JPS62153690A - Counterflow type heat exchanger - Google Patents

Counterflow type heat exchanger

Info

Publication number
JPS62153690A
JPS62153690A JP29134885A JP29134885A JPS62153690A JP S62153690 A JPS62153690 A JP S62153690A JP 29134885 A JP29134885 A JP 29134885A JP 29134885 A JP29134885 A JP 29134885A JP S62153690 A JPS62153690 A JP S62153690A
Authority
JP
Japan
Prior art keywords
passage
partition plate
plates
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29134885A
Other languages
Japanese (ja)
Inventor
Tadashi Tokumasu
正 徳増
Yutaka Watanabe
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29134885A priority Critical patent/JPS62153690A/en
Publication of JPS62153690A publication Critical patent/JPS62153690A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To positively carry out sealing between two fluids and to secure a sufficient flow passage length with a compact constitution by alternately arranging heat insulating plates and heat transfer plates on one surface of each partition plate to constitute parallel flow passages, constituting inclined parallel passages on another surface thereof by inclining the heat insulating plates and heat transfer plates at the same pitch, and forming communication holes at both end portions of the flow passage on the partition plate. CONSTITUTION:A high-temperature fluid flows in through a supply pipe 28 and a low-temperature fluid through a supply pipe 25. The high-temperature fluid which has flowed into the supply pipe 29 passes through a lowermost stage first passage 16a, flows into a second passage 21a through a communication hole 23, flows into a first passage 16c through a communication hole 22, and flows out through an exhaust pipe 26, successively via a second passage 21c, first passage 16e, second passage 21e and first passage 16g. On the other hand, the low-temperature fluid which has flowed into the supply pipe 25 passes through an uppermost stage second passage 21f, and flows out of an exhaust pipe 27 successively via first passage 16f, second passage 21d, first passage 16d, second passage 21b, and first passage 16b. The high-temperature fluid and the low-temperature fluid flow in a counter flow system through heat transfer plates 15 and 20 and are heat exchanged at a high efficiency.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、対向流型の熱交換器に係り、Giに冷凍装置
等に組込むのに適しlζ小型のり・1向流1(′l熱交
換4に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a counterflow type heat exchanger, which is suitable for being incorporated into a refrigeration system, etc. Regarding 4.

〔発明の技術的背量とその問題点] 従来、冷凍装置等に組込む小型の熱交換器として積層型
熱交換器が知られている。この積層τ!熱交換:Sは、
複数枚の伝熱板を相な間に断熱板を介在させて積層した
積層体中にE記伝熱板および断熱板によって仕切られる
ように2系統の流体通路を形成し、上記2系統の流体流
路間で上記伝熱板を介して熱交換させるようにしだらの
で、他の熱交換器に比べて熱交換効ヰ2.が層れている
とムう1)徴を備えている。
[Technical weight of the invention and its problems] Conventionally, a stacked heat exchanger has been known as a small-sized heat exchanger that is incorporated into a refrigeration device or the like. This laminated τ! Heat exchange: S is
In a laminate in which a plurality of heat transfer plates are laminated with a heat insulating plate interposed between them, two fluid passages are formed so as to be partitioned by the heat transfer plate E and the heat insulating plate, and the fluid passages of the two systems are formed. Since heat is exchanged between the flow paths via the heat exchanger plate, the heat exchange efficiency is 2.5% compared to other heat exchangers. 1) It has the following characteristics when it is layered.

