WO2017138145A1 - Plate-type heat exchanger and refrigeration cycle device - Google Patents

Plate-type heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2017138145A1
WO2017138145A1 PCT/JP2016/054134 JP2016054134W WO2017138145A1 WO 2017138145 A1 WO2017138145 A1 WO 2017138145A1 JP 2016054134 W JP2016054134 W JP 2016054134W WO 2017138145 A1 WO2017138145 A1 WO 2017138145A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
plate
heat
heat transfer
exchange unit
Prior art date
Application number
PCT/JP2016/054134
Other languages
French (fr)
Japanese (ja)
Inventor
宏亮 浅沼
悟 梁池
加藤 央平
美藤 尚文
博和 南迫
進一 内野
正純 知崎
浩平 葛西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/054134 priority Critical patent/WO2017138145A1/en
Priority to JP2016563207A priority patent/JP6177459B1/en
Publication of WO2017138145A1 publication Critical patent/WO2017138145A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present invention relates to a plate heat exchanger and a refrigeration cycle apparatus including the plate heat exchanger.
  • Plate-type heat exchangers that exchange heat between three fluids are known.
  • Such a plate heat exchanger is described in, for example, Japanese Patent Application Laid-Open No. 11-94487 (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-94487
  • the first fluid of the three fluids is distributed inside the plate, heat is exchanged between a part of the first fluid and the second fluid, Heat exchange is performed between the remaining portion of the first fluid and the third fluid.
  • the inlet and outlet of each fluid are formed on the same plane, the inlet and outlet of the plate heat exchanger and external piping (hereinafter, A pipe provided outside the plate heat exchanger is referred to as an external pipe, and the external pipe can also be connected continuously for each fluid.
  • the plate heat exchanger described in the above publication is provided with a flow path for distributing a part of the first fluid and the remaining part and then joining them. Therefore, there exists a problem that the structure of the flow path in a plate type heat exchanger becomes complicated.
  • the present invention has been made to solve the above-described problems.
  • the main object of the present invention is to provide a plate-type heat exchanger that can continuously connect the inlet and outlet of the plate-type heat exchanger and the external piping for each fluid and has a simple structure. There is.
  • the plate type heat exchanger has a first surface and a second surface opposite to the first surface, and a first heat exchange unit for exchanging heat between the first fluid and the second fluid. And a fourth surface opposite to the third surface and the third surface, the second surface and the third surface of the first heat exchange unit are arranged to be connected, and the first surface A first fluid exchanged in the heat exchange unit and a second heat exchange unit for exchanging heat with the third fluid are provided.
  • the first heat exchange unit includes a second inlet and a second outlet for entering and leaving the second fluid.
  • the second heat exchange unit includes a first inlet and a first outlet for entering and exiting the first fluid, and a third inlet and a third outlet for entering and exiting the third fluid.
  • the first inlet and the first outlet are provided on the fourth surface of the second heat exchange unit.
  • the second inlet and the second outlet are provided on the first surface of the first heat exchange unit.
  • the third inlet and the third outlet are provided on the fourth surface of the second heat exchange unit.
  • a plate-type heat exchanger that can continuously connect the inlet and outlet of a plate heat exchanger and external piping for each fluid and has a simple structure. Can do.
  • FIG. 2 is an exploded view showing an example of the configuration of a plate heat exchanger according to Embodiment 1.
  • FIG. 4 is a plan view showing an example of a first heat transfer plate of the plate heat exchanger according to Embodiment 1.
  • FIG. 6 is a side view of the first heat transfer plate shown in FIG. 5.
  • FIG. 4 is a plan view showing an example of a partition plate of the plate heat exchanger according to Embodiment 1.
  • FIG. It is a side view of the partition plate shown in FIG. 4 is a plan view showing an example of a second heat transfer plate of the plate heat exchanger according to Embodiment 1.
  • FIG. 10 is a side view of the second heat transfer plate shown in FIG. 9.
  • 6 is a plan view showing an example of another second heat transfer plate of the plate heat exchanger according to Embodiment 1.
  • FIG. It is a side view of the 2nd heat exchanger plate shown in FIG. 6 is a diagram illustrating an example of a flow path of each fluid in a plate heat exchanger according to Embodiment 2.
  • FIG. 2 It is the schematic which shows an example of the refrigerating-cycle apparatus provided with the plate type heat exchanger which concerns on Embodiment 2.
  • FIG. 2 is a perspective view which shows an example of the housing
  • FIG. 2 is a perspective view which shows the modification of the plate type heat exchanger which concerns on Embodiment 1 and Embodiment 2.
