JPS62153766A - Laminated type piezoelectric ceramic element - Google Patents

Laminated type piezoelectric ceramic element

Info

Publication number
JPS62153766A
JPS62153766A JP60294864A JP29486485A JPS62153766A JP S62153766 A JPS62153766 A JP S62153766A JP 60294864 A JP60294864 A JP 60294864A JP 29486485 A JP29486485 A JP 29486485A JP S62153766 A JPS62153766 A JP S62153766A
Authority
JP
Japan
Prior art keywords
electrodes
acceleration
piezoelectric ceramic
external electrodes
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60294864A
Other languages
Japanese (ja)
Inventor
Tokiji Nishida
西田 時次
Masuo Fujimoto
藤本 益男
Teruo Shimizu
輝夫 清水
Atsushi Kawai
淳 河合
Katsuhiro Mizoguchi
勝大 溝口
Takeshi Nishizawa
猛 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI SANEI KK
NEC Corp
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NIPPON DENKI SANEI KK
NEC Corp
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI SANEI KK, NEC Corp, NEC Avio Infrared Technologies Co Ltd filed Critical NIPPON DENKI SANEI KK
Priority to JP60294864A priority Critical patent/JPS62153766A/en
Publication of JPS62153766A publication Critical patent/JPS62153766A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure an acceleration component in one direction, by stacking a plurality of piezoelectric ceramics having the same shape, forming each of inner electrodes to each junction surface, and connecting those different from each other of the inner electrodes every other one to form outer electrodes. CONSTITUTION:A plurality of piezoelectric ceramics 10 having the same shape are stacked and inner electrodes 16 are formed to the junction surfaces of said piezoelectric ceramics 10. Those different from each other of said inner electrodes 16 are connected every other one to form a pair of outer electrodes N, Q. A pair of these outer electrodes N, Q are provided to be close to each other as much as possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、加速度センサーに用いて好適の積層型圧電セ
ラミック素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated piezoelectric ceramic element suitable for use in an acceleration sensor.

〔従来の技術〕[Conventional technology]

第7図は、従来の圧電式加速度センサーの例を示す一部
断面図である。いま、センサー底面はXy平面に平行で
あるとし、2方向の振動(加速度)をセンサーに加える
と、錘(おもり)(2)による圧縮応力が圧電セラミッ
ク素子(1)に作用し、圧電セラミック素子+11の表
面に電荷が発生する0発生した電荷は、電極(図示せず
)、リード線(5)を通じてコネクタ(7)に運ばれ、
外部に電気信号として取り出される。予圧ボルト(4)
は錘(2)と素子(11が離れないように固定するもの
で、予圧ボルト(4)と錘(2)の間にはバネ座金(3
)が、素子+11の内壁とベース(8)の間には絶縁リ
ング(9)がある。カバー(6)は、急激な環境変化の
影響を和らげると共にセンシング部を保護する。この構
造の加速度センサーは、単層型から積層型の圧電セラミ
ック素子が使用できる。
FIG. 7 is a partial cross-sectional view showing an example of a conventional piezoelectric acceleration sensor. Assuming that the bottom surface of the sensor is parallel to the Xy plane, when vibration (acceleration) in two directions is applied to the sensor, compressive stress due to the weight (2) acts on the piezoelectric ceramic element (1), causing the piezoelectric ceramic element to A charge is generated on the surface of +11.0 The generated charge is carried to the connector (7) through an electrode (not shown) and a lead wire (5).
It is extracted externally as an electrical signal. Preload bolt (4)
is used to fix the weight (2) and the element (11) so that they do not come apart, and a spring washer (3) is installed between the preload bolt (4) and the weight (2).
), but between the inner wall of element +11 and the base (8) there is an insulating ring (9). The cover (6) cushions the effects of sudden environmental changes and protects the sensing section. The acceleration sensor with this structure can use piezoelectric ceramic elements from a single layer type to a laminated type.

第6図は上記加速度センサーに用いる圧電セラミンク素
子の各種の例を示すもので、同図Aは単層型、同図Bは
2N型、同図C−Eは積層型をそれぞれ示す斜視図であ
る。第6図Aのものは、圧電セラミックスαωの両端に
電極(11)を、その外側に絶縁物(12)を有する。
Figure 6 shows various examples of piezoelectric ceramic elements used in the acceleration sensor. Figure A is a single layer type, Figure B is a 2N type, and Figures C-E are perspective views of a laminated type. be. The one in FIG. 6A has electrodes (11) at both ends of the piezoelectric ceramic αω and an insulator (12) on the outside thereof.