ところで、このような積層型熱交換器の主要部は、第6
図に示寸ように、熱伝導の良好なアルミニウムの薄板等
で円板状に形成された伝熱板1と概紺強化プラスデック
の薄板で上記伝熱板1と同径に形成された断熱板2とを
相互間に接着剤シート3を介在させて第7図に示すよう
に交Hに積層接着した積層体構成どなっている。上記各
断熱板2には第1の流体を通過させるためのスリット状
の孔4が放射状に形成されており、これら孔相互間に第
2の流体を通流さUるための孔5がそれぞれ形成されて
いる。また、伝熱板1の前記孔4に対応する位置には複
数の孔6が形成されており、ざらに、孔5に対応する位
置にも複数の孔7が形成されている。また、接着剤シー
1〜3は断熱板2と同形状に形成されている。そして、
断熱板2の孔4と伝熱板1の孔6、および断熱板2の孔
5と伝熱板1の孔7とがそれぞれ連通ずるように画板1
.2を接着剤シート3で貼り合せ、かつ伝熱板1と断熱
板2とが交互に位置するように次々に貼り合せて第7図
に示すような積層体8を形成したものとなっている。し
たがって、積層体8中には、孔4と孔6とを交互に接続
した第1の流体通路つと、15と孔7とを交互に接続し
た第2の流体通路10とが積層方向に平行に延びた状態
に存在していることになり、これら第1の流体通路9に
図中実線矢印で示す−一うに高温流体を通流させるとと
もに低温流体を通流させることにより、両流体間で伝熱
板1を介して熱交換させるようにしている。
By the way, the main part of such a laminated heat exchanger is the sixth
As shown in the figure, a heat exchanger plate 1 is formed into a disk shape using a thin aluminum plate with good thermal conductivity, and a heat insulating plate 1 is formed with a thin plate of approximately navy blue reinforced plus deck to have the same diameter as the heat exchanger plate 1. It has a laminate structure in which the plates 2 and 2 are laminated and bonded together in an alternating manner as shown in FIG. 7 with an adhesive sheet 3 interposed between them. Slit-like holes 4 for passing the first fluid are formed radially in each of the heat insulating plates 2, and holes 5 for passing the second fluid are formed between these holes. has been done. Further, a plurality of holes 6 are formed at positions corresponding to the holes 4 of the heat exchanger plate 1, and a plurality of holes 7 are also formed at positions roughly corresponding to the holes 5. Further, the adhesive sheets 1 to 3 are formed in the same shape as the heat insulating plate 2. and,
The drawing board 1 is arranged so that the holes 4 of the heat insulating plate 2 and the holes 6 of the heat transfer plate 1 are in communication with each other, and the holes 5 of the heat insulating plate 2 and the holes 7 of the heat transfer plate 1 are in communication with each other.
.. 2 are bonded together with an adhesive sheet 3, and the heat transfer plates 1 and heat insulating plates 2 are bonded one after another so that they are alternately positioned to form a laminate 8 as shown in FIG. . Therefore, in the laminated body 8, a first fluid passageway in which the holes 4 and the holes 6 are alternately connected, and a second fluid passageway 10 in which the holes 15 and the holes 7 are alternately connected are parallel to the lamination direction. By passing high-temperature fluid and flowing low-temperature fluid through these first fluid passages 9, which are indicated by solid line arrows in the figure, the transmission between both fluids is reduced. Heat is exchanged via the hot plate 1.

ところで、上記のように構成される積層型熱交換器にあ
って、熱交換器としての信頼性J3よび交換効率を向上
させるには、その主要部をなす積層体8のシール性能を
向上させることが不可欠である。もし、シール性能が悪
いと異なる2種類の流体がa合し、熱交換器として機能
しなくなる。しかし、この種の熱交19S器では接着剤
シート3の部分でのシール性能を向上させることは困難
であり、特にヘリウム冷凍装置のように、高圧流体との
間で熱交換を行なう場合には、両流体間の差圧が大きく
しかもヘリウムガスの粘性が小さいため、微小な漏洩が
存在しても高・低圧流体の混合が発生してしまうという
欠点があった。
By the way, in order to improve the reliability J3 and exchange efficiency of the laminated heat exchanger configured as described above, it is necessary to improve the sealing performance of the laminated body 8 that forms the main part. is essential. If the sealing performance is poor, two different types of fluids will come together and the device will no longer function as a heat exchanger. However, in this type of heat exchanger 19S, it is difficult to improve the sealing performance at the adhesive sheet 3, especially when exchanging heat with a high-pressure fluid such as in a helium refrigeration system. However, since the differential pressure between the two fluids is large and the viscosity of helium gas is small, there is a drawback that even if there is a minute leak, the high-pressure and low-pressure fluids will mix.

また、流路方向の温度差を大きくするためには、流路長
を良くしなればならないが、上述の積層型熱交換器では
流路が直線状であるので、流路長を良くすると必然的に
装置自体も長大になってしまう欠点があった。さらに、
製造工程が複雑であり接若時に接着剤シートが流路を閉
塞してしまうなど、必要な流路が充分に確保できず信頼
性に欠けるという問題もあった。
In addition, in order to increase the temperature difference in the direction of the flow path, the length of the flow path must be increased, but since the flow path is straight in the above-mentioned stacked heat exchanger, it is necessary to increase the length of the flow path. However, the device itself had the disadvantage of becoming long. moreover,
The manufacturing process is complicated, and there are also problems in that the adhesive sheet blocks the flow path during welding, making it impossible to secure a sufficient flow path and resulting in a lack of reliability.

