JPS62153767A - Laminated type piezoelectric ceramic element - Google Patents

Laminated type piezoelectric ceramic element

Info

Publication number
JPS62153767A
JPS62153767A JP60294865A JP29486585A JPS62153767A JP S62153767 A JPS62153767 A JP S62153767A JP 60294865 A JP60294865 A JP 60294865A JP 29486585 A JP29486585 A JP 29486585A JP S62153767 A JPS62153767 A JP S62153767A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
piezoelectric ceramics
ceramic element
piezoelectric
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60294865A
Other languages
Japanese (ja)
Inventor
Tokiji Nishida
西田 時次
Masuo Fujimoto
藤本 益男
Teruo Shimizu
輝夫 清水
Atsushi Kawai
淳 河合
Katsuhiro Mizoguchi
勝大 溝口
Takeshi Nishizawa
猛 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI SANEI KK
NEC Corp
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NIPPON DENKI SANEI KK
NEC Corp
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI SANEI KK, NEC Corp, NEC Avio Infrared Technologies Co Ltd filed Critical NIPPON DENKI SANEI KK
Priority to JP60294865A priority Critical patent/JPS62153767A/en
Publication of JPS62153767A publication Critical patent/JPS62153767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To attain miniaturization and to enhance electric output sensitivity, by making the junction surface of piezoelectric ceramics vertical to the direction of a shearing force generated by acceleration. CONSTITUTION:Piezoelectric ceramics 11 radially polarized from the center of the shape of each piezoelectric ceramic to the outside and piezoelectric ceramics 11 polarized to the direction opposite thereto are alternately stacked to form inner electrodes 12 to the junction surfaces of said piezoelectric ceramics 11, those different from each other of the inner electrodes 12 being connected every other one to constitute output electrodes. A wt. 2 is mounted to thus constituted piezoelectric ceramic element and fixed to a base 8 by a support 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ぜん新型加速度センサーに用いて好適の積層
型圧電セラミック素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated piezoelectric ceramic element suitable for use in a completely new type of acceleration sensor.

[従来の技術〕 圧電セラミックスにせん新店カを加えるとき圧電セラミ
ックスの表面に電荷を発生ずる現象をせん断効果といい
、そのせん新店力方向、電気出力方向及び分極方向は特
定の方向である。第7図A。
[Prior Art] When a shear force is applied to a piezoelectric ceramic, a phenomenon in which an electric charge is generated on the surface of the piezoelectric ceramic is called a shear effect, and the direction of the shear force, electric output direction, and polarization direction are specific directions. Figure 7A.

Bに上記3方向の関係を示す、これらの図において、P
は分極方向、Fはせん新店力方向、Bは電気出力方向、
α及びβ(斜線部分)は電気出力を得るための電極を取
付けるべき面(電荷の発生する方向の面)を示す、第7
図Aでは、せん新店力Fにより分極方向Pに平行で電気
出力方向Eに垂直な面内ずれ歪みを生じ、側面α、βに
互いに異極性の電荷を発生する。第7図Bでは、せん新
店力Fにより分極方向Pに垂直で電気出力方向Eに平行
な面内ずれ歪みを生じ、側面α、βに互いに異極性の?
!!荷を発生する。
In these figures, B shows the relationship between the three directions above, P
is the polarization direction, F is the direction of the electric force, B is the electric output direction,
α and β (shaded areas) indicate the surface on which the electrode is to be attached to obtain electrical output (the surface in the direction in which electric charge is generated), and the seventh
In FIG. A, the force F causes an in-plane displacement strain parallel to the polarization direction P and perpendicular to the electric output direction E, and charges of different polarities are generated on the side surfaces α and β. In FIG. 7B, the shear force F causes an in-plane displacement strain perpendicular to the polarization direction P and parallel to the electrical output direction E, and the side surfaces α and β have different polarities.
! ! Generate load.

上述のせん断効果は加速度センサニに利用でき、加速度
を加えるとき圧電セラミック素子にせん新店力が作用す
るような位置に錘(おもり)を取付けることにより、加
速度に応じた電気信号が得られる。かかる加速度センサ
ーをせん断(shear )型加速度センサーという。
The above-mentioned shearing effect can be used in acceleration sensors, and by attaching a weight at a position where shearing force acts on the piezoelectric ceramic element when acceleration is applied, an electrical signal corresponding to acceleration can be obtained. Such an acceleration sensor is called a shear type acceleration sensor.