  • FIG. 2nd heat exchanger plate of the plate type heat exchanger which concerns on Embodiment 1 and Embodiment 2.
  • FIG. It is a top view which shows the modification of the 1st heat exchanger plate of the plate type heat exchanger which concerns on Embodiment 1 and Embodiment 2.
  • the plate heat exchanger 100 includes a first heat exchange unit 10 that exchanges heat between the first fluid and the second fluid, and a heat exchange between the first fluid and the third fluid that exchanges heat in the first heat exchange unit 10.
  • the second heat exchange unit 20 is provided.
  • the first heat exchange unit 10 has a first surface and a second surface that faces the first surface.
  • the second heat exchange unit 20 has a third surface and a fourth surface opposite to the third surface.
  • the second surface of the first heat exchange unit 10 is connected to the third surface of the second heat exchange unit 20 via a partition plate 4 described later.
  • the first surface of the first heat exchange unit 10 faces the fourth surface of the second heat exchange unit 20 with the second surface and the third surface interposed therebetween.
  • the first surface, the second surface, the third surface, and the fourth surface may be curved surfaces or flat surfaces.
  • the first heat exchange unit 10 includes a plurality of first heat transfer plates 1 and first inlet / outlet plates 5.
  • the plurality of first heat transfer plates 1 are stacked on each other.
  • the first entrance / exit plate 5 is disposed on the opposite side of the second heat exchange unit 20 with respect to the plurality of stacked first heat transfer plates 1 in the stacking direction of the first heat transfer plates 1.
  • the first entrance / exit plate 5 has the first surface of the first heat exchange unit 10.
  • the first heat transfer plate 1 disposed at the position farthest from the first entrance / exit plate 5 in the plurality of first heat transfer plates 1 (arranged adjacent to the partition plate 4 described later) is a first heat exchange unit. It has ten second surfaces. On the first surface of the first inlet / outlet plate 5, a second inlet 51 and a second outlet 52 for flowing the second fluid into and out of the plate heat exchanger 100 are formed.
  • the second heat exchange unit 20 includes a plurality of second heat transfer plates 2, 3 and a second inlet / outlet plate 6.
  • the plurality of second heat transfer plates 2 and 3 include at least two types of second heat transfer plates 2 and second heat transfer plates 3 having different structures (details will be described later).
  • the second heat exchange unit 20 only needs to include at least one or more of each of the second heat transfer plate 2 and the second heat transfer plate 3, but preferably includes a plurality of each.
  • the plurality of second heat transfer plates 2 and 3 are alternately stacked.
  • the stacking direction of the second heat transfer plates 2 and 3 is the same as the stacking direction of the first heat transfer plate 1 (hereinafter simply referred to as the stacking direction).
  • the second entrance / exit plate 6 is arranged on the opposite side of the first heat exchange unit 10 with respect to the plurality of stacked second heat transfer plates 2 and 3 in the stacking direction of the second heat transfer plates 2 and 3.
  • the second entrance / exit plate 6 has a fourth surface of the second heat exchange unit 20.
  • the second heat transfer plate 2 disposed at a position farthest from the second entrance / exit plate 6 in the plurality of second heat transfer plates 2 and 3 (arranged adjacent to the partition plate 4 described later) A third surface of the exchange unit 20 is provided.
  • the first heat exchange unit 10 and the second heat exchange unit 20 are partitioned by the partition plate 4.
  • the first entrance / exit plate 5 and the second entrance / exit plate 6 constitute one end and the other end in the laminating direction in the plate heat exchanger 100 (the first heat exchange unit 10 and the second heat exchange unit 20), respectively. ing.
  • the first entrance / exit plate 5 side in the stacking direction is referred to as a front side
  • the second entrance / exit plate 6 side is referred to as a rear side.
  • the second fluid that has flowed into the first heat exchange unit 10 from the second inlet 51 passes through the flow path 8 formed in the first heat exchange unit 10, and then reaches the second outlet 52. Out to the outside.
  • the third fluid that has flowed into the second heat exchange unit 20 from the third inlet 63 flows out from the third outlet 64 through the flow path 9 formed in the second heat exchange unit 20.
  • the first fluid that has flowed into the second heat exchange unit 20 from the first inlet 61 flows into the first heat exchange unit 10 through the flow path 7a formed in the second heat exchange unit 20, and the first heat. It flows into the second heat exchange unit 20 through the flow paths 7b and 7c formed in the exchange unit 10, and passes through the flow path 7d formed in the second heat exchange unit 20 from the first outlet 62.
  • first fluid flow paths 7 b and second fluid flow paths 8 are respectively formed between adjacent first heat transfer plates 1 in the first heat exchange unit 10. ing.