(発明の目的〕 そこで、本発明の目的は流路方向に大きな温度差を維持
しつつ熱交換すべき2流体間のシール特性を高め、かつ
信頼性の高いコンパクトな対向流型熱交換器を提供する
ことにある。
(Objective of the Invention) Therefore, the object of the present invention is to provide a highly reliable and compact counterflow type heat exchanger that maintains a large temperature difference in the direction of the flow path and improves the sealing characteristics between two fluids to be heat exchanged. It is about providing.

(発明の概要〕 この目的を達成するために本発明は、外箱内にほず鉛直
方向に仕切板を立設し、この仕切板の一方の側の面とこ
れと対向する外箱の内壁との聞に複数枚の断熱板と伝熱
板とを交Hに所定のピッチをあけて水平方向に架設して
複数の平行な流路を構成する一方、上記仕切板の他方の
側の面とこれと対向する外箱の内壁との間に複数枚の断
熱板と伝熱板とを交互に上記ピッチと同じ間隔をあ【プ
、かつ水平面に対して所定の角度だけ傾斜させて平行に
架設してなり、上記他力の側の面上の断熱板および伝熱
板のそれぞれは、仕切板の一方の側の面上の断熱板およ
び伝熱板のそれぞれの一端と反対端との間をそれぞれ斜
めに連絡するように配置され、各流路の端に位置する仕
切板には仕l、IJ仮の両側を連絡する連通孔を開口さ
せたことを特徴どするものである。
(Summary of the Invention) In order to achieve this object, the present invention provides a partition plate that stands vertically in the outer box, and a surface on one side of the partition plate and an inner wall of the outer box that faces the partition plate. A plurality of heat insulating plates and heat transfer plates are installed in the horizontal direction at a predetermined pitch between the partition plates to form a plurality of parallel flow paths, while the other side of the partition plate A plurality of heat insulating plates and heat transfer plates are arranged alternately at the same pitch as the above pitch between this and the inner wall of the outer box facing the outer box, and are parallel to each other by tilting at a predetermined angle with respect to the horizontal plane. Each of the heat insulating plates and heat transfer plates on the side facing the other side is connected between one end and the opposite end of each of the insulating plates and heat transfer plates on one side of the partition plate. They are arranged so as to diagonally communicate with each other, and the partition plate located at the end of each flow path is characterized by having a communication hole that connects both sides of the partition L and IJ temporary.

(発明の実施例〕 以下本発明による対向流型熱交換器の一実施例を図面を
参照して説明する。
(Embodiment of the Invention) An embodiment of the counterflow type heat exchanger according to the present invention will be described below with reference to the drawings.

第1図および第2図において、長方形の仕切板11は、
例えばベークライトなどの合成樹脂板のような低熱伝導
率材料、から構成され、その表面11aには等ピッチP
をおいて上下の端縁に平行であって水平線に一致した断
熱板用の満12と伝熱板用の満13とが交互に刻設され
ている。これらの断熱板用の満12と伝熱板用の満13
には、低熱伝導率材の第119i熱板14とアルミや銅
などの高熱伝動率材の第1伝熱板15とがそれぞれ嵌合
接着されている。このようにして第1断熱板14と第1
伝熱板15との間にははり水平方向に延在1yる第1通
路16が形成されている。
In FIGS. 1 and 2, the rectangular partition plate 11 is
For example, it is made of a low thermal conductivity material such as a synthetic resin plate such as Bakelite, and its surface 11a has a uniform pitch of P
Parallel to the upper and lower edges and aligned with the horizontal line, 12 marks for the heat insulating plate and 13 marks for the heat exchanger plate are alternately carved. 12 for these heat insulation plates and 13 for the heat exchanger plates.
A 119i heat plate 14 made of a material with low thermal conductivity and a first heat transfer plate 15 made of a material with high thermal conductivity such as aluminum or copper are fitted and bonded to each other. In this way, the first heat insulating plate 14 and the first
A first passage 16 is formed between the heat exchanger plate 15 and the first passage 16, which extends 1y in the horizontal direction.