これに対し、縦効果を利用した加速度センサーは、圧電
セラミック素子に伸縮応力が作用するような位置に錘を
取付け、圧電セラミック素子の伸縮歪みによる電気出力
を得るもので、圧縮(co閲pression )型加
速度センサーと呼ばれる。
On the other hand, an acceleration sensor that uses the longitudinal effect attaches a weight at a position where expansion and contraction stress acts on the piezoelectric ceramic element, and obtains an electrical output due to expansion and contraction strain of the piezoelectric ceramic element. It is called a type acceleration sensor.

第8図は、圧縮型加速度センサーの一例をボす一部断面
図である。この型の加速度センサーは、圧電セラミック
素子(1)がベース(8)の上面に直接置かれ、被測定
物にはベース(8)の底面が接するので、被測定物の表
面が凹凸であればベース(8)に歪みを生じ、この歪み
が圧電セラC−/り素子(1)に伝わってベース歪み感
度となる構造上の欠点をもつ、第8図において、各方向
の加速度が加わると錘(2)の慣性力によってZ方向の
伸縮応力が圧電セラミック素子(1)に作用し、圧電セ
ラミックスが歪んで素子(1)の上面と底面に電荷を発
生する0発生した重荷は、素子(11の上面及び底面の
電極(図示せず)、リード線(5)を経てコネクタ(7
)に運ばれ、外部に電気信号として取り出される。予圧
ボルト(4)は素子(1)と錘(2)の固定のために、
カバー(6)は急激な環境変化の影ソを和らげると共に
センシング部の保護のために、それぞれ用いられる。予
圧ボルト(4)と錘(2)の間にはバネ座金(3)が、
圧電セラミック素子(1)の内壁とベース(8)の間に
は絶縁リング(9)がある。
FIG. 8 is a partial sectional view showing an example of a compression type acceleration sensor. In this type of acceleration sensor, the piezoelectric ceramic element (1) is placed directly on the top surface of the base (8), and the bottom surface of the base (8) is in contact with the object to be measured, so if the surface of the object to be measured is uneven, In Fig. 8, when acceleration in each direction is applied, the weight becomes distorted. Due to the inertial force of (2), expansion and contraction stress in the Z direction acts on the piezoelectric ceramic element (1), which distorts the piezoelectric ceramic and generates charges on the top and bottom surfaces of the element (1). Connector (7) via the electrodes (not shown) on the top and bottom surfaces of the
) and extracted externally as an electrical signal. The preload bolt (4) is used to fix the element (1) and the weight (2).
The cover (6) is used to soften the effects of sudden environmental changes and to protect the sensing section. A spring washer (3) is placed between the preload bolt (4) and the weight (2).
Between the inner wall of the piezoceramic element (1) and the base (8) there is an insulating ring (9).

外部温度が変化すると、圧電セラミック素子(1)にパ
イロ電気が発生し、加速度センサーの出力信号に影響を
及ぼす、パイロ電気とは、周囲の温度変化と共にチタン
酸ジルコン酸鉛などの圧電セラミックスの自発分極が変
化すると分極方向に垂直な面に発生する?!荷のことで
ある。第8図に示す縦効果による電気出力で加速度測定
を行う圧縮型のセンサーにおいては、電極面の位置が第
9図に示すように分極方向Pに対して垂直な面α及びβ
にあるので、パイロ電気の影響が大きい、第9図におい
て、Eは電気出力方向、Fは伸縮応力方向を示す。
When the external temperature changes, pyroelectricity is generated in the piezoelectric ceramic element (1), which affects the output signal of the acceleration sensor.Pyroelectricity is the spontaneous generation of piezoelectric ceramics such as lead zirconate titanate as the ambient temperature changes. When polarization changes, does it occur in a plane perpendicular to the polarization direction? ! It refers to cargo. In the compression type sensor shown in Fig. 8, which measures acceleration using electrical output due to the longitudinal effect, the positions of the electrode surfaces are in planes α and β perpendicular to the polarization direction P, as shown in Fig. 9.
In FIG. 9, E indicates the direction of electrical output, and F indicates the direction of expansion and contraction stress.