  • the flow path 7b of the first fluid and the flow path 8 of the second fluid intersect the surface of the first heat transfer plate 1 (heat transfer surface 17 shown in FIG. 5) (crossing the stacking direction). In the direction).
  • the first fluid channel 7 b and the second fluid channel 8 are provided adjacent to each other via the first heat transfer plate 1. Between the first heat transfer plates 1 adjacent to each other in the first heat exchange unit 10, the first fluid flow paths 7 b and the second fluid flow paths 8 are alternately formed.
  • the first fluid flow path 7 d and the third fluid flow path 9 are adjacent to each other in the second heat exchange unit 20, the second heat transfer plate 2 and the second heat transfer plate. 3 are formed between each of them.
  • the flow path 7d of the first fluid and the flow path 9 of the third fluid are along the surfaces of the second heat transfer plate 2 and the second heat transfer plate 3 (heat transfer surfaces 29 and 39 shown in FIGS. 9 and 11).
  • the second heat transfer plate 2 or the second heat transfer plate 3 is provided adjacent to each other. Between the second heat transfer plate 2 and the second heat transfer plate 3 adjacent to each other in the second heat exchange unit 20, the first fluid flow path 7 d and the second fluid flow path 9 are alternately formed. Yes.
  • the flow path 7 a of the first fluid is a direction perpendicular to the surfaces of the plurality of second heat transfer plates 2, 3 from the first inlet 61 to the first heat exchange unit 10. It is provided along (the above-mentioned lamination direction).
  • the first fluid flow path 7 a passes through all of the plurality of second heat transfer plates 2 and 3 and the partition plate 4 included in the second heat exchange unit 20.
  • the planar shape of the first heat transfer plate 1, the second heat transfer plate 2, 3, the partition plate 4, the first and second inlet / outlet plates 5, 6 is, for example, a substantially rectangular shape. It is.
  • the first heat transfer plate 1, the second heat transfer plate 2, 3, the partition plate 4, the first and second inlet / outlet plates 5, 6 are connected to each other in the passage holes overlapping in the stacking direction.
  • the plates are connected by, for example, brazing.
  • passage holes 11, 12, 13, 15 for allowing the first fluid or the second fluid to flow through the outer peripheral portion (four corners) of the first heat transfer plate 1.
  • the passage hole 11 and the passage hole 12, and the passage hole 13 and the passage hole 15 are provided so as to face each other with an interval in the longitudinal direction of the second heat transfer plate 2.
  • the passage hole 11 and the passage hole 15, and the passage hole 12 and the passage hole 13 are provided so as to face each other with an interval in the short direction of the second heat transfer plate 2.
  • the passage holes 11, 12, 13, and 15 penetrate the first heat transfer plate 1 in the thickness direction (the laminating direction).
  • a heat transfer surface 17 on which a herringbone-like corrugated pattern (not shown) is formed is provided in the central portion of the first heat transfer plate 1.
  • the first heat transfer plate 1 is provided with convex portions 14 and 16 that protrude to the front side in the stacking direction with respect to the heat transfer surface 17.
  • the passage holes 13 and 15 are provided on the top surfaces of the convex portions 14 and 16.
  • the top surfaces of the protrusions 14 and 16 are in contact with the back surfaces of the other first heat transfer plates 1 or the first entrance / exit plates 5 adjacent on the front side in the stacking direction.
  • two passage holes 41 and 43 for allowing the first fluid to flow are provided in the outer peripheral portion of the partition plate 4.
  • the passage holes 41 and 43 are provided at intervals in the longitudinal direction of the partition plate 4.
  • the passage holes 41 and 43 penetrate the partition plate 4 in the thickness direction (the stacking direction).
  • the partition plate 4 is provided with convex portions 42 and 44 that protrude to the front side in the stacking direction with respect to the surface 45 of the center portion.
  • the passage holes 41 and 43 are provided on the top surfaces of the convex portions 42 and 44.
  • the top surfaces of the convex portions 42 and 44 are in contact with the back surface of the first heat transfer plate 1 adjacent in the stacking direction (the surface located on the opposite side of the heat transfer surface 17).
  • two passage holes 21 and 22 for allowing the third fluid to flow and the first fluid to flow through the outer peripheral portion of the second heat transfer plate 2.
  • These three passage holes 23, 25 and 27 are provided.
  • the passage holes 21, 22, 25, 27 are provided at the four corners of the second heat transfer plate 2. Specifically, the passage hole 21 and the passage hole 22, and the passage hole 25 and the passage hole 27 are provided so as to face each other with an interval in the longitudinal direction of the second heat transfer plate 2. Further, the passage hole 21 and the passage hole 27, and the passage hole 22 and the passage hole 25 are provided so as to face each other with an interval in the short direction of the second heat transfer plate 2.