一方、仕切板11の裏面11bには、第2図中破線で明
示したように上記ピッチPど等しいピッチであるが傾斜
し、かつ平行な断熱板用の溝17と伝熱板用の溝18と
が交互に刻設されている。
On the other hand, on the back surface 11b of the partition plate 11, as clearly indicated by the broken line in FIG. are engraved alternately.

これらの満17と溝18の各々は、irIの両端の高低
差がピッチPの2倍となるように、表面11aの満12
.13に対して傾斜角を与えられている。
Each of these grooves 17 and grooves 18 is formed in a groove 12 of the surface 11a so that the difference in height between both ends of irI is twice the pitch P.
.. The angle of inclination is given to 13.

flit密に言うと、例えば裏面11bの側の断熱溝1
7の一端が仕切板の表面11aの断熱板溝12の同一端
と一致し、断熱溝17の他端の高さが2ピッチ分だけ下
の断熱板溝12の他端と一致するように傾斜している。
flit To be precise, for example, the insulation groove 1 on the back surface 11b side
7 is inclined so that one end of the insulation groove 17 coincides with the same end of the insulation groove 12 on the surface 11a of the partition plate, and the other end of the insulation groove 17 is inclined so that the height of the other end of the insulation groove 17 coincides with the other end of the insulation groove 12 located below by two pitches. are doing.

これらの断熱溝17には夫々、表面の断熱板14と同一
材質の第2断熱板1つが嵌合接着され、同様に満18に
(よ表面の伝熱板15と同一4471の第2伝熱板2o
が嵌合接着されている。こうして第2断熱板19と第2
伝熱板20との間に第2流路21が形成される。
One second heat-transfer plate made of the same material as the heat-insulating plate 14 on the front surface is fitted and adhered to each of these heat-insulating grooves 17, and a second heat-transfer plate made of the same material as the heat-transfer plate 15 on the front surface is fitted and adhered. Board 2o
are fitted and glued. In this way, the second heat insulating plate 19 and the second
A second flow path 21 is formed between the heat exchanger plate 20 and the heat exchanger plate 20 .

各第1流路16の両端部の仕切板11に【よそれぞれ連
通孔22.23が穿孔され、第1通路16とその背復の
第2通路21とが連通している。
Communication holes 22 and 23 are perforated in the partition plates 11 at both ends of each of the first passages 16, so that the first passages 16 and the second passages 21 opposite to the first passages 16 communicate with each other.

このように第1.第2断熱板14.19と第1゜第2伝
熱板15.20とが突設された仕切板11は、第3図に
示されたように外箱24の内に収容されている。この外
箱24には上面に一対の供給管25と排出管26が、ま
た下面に−λ1の排出管27と供給管28がそれぞれ設
けられている。外箱24の内壁には、第4図に示された
ように第1断熱板14と第1伝熱板75の各突出端を嵌
合接着する満29と、第21g1熱板19と第2伝熱板
20の各突出端を嵌合接着する溝30とが刻設されてい
る。こうして、第1通路16は、仕切板11の表面と外
箱24の内壁と隣接する第1断熱板14と伝熱板15と
によって取囲まれ、連通孔22.23を除いては他の通
路16.21とから隔離されている。同様に第2通路2
1は、仕切板11の裏面と外箱24の内壁と隣接する第
2断熱板19と伝熱板20とによって取囲まれ、連通孔
22.23を除いては他の通路16.21とから隔離さ
れている。
In this way, the first. The partition plate 11 on which the second heat insulating plates 14.19 and the 1° second heat transfer plates 15.20 are protruded is housed in the outer box 24, as shown in FIG. The outer box 24 is provided with a pair of supply pipes 25 and a discharge pipe 26 on its upper surface, and a -λ1 discharge pipe 27 and a supply pipe 28 on its lower surface. On the inner wall of the outer box 24, as shown in FIG. Grooves 30 are cut into which the respective protruding ends of the heat exchanger plate 20 are fitted and bonded. In this way, the first passage 16 is surrounded by the surface of the partition plate 11, the inner wall of the outer box 24, the adjacent first heat insulating plate 14, and the heat transfer plate 15, and is surrounded by the other passages except for the communication holes 22 and 23. It is isolated from 16.21. Similarly, the second passage 2
1 is surrounded by the back surface of the partition plate 11, the inner wall of the outer box 24, the adjacent second heat insulating plate 19, and the heat transfer plate 20, and is separated from other passages 16.21 except for the communication holes 22.23. Isolated.