リード線(5)と電極(11)の接続に導電性ペースト
等の材料(工3)を用い、この材料(13)が素子側面
にはみ出して付着すれば、これが広義の外部電極になる
。第6図Bのものは、2つの圧電セラミックスαのの間
に金属板(14)を介し、両方の圧電セラミックス0ω
から電気出力を得る。これら単層型及び2層型の素子は
、後述の積層型に比べると出力感度が落ちる。
If a material (step 3) such as a conductive paste is used to connect the lead wire (5) and the electrode (11), and this material (13) protrudes and adheres to the side surface of the element, this becomes an external electrode in a broad sense. In the case of FIG. 6B, a metal plate (14) is interposed between two piezoelectric ceramics α, and both piezoelectric ceramics 0ω
Obtain electrical output from. These single-layer type and two-layer type elements have lower output sensitivity than the laminated type elements described later.

錘(2)の重量を増し素子(1)に加わる応力を大きく
することにより感度を上げる方法もあるが、加速度セン
サー重量の増加、共振周波数の低下、耐加速度衝撃性の
減少という結果をもたらし、加速度センサーの使用範囲
が狭くなる。
There is a way to increase the sensitivity by increasing the weight of the weight (2) and increasing the stress applied to the element (1), but this results in an increase in the weight of the acceleration sensor, a decrease in the resonance frequency, and a decrease in acceleration impact resistance. The usage range of the acceleration sensor becomes narrower.

第6図C−Hのものは、圧電セラミックスを複数枚積み
重ねたため積層枚数に比例した電荷を発生し、同図A、
Hのものを用いた加速度センサーより高感度のものが得
られる。第6図Cは同図Aを、第6図りは同図Bを応用
して積層としたもので、対応部分には同一の符号を付し
て説明を省略する。第6図C及びDのものは、リード線
(5)を1本ずつ接続しなければならないので作業効率
が悪く、特に第6図りのものは、金属板(14)を1眉
ごとに挾まなければならず、素子寸法の精度のばらつき
等により素子製造の再現性が悪く、コスト高になる。し
かも、両方とも、リード線(5)の接続点が多いので素
子サイズの制約、素子強度の低下などの欠点がある。こ
れに対し、第6図Eのものは、外部電極(15)を用い
ており、上述の欠点がない。外部電極を有する積層型圧
電セラミック素子は、グリーンシート法などにより量産
が可能であってコストが安く、加速度センサーに用いる
場合に小形・軽量、高感度、高共振周波数などの利点が
ある。
In the case of C-H in Fig. 6, since a plurality of piezoelectric ceramics are stacked, a charge proportional to the number of layers is generated.
Higher sensitivity can be obtained than the acceleration sensor using the H type. 6C is a laminated version of FIG. 6A, and FIG. 6B is a laminated version of FIG. Items C and D in Figure 6 have poor work efficiency because the lead wires (5) must be connected one by one.Especially in the item shown in Figure 6, the metal plate (14) must be held between each eyebrow. Therefore, the reproducibility of the device manufacturing is poor due to variations in the precision of device dimensions, etc., and the cost is high. Moreover, since both have many connection points for lead wires (5), there are drawbacks such as restrictions on element size and reduction in element strength. On the other hand, the one in FIG. 6E uses an external electrode (15) and does not have the above-mentioned drawback. Laminated piezoelectric ceramic elements having external electrodes can be mass-produced using the green sheet method and are inexpensive, and have advantages such as small size, light weight, high sensitivity, and high resonant frequency when used in acceleration sensors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の積層型圧電セラミック素子は、電
気信号を機械撮動や音響振動に変換する素子としての用
途が主で、加速度センサーに使用されるのは稀であった
。したがって、外部電極の影響が明確にされておらず、
従来の積層型圧電セラミック素子では外部電極の位置が
規定されていない。このような理由から、従来の積層型
圧電セラミック素子を用いた加速度センサーは、外部電
極の影響が加わってその基本特性の1つである横感度が
大きく、そのため、一方向成分のみの加速度を厳密に測
定することが難しいという問題点があった。ここで、横
感度とは、例えば第7図中のxy平面に平行な加速度を
与えた時に発生する電気出力である。
However, conventional multilayer piezoelectric ceramic elements have been mainly used as elements for converting electrical signals into mechanical imaging or acoustic vibrations, and have rarely been used in acceleration sensors. Therefore, the influence of external electrodes is not clear;
In conventional laminated piezoelectric ceramic elements, the positions of the external electrodes are not defined. For this reason, acceleration sensors using conventional laminated piezoelectric ceramic elements have high lateral sensitivity, which is one of their basic characteristics due to the influence of external electrodes, and therefore have to strictly measure acceleration in only one direction component. The problem was that it was difficult to measure. Here, the lateral sensitivity is the electrical output generated when acceleration parallel to the xy plane in FIG. 7 is applied, for example.