  • the passage hole 23 is provided between the passage hole 22 and the passage hole 25 in the short direction.
  • the passage holes 21, 22, 23, 25, and 27 penetrate the second heat transfer plate 2 in the thickness direction (the stacking direction).
  • a heat transfer surface 29 on which a herringbone corrugated pattern (not shown) is formed is provided.
  • the second heat transfer plate 2 is provided with convex portions 24, 26, and 28 that protrude to the front side in the stacking direction with respect to the heat transfer surface 29. Yes.
  • the passage holes 23, 25 and 27 are provided on the top surfaces of the convex portions 24, 26 and 28.
  • the top surfaces of the protrusions 24, 26, and 28 are the back surfaces of the partition plates 4 adjacent to each other on the front side in the stacking direction or the back surfaces of the other second heat transfer plates 3 (opposite the heat transfer surfaces 39 shown in FIG. 11). In contact with the surface).
  • the convex part 24 and the convex part 26 are provided so that it may continue.
  • the first heat exchange unit 10 includes, for example, four first heat transfer plates 1 and one first entrance / exit plate 5.
  • the four first heat transfer plates 1 and the first first entrance / exit plate 5 are arranged and stacked such that their longitudinal directions are along the vertical direction.
  • Each first heat transfer plate 1 is arranged such that the passage hole 11 is positioned above or below the passage hole 12 in the vertical direction.
  • the first inlet / outlet plate 5 is disposed such that the second inlet 51 of the second fluid is positioned below the second outlet 52 in the vertical direction.
  • the first heat transfer plate 1 adjacent to the first inlet / outlet plate 5 has passage holes 11 and 12 that are respectively connected to the second inlet 51 and the second outlet 52 of the first inlet / outlet plate 5. It is connected. In other words, the spaces including the passage holes 11 and 12 and the heat transfer surface 17 formed between the first inlet / outlet plate 5 and the first heat transfer plate 1 are respectively the second inlet 51 and the second outlet 52. Connected with.
  • the other first heat transfer plate 1 adjacent to the first heat transfer plate 1 on the rear side (back side) of the first heat transfer plate 1 has passage holes 11 and 12, respectively, of the first heat transfer plate 1.
  • the passage holes 13 and 15 are connected to the passage holes 13 and 15, and the passage holes 13 and 15 are connected to the passage holes 11 and 12 of the first heat transfer plate 1, respectively.
  • the other first heat transfer plate 1 adjacent to the other first heat transfer plate 1 on the rear side (back side) of the other first heat transfer plate 1 has passage holes 11 and 12 respectively.
  • the passage holes 13 and 15 are connected to the other first heat transfer plates 1, and the passage holes 13 and 15 are connected to the passage holes 11 and 12 of the other first heat transfer plates 1, respectively.
  • one first heat transfer plate 1 and the other first heat transfer plate 1 that are adjacent to each other in the first heat exchange unit 10 are, as viewed from the stacking direction, of each first heat transfer plate 1. They are arranged so as to be point-symmetric with respect to the center.
  • the space including the heat transfer surface 17 formed between the first inlet / outlet plate 5 and the first heat transfer plate 1 is formed in the passage hole 12 of the first heat transfer plate 1 and the other first heat transfer plate. Via the passage hole 15 of the plate 1, it is connected to a space including the heat transfer surface 17 formed between the other first heat transfer plate 1 and the other first heat transfer plate 1.
  • the first heat transfer plate 1 disposed at a position farthest from the first entrance / exit plate 5 has the passage holes 11 and 12 connected to the passage holes 43 and 41 of the partition plate 4, respectively. .
  • the passage holes 41 and 43 of the partition plate 4 are separated from the passage holes 12 and 11 of the first heat transfer plate 1 disposed farthest from the first inlet / outlet plate 5.
  • the passage holes 41 and 43 of the partition plate 4 are respectively connected to the passage holes 27 and 25 of the second heat transfer plate 2 arranged farthest from the second entrance / exit plate 6.
  • the second heat exchange unit 20 is composed of, for example, four stacked second heat transfer plates 2 and 3.
  • the four second heat transfer plates 2 and 3 are arranged such that their longitudinal directions are along the vertical direction.
  • Each second heat transfer plate 2 is disposed such that the passage hole 21 is positioned below the passage hole 22 in the vertical direction.
  • Each second heat transfer plate 3 is disposed such that the passage hole 31 is positioned below the passage hole 33 in the vertical direction.