次に、仕切板11の両面の通路16.21と連通孔22
,23とによって形成される対向流流路について説明す
る。
Next, the passages 16.21 and the communication holes 22 on both sides of the partition plate 11 are
, 23 will be explained.

第5図は、仕切板の表面と裏面とを並べて示したもので
、供給管28に接続された最下段の第1通路16aは連
通孔23により最下段の第2通路21aに連通し、この
最下段第2通路21aは連通孔22を介して第3段目の
第2通路16Gに連通し、この第1通路16cは連通孔
23を介して第3段目の第2通路21cに連通し、以下
同様にこの第2通路21Gは順次第1通路16e、第2
通路21e、第1通路169に連通し、この第1通路1
6qはIJI−山懐2Gに接続されている。
FIG. 5 shows the front and back surfaces of the partition plate side by side, where the first passage 16a at the lowest level connected to the supply pipe 28 communicates with the second passage 21a at the lowest level through the communication hole 23, and the second passage 21a at the lowest level is connected to the supply pipe 28. The second passage 21a at the lowermost stage communicates with the second passage 16G at the third stage through the communication hole 22, and the first passage 16c communicates with the second passage 21c at the third stage through the communication hole 23. , and thereafter similarly, this second passage 21G is sequentially connected to the first passage 16e and the second passage 16e.
The passage 21e communicates with the first passage 169, and this first passage 1
6q is connected to IJI-Yamakai 2G.

また、排出管27は連通孔22を介して第2段目の第1
通路16bに連通し、この第2通路16bは連通孔23
を介して第2段目の第2通路21bにj!!通し、この
第2通路21bは順次第1通路16b、第2通路21d
、 第1]k’816f’、i2通路21f、供給管2
5に連通している。
Further, the discharge pipe 27 is connected to the first stage of the second stage through the communication hole 22.
This second passage 16b communicates with the communication hole 23
j! to the second passage 21b of the second stage via the j! ! This second passage 21b is sequentially connected to the first passage 16b and the second passage 21d.
, 1st]k'816f', i2 passage 21f, supply pipe 2
It is connected to 5.

このように第2通路21は、両端の工f¥!差が2ビツ
ヂ2Pになるように第1通路16に対して相対的に傾斜
しているので、断熱板14.19と伝熱板15.20と
をそれぞれ挟Iυで並行する二つの流路が外箱24内に
形成される。
In this way, the second passage 21 has a structure at both ends. Since it is inclined relative to the first passage 16 so that the difference is 2 bits 2P, the two parallel passages are separated by Iυ between the heat insulation plates 14 and 19 and the heat exchanger plates 15 and 20, respectively. It is formed inside the outer box 24.

次に上述した本発明の装量による作用を説明する。Next, the effects of the above-mentioned dosage of the present invention will be explained.

第3図の供給管28から高温流体が、また供給管25か
ら低温流体がそれぞれ流入される。供給管28に流入さ
れ!ご高温流体は第5図に実線矢印で示しlζように最
下段の第1通路16aを通って連通孔23から第2通路
21aに流入し、そこを通って連通孔22から第1通路
16cに流入し、順次第2通路21c、第1通路16e
、第2通路21e、第1通路16gを通って排出管26
から流出づる。他方、供給管25に流入した低温流体は
、ttlliFiiの矢印で示したように最上段の第2
通路21Fを通り、第1通路16f、第2通路21d。
A high-temperature fluid is introduced from the supply pipe 28 in FIG. 3, and a low-temperature fluid is introduced from the supply pipe 25, respectively. It flows into the supply pipe 28! The high-temperature fluid passes through the first passage 16a at the lowest stage, flows from the communication hole 23 into the second passage 21a as indicated by the solid line arrow in FIG. Flows into the second passage 21c and the first passage 16e in order.
, the discharge pipe 26 passes through the second passage 21e and the first passage 16g.
It leaks from the stream. On the other hand, the low-temperature fluid that has flowed into the supply pipe 25 flows into the second
Passing through the passage 21F, the first passage 16f and the second passage 21d.

第1通路16d、第2通路21b、第1通路16bを順
次通って初出管27から流出する。
It passes through the first passage 16d, the second passage 21b, and the first passage 16b in order and flows out from the initial discharge pipe 27.