せん断効果を加速度測定に利用するせん新型加速度セン
サーでは、第7図A、Bに示すように、電極面α、βは
分極方向Pと垂直な面ではなく平行な面であるので、パ
イロ電気の影響は小さい。
In the shear type acceleration sensor that uses shear effect to measure acceleration, as shown in Figure 7A and B, the electrode surfaces α and β are not perpendicular to the polarization direction P but parallel to it, so pyroelectricity is reduced. The impact is small.

第5図は従来のせん新型加速度センサーの一例を示すも
ので、同図Aは上面図、同図Bは一部断面1ピ面図であ
る。これらの図に示すように、圧電セラミック素子+1
)は、リングないし短管状でリング内外の側面に電極を
をする単層素子であり、素子(1)、錘(2)及び支持
体(10)は同心円状に配置され、分極は素子高さ方向
(図の2方向)である、Z方向に加速度が加わると、素
子(1)にせん新店力が加わり、素子(1)内外の側面
に電荷を発生して電極、リード線(5)を経てコネクタ
(7)に運ばれ、外部へ電気信号として取出される。素
子(1)と錘(2)、素子(11と支持体(10)の固
定は接着であるため、圧縮型加速度センサーより耐加速
度衝撃性が小さい、耐加速度衝撃性を太き(するには、
錘(2)の正量を軽くすればよいが、感度の低下を免れ
ない。
FIG. 5 shows an example of a conventional sliding type acceleration sensor, in which FIG. 5A is a top view and FIG. 5B is a partially sectional 1-piece view. As shown in these figures, piezoelectric ceramic element +1
) is a single-layer element that is ring- or short-tubular and has electrodes on the inner and outer sides of the ring, and the element (1), weight (2), and support (10) are arranged concentrically, and the polarization is determined by the height of the element. When acceleration is applied in the Z direction (two directions in the figure), a force is applied to the element (1), generating electric charges on the inner and outer sides of the element (1), which causes the electrodes and lead wires (5) to The signal is then transferred to the connector (7) and taken out as an electrical signal to the outside. Since the element (1) and the weight (2), and the element (11 and the support (10)) are fixed by adhesive, the acceleration impact resistance is lower than that of the compression type acceleration sensor. ,
Although it would be possible to reduce the weight of the weight (2), this would inevitably lead to a decrease in sensitivity.

第6図は、板状圧電セラミックスを複数枚重ね合わせて
感度を向上させだせん新型加速度センサーを示すもので
、同図Aは上面図、同図Bは正面図である。これらの図
にボずように、支持体(10)の左右にそれぞれ複数の
圧電セラミックス(11)を積層した圧電セラミック素
子(11と1 (1111の錘(2)を配し、これらを
ボルト(13)で支持体(10)に固定し、電極(12
)を各圧電セラミックス(11)の接合面に設ける。各
圧電セラミックス(11)間の境界面は微視的にみれば
空間であり(接着固定の場合は接着剤がある。)、応力
に対してこれらの境界面で圧電セラミックス(11)内
部よりもずれが生じ易い、第6図のものでは、測定する
加速度方向と圧電セラミックス(11)間の境界面とは
平行であるので、加速度によって生じる応力が境界面部
分で大きな面内ずれ歪みを発生して、圧電セラミックス
(11)内部の歪みを緩和1°るため、共Di周波数や
感度の低下を引き起す瓜れがある。また、第5図のよう
なリング状圧電セラミック素子+11を用いた加速度セ
ンサーに比べ、空間的に無駄があり小形化が困難なばか
りでなく、左右別々Cシ圧電セラミック素子(1)と錘
(2)を配置するので、圧電セラミック素子の寸法及び
錘の正量が左右で異なると、左右で異なる振動状態をボ
し、加速度センサー全体として瑚波数特性に影響を及ぼ
す。
Fig. 6 shows a new type of acceleration sensor in which sensitivity is improved by stacking a plurality of plate-shaped piezoelectric ceramics. Fig. 6A is a top view, and Fig. 6B is a front view. As shown in these figures, piezoelectric ceramic elements (11 and 1 (1111) with weights (2) each laminated with a plurality of piezoelectric ceramics (11) are arranged on the left and right sides of a support (10), and these are connected with bolts ( 13) to the support (10), and the electrode (12
) is provided on the bonding surface of each piezoelectric ceramic (11). The interface between each piezoelectric ceramic (11) is a space when viewed microscopically (in the case of adhesive fixing, there is an adhesive), and these interfaces are more sensitive to stress than the inside of the piezoelectric ceramic (11). In the case shown in Fig. 6, where misalignment is likely to occur, the direction of acceleration to be measured and the interface between the piezoelectric ceramics (11) are parallel, so the stress caused by the acceleration will cause a large in-plane misalignment strain at the interface. In order to reduce the strain inside the piezoelectric ceramic (11) by 1°, there is a distortion that causes a decrease in the common Di frequency and sensitivity. In addition, compared to an acceleration sensor using a ring-shaped piezoelectric ceramic element (11) as shown in Fig. 5, not only is there a waste of space and it is difficult to downsize, but also the left and right C piezoelectric ceramic elements (1) and weights ( 2), if the dimensions of the piezoelectric ceramic element and the weight of the weight are different between the left and right sides, different vibration states will occur between the left and right sides, which will affect the wave number characteristics of the acceleration sensor as a whole.