  • the second inlet / outlet plate 6 is arranged such that the third inlet 63 of the third flow body is positioned below the third outlet 64 in the vertical direction.
  • the second heat transfer plate 2 adjacent to the partition plate 4 has passage holes 27 and 25 connected to the passage holes 41 and 43 of the partition plate 4, respectively.
  • the other second heat transfer plate 3 adjacent to the second heat transfer plate 2 on the rear side (back side) of the second heat transfer plate 2 has passage holes 31, 33, 35, 36, and 38 respectively. 2 It is connected to the passage holes 21, 22, 23, 25, 27 of the heat transfer plate 2.
  • the other second heat transfer plate 2 adjacent to the other second heat transfer plate 3 on the rear side (rear side) of the other second heat transfer plate 3 includes passage holes 21, 22, 23, 25 and 27 are connected to the passage holes 31, 33, 35, 36 and 38 of the other second heat transfer plate 3, respectively.
  • the second heat transfer plate 3 adjacent to the second inlet / outlet plate 6 has passage holes 31 and 33 that are respectively connected to the third inlet 63 and the third outlet 64 of the second inlet / outlet plate 6. It is connected.
  • the flow path 7 b of the first fluid includes the heat transfer surface 17 of the first heat transfer plate 1 in which the passage holes 12 and 11 are respectively disposed below and above in the vertical direction, and the first heat exchange unit 10. It is formed between the heat transfer plate 1 and the heat transfer surface 17 of the first heat transfer plate 1 which is adjacent to the front side and in which the passage holes 11 and 12 are respectively arranged below and above in the vertical direction.
  • the flow path 8 of the second fluid includes the heat transfer surface 17 of the first heat transfer plate 1 in which the passage holes 11 and 12 are respectively arranged below and above in the vertical direction, and the first heat exchange unit 10. It is formed between the heat transfer plate 1 and the heat transfer surface 17 of the first heat transfer plate 1 which is adjacent to the front side and in which the passage holes 12 and 11 are respectively arranged below and above in the vertical direction.
  • the flow path 7 a for the first fluid is formed in the passage holes 25 and 36 of the second heat transfer plates 2 and 3 that are provided so as to overlap with each other in the stacking direction. Has been.
  • the flow path 7 d of the first fluid is provided between the heat transfer surface 39 of the second heat transfer plate 3 and the second heat transfer plate 2 adjacent to the second heat transfer plate 3 on the front side. It is formed between the hot surface 29.
  • the flow path 9 of the third fluid is provided between the heat transfer surface 29 of the second heat transfer plate 2 and the second heat transfer plate 3 adjacent to the second heat transfer plate 2 on the front side. It is formed between the hot surface 39.
  • the first heat exchange unit 10 a plurality of first fluid flow paths 7b are provided in parallel with each other, and a plurality of second fluid flow paths 8 are provided in parallel with each other.
  • the first fluid flow path 7b and the second fluid flow path 8 are provided adjacent to each other with the heat transfer surface 17 of each first heat transfer plate 1 interposed therebetween.
  • the second heat exchange unit 20 includes a plurality of first fluid flow paths 7d in parallel with each other, and a plurality of third fluid flow paths 9 in parallel with each other.
  • the first fluid flow path 7d and the third fluid flow path 9 are provided adjacent to each other with the heat transfer surfaces 29 and 39 of the second heat transfer plates 2 and 3 interposed therebetween.
  • the first fluid flow path 7 a is provided so as to reach the first heat exchange unit 10 without passing through the space including the heat transfer surfaces 29 and 39 of the second heat transfer plates 2 and 3. It has been.
  • the first fluid that has flowed into the plate heat exchanger 100 from the first inlet 61 reaches the first heat exchange unit 10 without exchanging heat with the third fluid or the like in the second heat exchange unit 20.
  • the first heat exchange unit 10 exchanges heat with the second fluid for the first time.
  • the first fluid that has exchanged heat with the second fluid reaches the second heat exchange unit 20, and further exchanges heat with the third fluid in the second heat exchange unit 20.
  • the plate heat exchanger 100 is connected to, for example, a compressor, an expansion valve, and other heat exchangers in a refrigeration cycle apparatus.
  • the first inlet 61, the first outlet 62, the second inlet 51, the second outlet 52, the third inlet 63, and the third outlet 64 are a compressor, an expansion valve, and other heat exchangers.
  • a refrigerant pipe through which the refrigerant flows a pipe through which water or antifreeze liquid flows, and the like.