このように高温流体と低温流体とは伝熱板15゜20を
介して対向流方式で流れて高効率に熱交換される。
In this manner, the high-temperature fluid and the low-temperature fluid flow through the heat exchanger plates 15 and 20 in a countercurrent manner, thereby exchanging heat with high efficiency.

以上の実施例では仕切板は一枚のみであったが、仕切板
を複数枚として、流路を直列に接続するようにしてもよ
い。
In the above embodiment, only one partition plate was used, but a plurality of partition plates may be used to connect the channels in series.

〔発明の効果〕  、 以上の説明から明らかなように、本発明によれば、仕切
板の一方の面に断熱板と伝熱板とを交互に配置してはり
水平な平行流路を構成する一方、(1切板の他方の面に
断熱板と伝熱板とを同ピツチで傾斜して設置プ傾斜平行
流路を構成し、仕切板上の流路の両端に連通孔を穿設し
て対向流の流路を形成したから、2流体間のシールを確
実に行うことができるし、仕切板の両面に流路を形成す
るのでコンパクトな構成で充分な流路長を確保すること
かできると共に、仕切板は低熱伝導率材であるので流路
方向の熱伝導を低減でき、流路方向に大きな温度差を紺
vJすることができる。さらに、構成部材が比較的単純
な形状であるので、製造コストら大幅に低減することが
できる。
[Effects of the Invention] As is clear from the above description, according to the present invention, a horizontal parallel flow path is constructed by alternately arranging heat insulating plates and heat transfer plates on one side of a partition plate. On the other hand, a heat insulating plate and a heat transfer plate are installed on the other side of the partition plate at the same pitch to form an inclined parallel flow path, and communication holes are bored at both ends of the flow path on the partition plate. Since the counterflow flow path is formed, it is possible to reliably seal between the two fluids, and since the flow path is formed on both sides of the partition plate, a sufficient flow path length can be secured with a compact configuration. In addition, since the partition plate is made of a material with low thermal conductivity, it is possible to reduce heat conduction in the direction of the flow path, and it is possible to create a large temperature difference in the direction of the flow path.Furthermore, the structural members have a relatively simple shape. Therefore, manufacturing costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による対向流型熱交換器の一実施例の主
要部を示した斜視図、第2図は第1図の仕切板を示した
正面図、第3図は上記実施例による熱交換器の外観を示
した斜視図、第4図は上記実施例による熱交換器の一部
を示した横断面図、第5図は仕切板の両面を流れる対向
流の状態を示した正面図、第6図は従来の積層湿熱交換
器の主要部を示した分解斜視図、第7図は第6図の熱交
換器の外観を示した斜視図である。 11・・・仕切板、14・・・第1断熱板、15・・・
第1伝熱板、16・・・第1通路、19・・・第2断熱
板、20・・・第2伝熱板、21・・・第2通路、22
.23・・・連通孔、24・・・外箱、P・・・ビッヂ
。 出願人代理人  佐  藤  −雄 どj 尾2図 尾4[121 (、t()            (F3)尾5!1
2] 地ろ図 第7閏
Fig. 1 is a perspective view showing the main parts of an embodiment of a counterflow heat exchanger according to the present invention, Fig. 2 is a front view showing the partition plate of Fig. 1, and Fig. 3 is according to the above embodiment. FIG. 4 is a perspective view showing the external appearance of the heat exchanger, FIG. 4 is a cross-sectional view showing a part of the heat exchanger according to the above embodiment, and FIG. 5 is a front view showing the state of counterflow flowing on both sides of the partition plate. 6 is an exploded perspective view showing the main parts of a conventional laminated heat and humidity exchanger, and FIG. 7 is a perspective view showing the external appearance of the heat exchanger shown in FIG. 6. 11... Partition plate, 14... First insulation board, 15...
1st heat exchanger plate, 16... 1st passage, 19... 2nd heat exchanger plate, 20... 2nd heat exchanger plate, 21... 2nd passage, 22
.. 23...Communication hole, 24...Outer box, P...Bidge. Applicant's agent Sato - Yudo j tail 2 figure tail 4 [121 (,t() (F3) tail 5!1
2] Map 7th leap

Claims (1)