〔問題点を解決するための手段〕[Means for solving problems]

加速度センサーは、通常第7図における2方向の加速度
を測定するもので、この加速度により錘(2)は圧電セ
ラミック素子(1)に伸縮応力を及ぼす。
The acceleration sensor normally measures acceleration in the two directions shown in FIG. 7, and due to this acceleration, the weight (2) exerts expansion and contraction stress on the piezoelectric ceramic element (1).

これを直方体素子で模型的に示すと、第5図へのように
なる。分極方向Pはxy平面に垂直な方向であり、加速
度α1によって錘から引張り応力がFlが方向に作用し
、素子底面及び上面(xy平面に平行な面)に電荷を発
生する。よって、この面に電極を設け、電気出力を得る
。第7図において、xy平面に平行な加速度成分が加わ
ると、錘(2)は圧電セラミック素子(1)にせん断応
力を及ぼす。
If this is schematically shown using a rectangular parallelepiped element, it will be as shown in FIG. The polarization direction P is perpendicular to the xy plane, and tensile stress from the weight acts in the direction Fl due to the acceleration α1, generating charges on the bottom and top surfaces of the element (planes parallel to the xy plane). Therefore, electrodes are provided on this surface to obtain electrical output. In FIG. 7, when an acceleration component parallel to the xy plane is applied, the weight (2) exerts a shear stress on the piezoelectric ceramic element (1).

これを直方体素子で模型的に示すと、第5図Bのように
なる。分極方向Pは、同図Aと同様である。
If this is schematically shown using a rectangular parallelepiped element, it will be as shown in FIG. 5B. The polarization direction P is the same as that shown in FIG.

加速度α2によって錘からせん断応力がF2方向に作用
し、素子側面β、γに互いに極性の異なる電荷を発生す
る。β及びTに相当する面に電極を設けると電気出力を
発生し、横感度増加の原因の1つになる。外部電極を有
する圧電セラミック素子では、外部電極位置が側面にあ
るので、横振動によって素子側面に発生する電荷の影響
を免れることはできない。
A shear stress from the weight acts in the F2 direction due to the acceleration α2, and charges with mutually different polarities are generated on the side surfaces β and γ of the element. Providing electrodes on the planes corresponding to β and T generates electrical output, which is one of the causes of increased lateral sensitivity. In a piezoelectric ceramic element having an external electrode, since the external electrode is located on the side surface, the piezoelectric ceramic element cannot avoid the influence of electric charge generated on the side surface of the element due to lateral vibration.