しかし、第5及び@6図に示1゛加速度センサーは、第
7図へのせん断効果を利用しパイロ電気の影響を小さく
すると同時に、圧電セラミック素子11)自身力くベー
ス18)に接触しないのでベース(8)から伝播する歪
みの影響も小さい、という利点がある。
However, the acceleration sensor shown in Figures 5 and 6 uses the shear effect in Figure 7 to reduce the influence of pyroelectricity, and at the same time, the piezoelectric ceramic element 11) itself does not come into contact with the base 18). There is an advantage that the influence of distortion propagating from the base (8) is also small.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、せん新型加速度センサーは、第5図の如
く圧電セラミック素子(1)と錘(2)を同心円状に配
置すると空間を存効に利用でき小形化し易い、しかし、
電気出力を度を上げるため@(2)の重量を増すと、共
振周波数の低下や耐加速度衝撃性の減少等の問題を生ず
るので、錘(2)の重量を変えずに加速度センサーの電
気出力感度を上げるには圧電セラミック素子を積層型と
するのがよいことになる。しかし、従来の積層型加速度
センサーは、第6図に示すように第5図の1!層型はど
小形化できなかった。
As mentioned above, the spiral type acceleration sensor can be easily miniaturized by arranging the piezoelectric ceramic element (1) and the weight (2) concentrically as shown in Fig. 5, since space can be effectively utilized.
If the weight of @(2) is increased to increase the electrical output, problems such as a decrease in the resonant frequency and a decrease in acceleration impact resistance will occur. In order to increase sensitivity, it is better to use a multilayer piezoelectric ceramic element. However, as shown in FIG. 6, the conventional stacked acceleration sensor is 1! in FIG. The layer type could not be made smaller.