  • the first inflow port 61, the first outflow port 62, the second inflow port 51, the second outflow port 52, the third inflow port 63, the third outflow port 64, and each pipe may be connected by any method. For example, it may be connected by brazing.
  • first inlet 61, the first outlet 62, the second inlet 51, the second outlet 52, the third inlet 63, the third outlet 64 and the pipe each have a flange portion, The flange portions may be connected by being fastened or joined together.
  • the plate heat exchanger 100 has a first surface and a second surface opposite to the first surface, and the first heat exchange unit 10 for exchanging heat between the first fluid and the second fluid; , Having a third surface and a fourth surface opposite to the third surface, arranged such that the second surface and the third surface of the first heat exchange unit 10 are connected, and
  • the 1st heat exchange unit 10 is equipped with the 2nd heat exchange unit 20 for the heat exchange of the 1st fluid and the 3rd fluid which were heat-exchanged.
  • the first heat exchange unit 10 includes a second inlet 51 and a second outlet 52 for entering and leaving the second fluid.
  • the second heat exchange unit 20 includes a first inlet 61 and a first outlet 62 for entering and leaving the first fluid, and a third inlet 63 and a third outlet 64 for entering and leaving the third fluid. Including.
  • the first inflow port 61 and the first outflow port 62 are provided on the fourth surface of the second heat exchange unit 20.
  • the second inlet 51 and the second outlet 52 are provided on the first surface of the first heat exchange unit 10.
  • the third inlet 63 and the third outlet 64 are provided on the fourth surface of the second heat exchange unit 20.
  • each inflow port and outflow port of the 1st fluid, the 2nd fluid, and the 3rd fluid are provided on the same surface to the 1st heat exchange unit 10 or the 2nd heat exchange unit 20. . Therefore, the connection between the first inlet 61 of the first fluid and the external pipe and the connection between the first outlet 62 and the external pipe can be continuously performed. Furthermore, the connection between the second inlet 51 of the second fluid and the external pipe, and the connection between the second outlet 52 and the external pipe can be performed continuously. Furthermore, the connection between the third inlet 63 of the third fluid and the external piping, and the connection between the third outlet 64 and the external piping can be continuously performed. That is, according to the plate heat exchanger 100, the connection between each inlet / outlet and the external pipe can be continuously performed for each fluid. Therefore, it is easy to connect each inlet / outlet and the external pipe. Therefore, the workability of the connection can be improved.
  • the plate heat exchanger 100 is not provided with a flow path for distributing a part of the first fluid and the remaining part and then joining them. Therefore, the plate heat exchanger 100 has a simple structure.
  • a refrigeration cycle apparatus for example, a refrigeration cycle apparatus 200 (see FIG. 14) described later
  • a plate heat exchanger 100 has plate-type heat in which an inlet / outlet is not provided on the same surface for each fluid.
  • the piping can be easily handled. Therefore, the said refrigeration cycle apparatus provided with the plate-type heat exchanger 100 can be reduced in size compared with the refrigeration cycle apparatus in which the inlet / outlet is not provided on the same surface for every fluid.
  • the plate heat exchanger 100 the first fluid exchanged with the second fluid in the first heat exchange unit 10 is heated with the third fluid in the second heat exchange unit 20. Since they are exchanged, the first fluid can be subjected to heat exchange in two stages. Therefore, the plate heat exchanger 100 can improve the heat exchange efficiency as compared with the plate heat exchanger that exchanges heat with the first fluid in one stage.
  • each of the plurality of first heat transfer plates 1 has four passage holes for circulating the first fluid or the second fluid.
  • Each of the plurality of second heat transfer plates 2 and 3 has five passage holes for allowing the first fluid or the third fluid to flow therethrough.
  • the first fluid flow path 7b and the second fluid flow path 8 can be formed in the first heat exchange unit 10 including the first heat transfer plate 1, and the second heat transfer unit 10 can be formed.
  • the second heat exchange unit 20 including the heat plates 2 and 3 the flow path 7 a and the flow path 7 d for the first fluid and the flow path 9 for the third fluid can be formed.
  • the plate heat exchanger 100 can exchange heat with the first fluid in two stages.
  • the plate heat exchanger 101 according to the second embodiment basically has the same configuration as the plate heat exchanger 100 according to the first embodiment, but flows out from the first outlet 62 of the first fluid.
  • the first fluid is different in that it is provided so as to be able to flow in as the third fluid from the third inlet 63 of the third fluid.
  • the first outflow from the first outlet 62 to the outside of the plate heat exchanger 101 is between the first outlet 62 and the third inlet 63.
  • a first fluid flow path 7 e for allowing one fluid to flow into the plate heat exchanger 101 from the third inlet 63 is formed.