そこで、外部電極を有する圧電セラミック素子について
上述の現象を考える。第3図は、リング(又は短管)状
圧電セラミック素子の上面図である。A及びBは外部電
極(第6図C−H)を示し、X及びX方向は第7図のx
、X方向に対応し、θは、外部電極Aと素子中心を結ぶ
直線を基準として素子中心から見た外部電極A、B間の
角度を示す。間接的には、θは両電極面の向かい合う角
度を示している。簡単のため、外部電極Aと素子中心を
結ぶ直線をX方向と平行になるようにし、X方向及びX
方向の振動を与える場合を考える。Xy平面に平行な加
速度の大きさをαとすると、横振動では第5図Bに従い
電極面に垂直な加速度成分によって電気出力が発生する
ので、外部電極Aは、素子側面に発生する電荷から加速
度がX方向の時に最大の電気出力を、X方向の時に最小
の電気出力を受ける。外部電極Bについては、上述のよ
うに電極面に対して垂直な加速度成分を考えると、X方
向及びX方向の加速度の大きさαに対し、各方向の加速
度の電気出力に関与する加速度成分は、 X方向の加速度を加えるとき、第4図Aよりαy=α・
 sinθ X方向の加速度を加えるとき、第4図BよりαX −α
” cosθ 第3図において、外部電極A、Bの位置関係がθ=0°
、45°、90°、  135” 、  180°、 
 270’の場合を例に取り、素子側面の発生電荷によ
る外部電極の電気出力を調べると、表1のようになる。
Therefore, consider the above-mentioned phenomenon regarding a piezoelectric ceramic element having an external electrode. FIG. 3 is a top view of the ring (or short tube) shaped piezoelectric ceramic element. A and B indicate the external electrodes (Fig. 6 C-H), and X and the X direction are x in Fig. 7.
, corresponds to the X direction, and θ indicates the angle between the external electrodes A and B when viewed from the center of the device with reference to the straight line connecting the external electrode A and the center of the device. Indirectly, θ indicates the facing angle of both electrode surfaces. For simplicity, the straight line connecting external electrode A and the element center is made parallel to the X direction, and
Consider the case of applying directional vibration. Assuming that the magnitude of acceleration parallel to the Xy plane is α, in lateral vibration, electric output is generated by the acceleration component perpendicular to the electrode surface as shown in Figure 5B. When is in the X direction, it receives the maximum electrical output, and when it is in the X direction, it receives the minimum electrical output. Regarding external electrode B, considering the acceleration component perpendicular to the electrode surface as described above, for the X direction and the magnitude α of the acceleration in the X direction, the acceleration component related to the electrical output of the acceleration in each direction is , When applying acceleration in the X direction, αy = α・ from Figure 4A.
sin θ When applying acceleration in the X direction, αX −α from Figure 4B
” cosθ In Figure 3, the positional relationship between external electrodes A and B is θ=0°
, 45°, 90°, 135", 180°,
Taking the case of 270' as an example, Table 1 shows the electrical output of the external electrode due to the charges generated on the side surface of the element.

ただし、外部電極Aは前述の位置にあり、加速度αがX
方向のきの外部電極Aの電気出力を+100とし、加速
度αがX方向のときの外部電極Aの電気出力を0として
、外部電極Aを基準にした外部電極Bの電気出力を表1
に示した。なお、表には電気的極性(符号)も付けであ
る。
However, the external electrode A is at the position described above, and the acceleration α is
Table 1 shows the electrical output of external electrode B based on external electrode A, assuming that the electrical output of external electrode A in the direction is +100 and the electrical output of external electrode A when acceleration α is in the X direction is 0.
It was shown to. In addition, the electrical polarity (symbol) is also shown in the table.

表   1 従来の外部電極の位置関係角θは不定であったから、横
感度特性は個々の素子によって異なりその補償ができな
かたった。本発明では、補償ができるような外部電極の
位置を求め、その位置に外部電極を設けるようにした。
Table 1 Since the positional angle θ of the conventional external electrodes was not fixed, the lateral sensitivity characteristics varied depending on the individual elements, and it was not possible to compensate for this. In the present invention, the position of the external electrode that allows compensation is determined and the external electrode is provided at that position.

次に、補償方法の例を示す。Next, an example of a compensation method will be shown.

(イ)2つの外部電極間で補償する方法これは、一方の
外部電極を基準にして地方の外部電極の電気出力を補正
する方法である。この方法を用いるには、横方向からの
加速度に対し、2つの外部電極から発生する電気出力が
同等であることが必要である。同等な電気出力を得るに
は、表1より、2つの外部電極の位置関係をθ−0゛に
すればよいことが分かる。θ=0゛の構造は、2つの外
部電極を隣接(又はできるだけ近接)した位置に設ける
ことにより、近似的に得られる。
(a) Method of compensating between two external electrodes This is a method of correcting the electrical output of a local external electrode using one external electrode as a reference. To use this method, it is necessary that the electrical outputs generated from the two external electrodes be equivalent in response to acceleration in the lateral direction. It can be seen from Table 1 that in order to obtain equivalent electrical output, the positional relationship between the two external electrodes should be set to θ-0°. The structure with θ=0′ can be approximately obtained by providing two external electrodes adjacent to each other (or as close as possible).