したがって、本発明は、上記欠点のない小形・高感度の
せん新型加速度センサーを得るのに通した積層型圧電セ
ラミック素子を提供しようとするものである。しかし、
第5図及び第6図と同様な電気出力取出し方法、すなわ
ち第7図IAの原理を用いてリング状圧電セラミックス
(11)を積層すると、第4図に示すような同心円状の
+?!iN型圧電セ型圧クセラミック素子同図Aは上面
図、同図Bは正面図である。電極(12)は、各圧電セ
ラミックスWl(11)の接合面に取付けられる。この
素子では、圧電セラミックス(11)間の接合面が加速
度によって生ずるせん新店力方向と平行になるので、素
子の面内ずれ歪みが強度の弱い接合面にかかり、加速度
センサーの周波数特性や耐加速度i%撃性が悪くなるだ
けでなく、各層の圧電セラミックス(11)の寸法・形
状が違うため、製造の際に多種類の治具を必要としたり
工数が多くなる等の問題がある。
Therefore, the present invention aims to provide a laminated piezoelectric ceramic element that can be used to obtain a compact and highly sensitive folding type acceleration sensor that does not have the above-mentioned drawbacks. but,
When ring-shaped piezoelectric ceramics (11) are stacked using the same electrical output extraction method as shown in FIGS. 5 and 6, that is, the principle shown in FIG. 7IA, a concentric +? ! iN type piezoelectric cell type piezoceramic element Figure A is a top view, and Figure B is a front view. The electrode (12) is attached to the joint surface of each piezoelectric ceramic Wl (11). In this element, the joint surfaces between the piezoelectric ceramics (11) are parallel to the direction of the shear force generated by acceleration, so in-plane shear strain of the element is applied to the weak joint surfaces, which reduces the frequency characteristics and acceleration resistance of the acceleration sensor. Not only does the i% impact resistance deteriorate, but since the dimensions and shapes of the piezoelectric ceramics (11) in each layer are different, there are problems such as requiring many types of jigs and increasing the number of man-hours during manufacturing.

〔問題点を解決するための手段〕[Means for solving problems]

よって、本発明は、電気出力取出し方法として第78U
Bの原理を用い、第2図に示すような積層構造とする。
Therefore, the present invention provides the 78th U as an electric output extraction method.
Using the principle of B, a laminated structure as shown in FIG. 2 is formed.

同図Aは上面図、同図Bは正面図である。この構造は、
同一形状の圧電セラミックス(11)を高さ方向(図の
Z方向)に積層したもので、接合面が加速度によって生
ずるせん新店力方向と垂直になる。内部電極(12)は
圧電セラミックス(11)の接合面に設け、分極は第7
I!IBに示す関係を考慮しつつ次のようにして行う、
第3図。
Figure A is a top view, and Figure B is a front view. This structure is
Piezoelectric ceramics (11) of the same shape are stacked in the height direction (Z direction in the figure), and the bonding surface is perpendicular to the direction of the shearing force generated by acceleration. The internal electrode (12) is provided on the bonding surface of the piezoelectric ceramic (11), and the polarization is determined by the seventh
I! This is done as follows, taking into account the relationships shown in IB.
Figure 3.

は第2図の圧電セラミック素子の分極方向を示す()の
で、同図Aは圧電セラミックス(11)の中心より外側
へ放射状に分極した圧電セラミックス、同図Bはこれと
逆方向に分極した圧電セラミ7クス、同図Cはこれらの
互いに逆方向に分極された圧電セラミックス(A、Bで
表す、)を交互に積み止ねた圧電セラミック素子を示す
、同図Cに示す如く、互いに異なる内部電極(12)を
1つおきに接続して1対の出力電極(1,1) 、  
(15)とし、積If枚数に比例した重量1ηを得るよ
うにする。同図Cは一例として接続をリード線(5)で
行った場合を示したが、他の方法によることもできる。
indicates the polarization direction of the piezoelectric ceramic element in Figure 2 (), so Figure A shows the piezoelectric ceramic (11) polarized radially outward from the center of the piezoelectric ceramic (11), and Figure B shows the piezoelectric ceramic polarized in the opposite direction. Figure C shows a piezoelectric ceramic element in which piezoelectric ceramics polarized in opposite directions (represented by A and B) are stacked alternately. Connect every other electrode (12) to form a pair of output electrodes (1,1),
(15), so as to obtain a weight 1η proportional to the product If the number of sheets. Although FIG. 5C shows, as an example, a case in which the connection is made by a lead wire (5), other methods may be used.

〔作用〕[Effect]

上述の構造とすれば、圧電セラミックス(11)の接合
面が加速度によって生ずるせん新店力方向と垂直になる
ので、第4図の構造の問題点は解消される。
With the above structure, the bonding surface of the piezoelectric ceramic (11) is perpendicular to the direction of the shearing force generated by acceleration, so the problem of the structure shown in FIG. 4 is solved.