  • the first fluid channel 7e connects between the first fluid channel 7d and the first fluid channel 7f.
  • the flow path 7f of the first fluid corresponds to the flow path 9 of the third fluid in the plate heat exchanger 100 shown in FIG. That is, in the refrigeration cycle apparatus including the plate heat exchanger 101, one end and the other end are connected to the first outlet 62 and the third inlet 63, respectively, and a piping part that constitutes the first fluid flow path 7e is further provided. I have.
  • the refrigeration cycle apparatus 200 including the plate heat exchanger 101 further includes, for example, a compressor 71, an expansion valve 72, an evaporator 73, an injection expansion valve 74, and a pump 75.
  • the first inlet 61 is connected to the discharge side of the compressor 71.
  • each flow path of the first fluid and the second fluid in the plate heat exchanger 101 (the first flow path formed between the first inlet 61 and the first outlet 62 is used.
  • the flow path 8) of the second fluid formed between the first fluid 52 and the fluid 52 is shown in a straight line.
  • the first inlet 61 of the plate heat exchanger 101 is connected to the discharge side of the compressor 71.
  • the first outlet 62 is connected to the expansion valve 72 and is connected to the injection expansion valve 74.
  • the third inlet 63 is connected to the injection expansion valve 74.
  • the third outlet 64 is connected (injected) to an intermediate portion of the compressor 71.
  • a pipe branched from the pipe connecting between the first outlet 62 and the expansion valve 72 is formed, and the pipe is connected to the third inlet 63 via the injection expansion valve 74.
  • the evaporator 73 is disposed between the expansion valve 72 and the compressor 71.
  • the second inlet 51 is connected to the pump 75.
  • the refrigeration cycle apparatus 200 further includes a housing 76 that houses the plate heat exchanger 101, the compressor 71, the expansion valve 72, the evaporator 73, the injection expansion valve 74, and the pump 75.
  • the casing 76 is provided with connection pipes 77 and 78 for allowing the second fluid to enter and exit the refrigeration cycle apparatus 200.
  • the connection pipes 77 and 78 are connected to the second outlet 52 and the second inlet 51 of the plate heat exchanger 101, respectively.
  • the first fluid (third fluid) is a refrigerant
  • the second fluid is water or antifreeze (brine).
  • the plate heat exchanger 101 is provided so that the first fluid flowing out from the first outlet 62 of the first fluid can flow in as the third fluid from the third inlet 63 of the third fluid. Therefore, the plate heat exchanger 101 can exchange heat with the first fluid in three stages.
  • the plate heat exchanger 101 uses a first fluid as a refrigerant and a second fluid as water or antifreeze liquid (brine), so that the refrigeration cycle as an air conditioner or refrigeration apparatus using water or antifreeze liquid (brine) as a heat source.
  • a first fluid is condensed by exchanging heat with the second fluid in the first heat exchange unit 10.
  • the condensed first refrigerant is decompressed by the injection expansion valve 74 after passing through the second heat exchange unit 20.
  • the decompressed first refrigerant is heat-exchanged with the condensed first refrigerant in the second heat exchange unit 20.
  • the 1st fluid can be supercooled.
  • the first inlet 61, the first outlet 62, the third inlet 63, and the third outlet 64 all allow the first fluid as the refrigerant to enter and exit.
  • the first inlet 61, the first outlet 62, the third inlet 63, and the third outlet 64 are all the second inlet / outlet plates in the second heat exchange unit 20. 6 (on the same plane). Therefore, each of the first inlet 61, the first outlet 62, the third inlet 63, and the third outlet 64 is continuously connected to the external pipe (the internal pipe of the refrigeration cycle apparatus 200). Can do.
  • the plate type heat exchanger 101 since the handling of external piping (internal piping of the refrigeration cycle apparatus 200) can be simplified, the refrigeration cycle apparatus 200 can be reduced in size.
  • the second inlet 51 and the second outlet 52 are both provided on the first inlet / outlet plate 5 (on the same plane) in the first heat exchange unit 10. Therefore, the connection pipes 77 and 78 are provided on the same plane in the casing 76 of the refrigeration cycle apparatus 200. Therefore, according to the refrigeration cycle apparatus 200, each of the connection pipes 77 and 78 and the external pipe can be continuously connected. Further, according to the refrigeration cycle apparatus 200, the handling of the external pipe can be simplified. Thereby, for example, even when a plurality of refrigeration cycle apparatuses 200 are installed side by side, it is possible to save the installation space.
  • the number of the first heat transfer plates 1 and the number of the second heat transfer plates 2 are the same, but the present invention is not limited to this.