(ロ)各外部電極について補正した後に電気出力を得る
方法 これは、2つの外部電極の各々に補償用電極を取付け、
素子側面の発生電荷の影響を相殺してから各外部電極よ
り電気出力を得る方法である。この方法を用いるには、
横方向の加速度に対する外部電極の電気出力と補償用電
極の電気出力の値は、極性が逆で絶対値が同じでなけれ
ばならない、極性が逆で絶対値が同じ電気出力を得るに
は、表1より、外部電極と補償用電極の位置関係をθ−
180°にすればよいことが分かる。θ−180°の構
造としては、外部電極と補償用電極を素子中心線上の向
かい合った位置(互いに反対側の対向位置)に設けるこ
とになる。
(b) Method of obtaining electrical output after correcting each external electrode This method involves attaching a compensation electrode to each of the two external electrodes,
This is a method of obtaining electrical output from each external electrode after canceling out the effects of charges generated on the side surfaces of the element. To use this method,
The values of the electrical output of the external electrode and the electrical output of the compensation electrode for lateral acceleration must have opposite polarities and the same absolute value. To obtain electrical outputs with opposite polarity and the same absolute value, 1, the positional relationship between the external electrode and the compensation electrode is θ-
It turns out that the angle should be 180°. In the θ-180° structure, the external electrode and the compensation electrode are provided at opposing positions on the element center line (opposite positions to each other).

上述の補償方法の違いにより、本発明は2つの発明に分
けられる。以下、(イ)の補償方法を用いるものを第1
の発明、(ロ)の補償方法を用いるものを第2の発明と
いうことにする。
The present invention can be divided into two inventions depending on the above-mentioned difference in compensation method. Below, the first method uses the compensation method (a).
The invention using the compensation method (b) will be referred to as the second invention.

〔作用〕[Effect]

本発明によれば、外部電極を有する圧電セラミック素子
を加速度センサーに用いる場合、素子側面に発生する電
荷が電気的に補償され、横感度が大幅に小さくなる。
According to the present invention, when a piezoelectric ceramic element having an external electrode is used as an acceleration sensor, charges generated on the side surfaces of the element are electrically compensated for, and the lateral sensitivity is significantly reduced.

〔実施例〕〔Example〕

第1図は第1発明の実施例を示すもので、同図Aは上面
図、同図Bは一部切断斜視図である。これらの図におい
て、CIQIは分極処理された圧電セラミックス、N及
びQは外部電極、(16)は内部電極、(エフ)は絶縁
保護膜を示す。外部電極N、 Qは、互いに異なる内部
電極(16)の端面を1つおきに、例えば銀ペースト等
の導電材料を塗布して接続したものであり、接続しない
内部電極(16)の端面には、例えばガラスのような絶
縁体を用いて絶縁保護膜(17)を形成する。2つの外
部電極N、Qはそれぞれ異なる内部電極(16)に接続
され、外部電極Qは出力端子に、外部電極Nはアースに
接続される。このように外部電極N及びQを隣接させた
構造にすれば、どの横方向からの加速度でも素子側面の
発生電荷による電気出力がほぼ同一になり、その影響が
補償される。
Fig. 1 shows an embodiment of the first invention, in which Fig. 1A is a top view and Fig. 1B is a partially cutaway perspective view. In these figures, CIQI is a polarized piezoelectric ceramic, N and Q are external electrodes, (16) is an internal electrode, and (F) is an insulating protective film. The external electrodes N and Q are formed by applying a conductive material such as silver paste to every other end surface of different internal electrodes (16) and connecting them, and the end surfaces of the internal electrodes (16) that are not connected are For example, an insulating protective film (17) is formed using an insulator such as glass. The two external electrodes N and Q are connected to different internal electrodes (16), the external electrode Q is connected to the output terminal, and the external electrode N is connected to the ground. By arranging the external electrodes N and Q to be adjacent to each other in this manner, the electrical output due to the charges generated on the side surface of the element becomes almost the same regardless of the acceleration from the lateral direction, and its influence is compensated for.

