) Energy absorber
EP2921612B1 (en) Energy dissipating device
NZ201015A (en) Building support:cyclic shear energy absorber
JPS6117984B2 (en)
US20060253057A1 (en) Buckling restrained structural brace assembly
CN106835947B (en) Multidimensional vibration reduction device is detained containing the suspension bridge center of viscoplasticity dissipative member and metal-rubber
JP2006275212A (en) Energy absorbing device
JPS62155343A (en) Vibration energy absorbing device
JP3503712B2 (en) Lead encapsulated laminated rubber
JPS62155344A (en) Vibration energy absorbing device
JP2006207680A (en) Laminated rubber supporter
JPS62228729A (en) Vibration energy absorbing device
JPH0949209A (en) Vibration isolation method of bridge and construction of vibration isolation
JPS61294230A (en) Vibration energy absorbing device
JPS61294234A (en) Vibration energy absorbing device
JPS59114322A (en) High-strength concrete pile
JPS61290244A (en) Vibration energy absorbing device
JPS61294233A (en) Vibration energy absorbing device
JPH0768994B2 (en) Vibration energy absorber
JPS61294232A (en) Vibration energy absorbing device
JPS61294231A (en) Vibration energy absorbing device
JP3008954B2 (en) Seismic isolation bearing
JPH0262670B2 (en)
JPH1162313A (en) Lead bearing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term