〔実施例〕〔Example〕

第1図は、本発明による積層型圧電セラミック素子をせ
ん新型加速度センサーに通用した例を示す、同図Aは上
面図、同図Bは正面図、同IMICは一部断面拡大図で
ある。これらの図において、既に説明した部分と対応す
る部分には同一の符号を付し、重複説明を省略する。第
1図へにおける(16)は、圧電セラミック素子(1)
と錘(2)の一部分との間に設けた孔で、リード線(5
)を通すためのものである。また、第11MICにおけ
る(17)は絶縁性接着剤で、各層の内(η;組電極1
2)の端面が錘(2)及び支持体(lO)に接触しない
ように配慮しである。
FIG. 1 shows an example in which the multilayer piezoelectric ceramic element according to the present invention is applied to a new type of acceleration sensor. FIG. 1A is a top view, FIG. B is a front view, and IMIC is a partially enlarged sectional view. In these figures, the same reference numerals are given to parts corresponding to those already explained, and redundant explanation will be omitted. (16) in Fig. 1 is a piezoelectric ceramic element (1)
A hole is provided between the lead wire (5) and a part of the weight (2).
). In addition, (17) in the 11th MIC is an insulating adhesive, and (η; group electrode 1
Care was taken so that the end face of 2) did not come into contact with the weight (2) and the support (lO).

なお、上述の例ではリング状の積j−型圧電セラミック
素子を示したが、直方体或いは多角柱状の積層型圧電セ
ラミック素子とすることもできる。
In the above example, a ring-shaped J-type piezoelectric ceramic element is shown, but a laminated piezoelectric ceramic element in the shape of a rectangular parallelepiped or a polygonal column may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明による積j−型圧電セラミ
ック素子を使用すれば、従来製作が困難であった次の各
条件を同時に満足する加速度センサーを実現することが
できる。
As explained above, by using the J-type piezoelectric ceramic element according to the present invention, it is possible to realize an acceleration sensor that simultaneously satisfies the following conditions, which have been difficult to manufacture in the past.

(イ)@荷感度及び静電容量が大きいこと。(a) @ High load sensitivity and capacitance.

(ロ)パイロ電気及びベース歪みの影響が小さいこと。(b) The influence of pyroelectricity and base distortion is small.

(ハ)小形・軽量化が可能なこと。(c) Capable of being made smaller and lighter.

その上、圧電セラミックス間の接合部分の周波数特性な
どへの影響が小さいので、せん凹型加速度センサーに最
適である。
Furthermore, it has little effect on the frequency characteristics of the joint between piezoelectric ceramics, making it ideal for recessed acceleration sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をセん凹型加速度センサーに適用した例
を示す図、第2図は本発明による積層型圧電セラミック
素子の一例を示す図、第3図は第2図のものの分極方法
を示す図、第4図は本発明によらない他の積j−型圧電
セラミック素子を示す図、第5図は単層型圧電セラミッ
ク素子を用いたせん凹型加速度センサーの一例を示す図
、第6図は本発明によらない積層型圧電セラミック素子
を用いたせん新型加速度セン号−の一例を5くず図、第
7図はせん断効果の説明図、第8図は従来の圧縮型加速
度センサーの一例を示す図、第9図は縦効果の説明図で
ある。 (11)・・・圧電セラミックス、(12)・・・内部
電極、(14) 、  (15)  ・・・1対の出力
電極。
FIG. 1 is a diagram showing an example in which the present invention is applied to a concave type acceleration sensor, FIG. 2 is a diagram showing an example of a laminated piezoelectric ceramic element according to the present invention, and FIG. 3 is a diagram showing the polarization method of the one in FIG. FIG. 4 is a diagram showing another multilayer J-type piezoelectric ceramic element not according to the present invention, FIG. 5 is a diagram showing an example of a recessed acceleration sensor using a single-layer piezoelectric ceramic element, and FIG. The figure shows an example of a new type of shear acceleration sensor using a laminated piezoelectric ceramic element that is not based on the present invention, Figure 7 is an explanatory diagram of the shear effect, and Figure 8 is an example of a conventional compression type acceleration sensor. FIG. 9 is an explanatory diagram of the longitudinal effect. (11) Piezoelectric ceramics, (12) Internal electrodes, (14), (15) A pair of output electrodes.