第2図は第2発明の実施例を示すもので、同図Aは上面
図、同図Bは同図Aの直線lに沿って切断した斜視図、
同図Cは同図Aの直線mに沿って切断した斜視図である
。これらの図において、第1図と対応する部分には同一
の符号を付しである。
Fig. 2 shows an embodiment of the second invention, in which Fig. A is a top view, Fig. B is a perspective view taken along the straight line l of Fig. A;
Figure C is a perspective view taken along the straight line m in figure A. In these figures, parts corresponding to those in FIG. 1 are given the same reference numerals.

外部電極SとT、RとUは、それぞれ素子中心線上の対
向位置にあり、それぞれ同−眉の内部電極(16)に1
つおきに接続される。接続しない内部電極(16)の端
面ば、同様に絶縁保護膜(17)で被っている。素子中
心線上で対向しない位置にある外部電極、例えばRとS
は、互いに異なる内部電極(16)に接続されている。
The external electrodes S and T, and R and U are located at opposite positions on the element center line, respectively, and are connected to the internal electrode (16) of the same eyebrow.
Connected every second. The end surfaces of the internal electrodes (16) that are not connected are similarly covered with an insulating protective film (17). External electrodes located at positions that do not face each other on the element center line, for example, R and S
are connected to mutually different internal electrodes (16).

そして、同一の内部電極(工6)に接続された外部電極
S、Tは互いに結線されて出力端子に、外部電極RとU
は互いに結線されてアースに接続される。上述の構成に
より、横方向の加速度を受けたとき、素子側面の発生電
荷により電気出力は対向する電極同士で相殺され、出力
リード線(18)からの電気出力も接地リード線(19
)からの電気出力も共にゼロとなる。
Then, the external electrodes S and T connected to the same internal electrode (work 6) are connected to each other and the external electrodes R and U are connected to the output terminal.
are wired together and connected to ground. With the above configuration, when subjected to lateral acceleration, the electrical output is canceled out between the opposing electrodes due to the charge generated on the side surface of the element, and the electrical output from the output lead wire (18) is also offset by the ground lead wire (19).
) will also be zero.

なお、本発明は、上述の実施例に示したリング(又は短
管)状素子に限らず、直方体をはじめ多角柱状の素子と
してもよいものである。
Note that the present invention is not limited to the ring (or short tube)-shaped element shown in the above-described embodiment, but may also be a rectangular parallelepiped or polygonal column-shaped element.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、次の如き顕著な
効果が得られる。
As explained above, according to the present invention, the following remarkable effects can be obtained.

(a)  本発明による圧電素子を用いた加速度センサ
ーは、縦方向の加速度成分の電気出力に影響を与えるこ
となく横感度が小さくなるので、従来の外部電極を有す
る圧電素子を用いた加速度センサーより厳密に1方向の
加速度成分を測定することが可能となる。
(a) The acceleration sensor using the piezoelectric element according to the present invention has lower lateral sensitivity without affecting the electrical output of the acceleration component in the longitudinal direction, so it is better than the conventional acceleration sensor using the piezoelectric element having an external electrode. It becomes possible to measure acceleration components in exactly one direction.

(b)  本発明による圧電素子を用いた加速度センサ
ーは、小形軽量及び高感度という積層型圧電素子の特徴
が加わるので、振動計測用として最適である。
(b) The acceleration sensor using the piezoelectric element according to the present invention has the characteristics of the laminated piezoelectric element, such as small size, light weight, and high sensitivity, and is therefore optimal for vibration measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1発明の実施例を示す図、第2図は第2発明
の実施例を示す図、第3及び第4図は本発明を説明する
ための図、第5図は横感度を説明するための図、第6図
は従来の圧電セラミック素子の例を示す斜視図、第7図
は従来の圧電式加速度センサーの一例を示す一部断面図
である。 0φ・・・・圧電セラミックス、(16)・・・・内部
電極、(N、Q)、  (S、R)  ・・・・外部電
極、(T、  U)  ・・・・補償用電極。
Figure 1 is a diagram showing an embodiment of the first invention, Figure 2 is a diagram showing an embodiment of the second invention, Figures 3 and 4 are diagrams for explaining the invention, and Figure 5 is lateral sensitivity. FIG. 6 is a perspective view showing an example of a conventional piezoelectric ceramic element, and FIG. 7 is a partial sectional view showing an example of a conventional piezoelectric acceleration sensor. 0φ...Piezoelectric ceramics, (16)...Internal electrode, (N, Q), (S, R)...External electrode, (T, U)...Compensation electrode.