【特許請求の範囲】 1、外箱内にほゞ鉛直方向に仕切板を立設し、この仕切
板の一方の側の面とこれと対向する外箱の内壁との間に
複数枚の断熱板と伝熱板とを交互に所定のピッチをあけ
て水平方向に架設して複数の平行な流路を構成する一方
、上記仕切板の他方の側の面とこれと対向する外箱の内
壁との間に複数枚の断熱板と伝熱板とを交互に上記ピッ
チと同じ間隔をあけ、かつ水平面に対して所定の角度だ
け傾斜させて平行に架設してなり、上記他方の側の面上
の断熱板および伝熱板のそれぞれは、仕切板の一方の側
の面上の断熱板および伝熱板のそれぞれの一端と反対端
との間をそれぞれ斜めに連絡するように配置され、各流
路の端に位置する仕切板には仕切板の両側を連絡する連
通孔を開口させたことを特徴とする対向流型熱交換器。 2、上記伝熱板および断熱板のそれぞれは、上記仕切板
の表面および裏面に平行して形成された溝内に嵌着する
ようにしたことを特徴とする特許請求の範囲第1項記載
の対向流型熱交換器。
[Claims] 1. A partition plate is provided in the outer box in a substantially vertical direction, and a plurality of heat insulating sheets are provided between one side of the partition plate and the inner wall of the outer box facing the partition plate. A plurality of parallel flow channels are constructed by horizontally installing plates and heat transfer plates at predetermined pitches alternately, while the other side of the partition plate and the inner wall of the outer box opposite thereto. A plurality of heat insulating plates and heat transfer plates are installed alternately at intervals equal to the above-mentioned pitch and inclined at a predetermined angle with respect to the horizontal plane in parallel. Each of the upper insulation plates and heat exchanger plates is arranged so as to diagonally communicate between one end and the opposite end of each of the insulation plates and heat exchanger plates on one side of the partition plate, respectively. A counterflow type heat exchanger characterized in that a partition plate located at the end of a flow path has a communication hole that connects both sides of the partition plate. 2. The heat exchanger plate and the heat insulating plate are each fitted into grooves formed in parallel to the front and back surfaces of the partition plate, as set forth in claim 1. Counterflow heat exchanger.
JP29134885A 1985-12-24 1985-12-24 Counterflow type heat exchanger Pending JPS62153690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29134885A JPS62153690A (en) 1985-12-24 1985-12-24 Counterflow type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29134885A JPS62153690A (en) 1985-12-24 1985-12-24 Counterflow type heat exchanger

Publications (1)

Publication Number Publication Date
JPS62153690A true JPS62153690A (en) 1987-07-08

Family

ID=17767759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29134885A Pending JPS62153690A (en) 1985-12-24 1985-12-24 Counterflow type heat exchanger

Country Status (1)

Country Link
JP (1) JPS62153690A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005075921A1 (en) * 2004-02-10 2007-10-11 三菱電機株式会社 Temperature / humidity exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005075921A1 (en) * 2004-02-10 2007-10-11 三菱電機株式会社 Temperature / humidity exchanger

Similar Documents

Publication Publication Date Title
JP6528283B2 (en) Heat exchanger
JPH0282093A (en) High-pressure laminated heat exchanger
WO2017138145A1 (en) Plate-type heat exchanger and refrigeration cycle device
JPS62153690A (en) Counterflow type heat exchanger
JP2000337784A (en) Plate type heat exchanger for three liquids
JP2000356483A (en) Heat exchanger
JP2018141602A (en) Micro flow passage heat exchanger
JP2005326068A (en) Plate for heat exchanger and heat exchanger
JPH0330690B2 (en)
JPH03177791A (en) Lamination type heat exchanger
JPH04371794A (en) Lamination type heat exchanger
JPS5974496A (en) Plate-type heat exchanger
JPH0523982Y2 (en)
JP4082029B2 (en) Plate heat exchanger
JPS6155565A (en) Horizontal system laminating type evaporator
JPS59202395A (en) Stacked-type heat exchanger
JP2738760B2 (en) Stacked heat exchanger
JPH0583838B2 (en)
JPH0719766A (en) Laminated sheet type heat exchanger
JP2511956Y2 (en) Stacked heat exchanger
JPH0539326Y2 (en)
JPH04309793A (en) Laminated type heat exchanger
JPS6149992A (en) Heat exchanger equipped with plurality of circuits
JPS6324381Y2 (en)
JPS60101488A (en) Layered type heat exchanger