Claims (1)

【特許請求の範囲】[Claims]  複数の同一形状の圧電セラミックスを積み重ねた積層
型圧電セラミック素子であって、上記圧電セラミックス
の形状の中心から外側へ放射状に分極した圧電セラミッ
クスと、これと逆の方向に分極した圧電セラミックスと
を交互に積み重ね、これらの圧電セラミックスの接合面
に内部電極を形成し、これらの内部電極のうち互いに異
なるものを1つおきに接続して1対の出力電極としたこ
とを特徴とする積層型圧電セラミック素子。
A laminated piezoelectric ceramic element in which a plurality of piezoelectric ceramics of the same shape are stacked, and piezoelectric ceramics polarized radially outward from the center of the shape of the piezoelectric ceramics and piezoelectric ceramics polarized in the opposite direction are alternately arranged. A laminated piezoelectric ceramic characterized in that internal electrodes are formed on the joining surfaces of these piezoelectric ceramics, and every other internal electrode that is different from each other is connected to form a pair of output electrodes. element.
JP60294865A 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element Pending JPS62153767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60294865A JPS62153767A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294865A JPS62153767A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Publications (1)

Publication Number Publication Date
JPS62153767A true JPS62153767A (en) 1987-07-08

Family

ID=17813249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294865A Pending JPS62153767A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Country Status (1)

Country Link
JP (1) JPS62153767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484152A (en) * 1987-09-28 1989-03-29 Sekisui Plastics Acceleration sensor
JP4774299B2 (en) * 2004-01-15 2011-09-14 パナソニック株式会社 Portable power supply and portable power supply system
US9546918B2 (en) 2013-10-31 2017-01-17 Seiko Epson Corporation Sensor element, force detection device, robot, electronic component transport device, electronic component inspection device, and component processing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120478A (en) * 1977-03-29 1978-10-20 Kobayashi Rigaku Kenkiyuushiyo Acceleration type oscillation pick up

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120478A (en) * 1977-03-29 1978-10-20 Kobayashi Rigaku Kenkiyuushiyo Acceleration type oscillation pick up

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484152A (en) * 1987-09-28 1989-03-29 Sekisui Plastics Acceleration sensor
JPH0584871B2 (en) * 1987-09-28 1993-12-03 Sekisui Plastics
JP4774299B2 (en) * 2004-01-15 2011-09-14 パナソニック株式会社 Portable power supply and portable power supply system
US9546918B2 (en) 2013-10-31 2017-01-17 Seiko Epson Corporation Sensor element, force detection device, robot, electronic component transport device, electronic component inspection device, and component processing device

Similar Documents

Publication Publication Date Title
US7538477B2 (en) Multi-layer transducers with annular contacts
JP2540344B2 (en) Active force sensor for cardiac pacemaker
JP3091766B2 (en) Surface-mounted piezoelectric ceramic accelerometer and method of manufacturing the same
US6094984A (en) Acceleration sensor with a circuit board separated from a base plate by a space
US10031155B2 (en) Integrated piezoelectric sensor for detecting in-plane forces, such as shocks, accelerations, rotational forces
WO2019171289A1 (en) Mechanical-stress sensor and manufacturing method
US8915139B1 (en) Relaxor-based piezoelectric single crystal accelerometer
KR20130016647A (en) Ultrasonic sensor
JPH1062445A (en) Acceleration sensor
JP2015184005A (en) Force detection device and robot
JP4909607B2 (en) 2-axis acceleration sensor
US20170074653A1 (en) Physical quantity sensor
US20130163061A1 (en) Vibrating Mirror Element
JPS62153767A (en) Laminated type piezoelectric ceramic element
JP2006515463A (en) Electroactive transducers that generate / sense out-of-plane transducer motion using radial electric fields
US7336022B2 (en) Piezoelectrical bending converter
JPS62153766A (en) Laminated type piezoelectric ceramic element
JP2013096931A (en) Impact detecting/recording device
JPH0452677B2 (en)
JPS6136937Y2 (en)
JPH0246907B2 (en)
JP2689799B2 (en) Acceleration sensor
JPH03259750A (en) Piezoelectric type acceleration sensor
JPS635355Y2 (en)
JPH06207869A (en) Piezoelectric vibration sensor