Claims (1)

【特許請求の範囲】 1、複数の同一形状の圧電セラミックスを積み重ね、こ
れら圧電セラミックスの接合面に内部電極を形成し、こ
れら内部電極のうち互いに異なるものを1つおきに接続
して1対の外部電極を形成し、これら1対の外部電極を
できる限り近接して設けたことを特徴とする積層型圧電
セラミック素子。 2、複数の同一形状の圧電セラミックスを積み重ね、こ
れら圧電セラミックスの接合面に内部電極を形成し、こ
れら内部電極のうち互いに異なるものを1つおきに接続
して1対の外部電極を形成し、これら1対の外部電極の
反対側対向位置にそれぞれ補償用電極を設け、互いに対
応する外部電極と補償用電極とを接続したことを特徴と
する積層型圧電セラミック素子。
[Claims] 1. A plurality of piezoelectric ceramics having the same shape are stacked, internal electrodes are formed on the joint surfaces of these piezoelectric ceramics, and different internal electrodes are connected every other time to form a pair of piezoelectric ceramics. A laminated piezoelectric ceramic element characterized in that external electrodes are formed and a pair of external electrodes are provided as close as possible. 2. Pile up a plurality of piezoelectric ceramics of the same shape, form internal electrodes on the joint surfaces of these piezoelectric ceramics, and connect every other internal electrode that is different from each other to form a pair of external electrodes, A laminated piezoelectric ceramic element characterized in that compensation electrodes are provided at opposing positions on opposite sides of the pair of external electrodes, and the corresponding external electrodes and compensation electrodes are connected to each other.
JP60294864A 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element Pending JPS62153766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60294864A JPS62153766A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294864A JPS62153766A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Publications (1)

Publication Number Publication Date
JPS62153766A true JPS62153766A (en) 1987-07-08

Family

ID=17813240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294864A Pending JPS62153766A (en) 1985-12-27 1985-12-27 Laminated type piezoelectric ceramic element

Country Status (1)

Country Link
JP (1) JPS62153766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067652A1 (en) * 1998-06-25 1999-12-29 Lci/Smartpen, N.V. Systems and methods for measuring forces using piezoelectric transducers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120478A (en) * 1977-03-29 1978-10-20 Kobayashi Rigaku Kenkiyuushiyo Acceleration type oscillation pick up

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120478A (en) * 1977-03-29 1978-10-20 Kobayashi Rigaku Kenkiyuushiyo Acceleration type oscillation pick up

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067652A1 (en) * 1998-06-25 1999-12-29 Lci/Smartpen, N.V. Systems and methods for measuring forces using piezoelectric transducers
US6324920B1 (en) 1998-06-25 2001-12-04 Deschrijver Stefaan System and methods for measuring forces

Similar Documents

Publication Publication Date Title
US5490422A (en) Acceleration sensor
US6094984A (en) Acceleration sensor with a circuit board separated from a base plate by a space
JPH06133397A (en) Piezoelectric sensor
US5386726A (en) Vibratory gyroscope
JP3183177B2 (en) Acceleration sensor
US20100037693A1 (en) Acceleration Sensor
JPH04216409A (en) Angular velocity sensor
KR20190121147A (en) Electronic component
JP2003337140A (en) Accelerometer
US6786095B2 (en) Acceleration sensor
US6148671A (en) Acceleration sensor and triaxial acceleration sensor
JP2000275127A (en) Force sensor circuit
JPS62153766A (en) Laminated type piezoelectric ceramic element
US6360603B1 (en) Acceleration sensor and acceleration detecting device
EP0838897B1 (en) Piezoelectric resonator and electronic component comprising the piezoelectric resonator
JPS62153767A (en) Laminated type piezoelectric ceramic element
JP2732413B2 (en) Acceleration sensor
JP6920114B2 (en) Current sensor
WO2019244515A1 (en) Piezoelectric sensor and detection device
JPH0862242A (en) Acceleration sensor
JP5076657B2 (en) Double tuning fork type vibration element and acceleration detection unit for stress sensitive sensor
JP2001074767A (en) Accelerometer and its manufacture
JP4008594B2 (en) Acceleration sensor and triaxial acceleration sensor
SU1682938A1 (en) Piezoelectric accelerometer
US11114995B2 (en) Piezoelectric component