  • the number of first heat transfer plates 1 included in first heat exchange unit 10 is greater than the number of second heat transfer plates 2 and 3 included in second heat exchange unit 20.
  • the first heat exchange unit 10 may include six first heat transfer plates 1 with respect to the second heat exchange unit 20 including the four second heat transfer plates 2 and 3. If it does in this way, the field which can exchange heat between the 1st fluid and the 2nd fluid in the 1st heat exchange unit 10 can be enlarged.
  • each plate of the plate heat exchangers 100 and 101 according to the first and second embodiments is not limited to the configuration shown in FIGS.
  • the passage hole of the second heat transfer plate through which the first fluid flows is the center of the second heat transfer plate 3 in the horizontal direction (for example, the short direction).
  • a first passage hole 38 disposed below the vertical direction (for example, the longitudinal direction) and a second passage hole 35 disposed above the first passage hole 38 in the vertical direction. May be.
  • the first fluid flows from the first passage hole 38 to the second passage hole 35 on the heat transfer surface 39 of the second heat transfer plate 3 from below in the vertical direction to above, the first fluid Can be prevented from flowing asymmetrically in the horizontal direction.
  • the first fluid heat-exchanged in the first heat exchange unit 10 flows into the second heat exchange unit 20 in a gas-liquid two-phase state, the first fluid remains on the second heat transfer plate 3.
  • the distribution characteristics of the first fluid in the plate heat exchangers 100 and 101 can be improved.
  • the planar shape of the first heat transfer plate 1 may be, for example, a trapezoidal shape.
  • the plate type heat exchanger provided with such a 1st heat-transfer plate 1 also has the planar shape of the 2nd heat-transfer plates 2 and 3, the partition plate 4, and the 1st and 2nd entrance-and-exit plates 5 and 6, It is only necessary to have the same shape as the planar shape of the heat transfer plate 1.
  • the second inlet 51 for the second fluid and the third inlet 63 for the third fluid are the first and second inlet / outlet plates.
  • the second outflow port 52 and the third outflow port 64 are provided above the first and second inlet / outlet plates 5 and 6 in the vertical direction below the vertical directions 5 and 6, respectively. It is not a thing.
  • the second inlet 51 and the third inlet 63 are vertically above the first and second inlet / outlet plates 5 and 6, and the second outlet 52 and the third outlet 64 are the first and second inlet / outlet plates 5 and 5. 6 may be respectively provided below the vertical direction.
  • the second inlet 51, the second outlet 52, the third inlet 63, and the third outlet 64 are the same in the first heat exchange unit 10 and the second heat exchange unit 20.
  • the positional relationship on the first and second inlet / outlet plates 5, 6 is determined. It can be changed as appropriate.
  • the flow of each fluid in the first heat exchange unit 10 and the second heat exchange unit 20 can be set to a counter flow or a parallel flow.

Abstract

The present invention is provided with: a first heat exchanging unit (10), which has a first surface and a second surface facing the first surface, and in which heat is exchanged between a first fluid and a second fluid; and a second heat exchanging unit (20), which has a third surface and a fourth surface facing the third surface, and which is disposed such that the second surface of the first heat exchanging unit (10) and the third surface are connected to each other, said second heat exchanging unit exchanging heat between a third fluid and the first fluid having been subjected to the heat exchange in the first heat exchanging unit (10). A first inflow port (61) and a first outflow port (62) of the first fluid are provided in the fourth surface of the second heat exchanging unit (20). A second inflow port (51) and a second outflow port (52) of the second fluid are provided in the first surface of the first heat exchanging unit (10). A third inflow port (63) and a third outflow port (64) of the third fluid are provided in the fourth surface of the second heat exchanging unit (20).

Description

プレート式熱交換器および冷凍サイクル装置Plate heat exchanger and refrigeration cycle equipment
 本発明は、プレート式熱交換器および該プレート式熱交換器を備える冷凍サイクル装置に関する。 The present invention relates to a plate heat exchanger and a refrigeration cycle apparatus including the plate heat exchanger.
 3流体の間で熱交換を行わせるプレート式熱交換器が知られている。このようなプレート式熱交換器は、たとえば特開平11-94487号公報(特許文献1)に記載されている。この公報に記載のプレート式熱交換器は、3流体のうちの第1流体がプレート内部で分配され、当該第1流体の一部と第2流体との間で熱交換を行わせるとともに、当該第1流体の残部と第3流体との間で熱交換を行わせるものである。上記公報に記載のプレート式熱交換器では、各流体の流入口と流出口とが同一面上に形成されているため、プレート式熱交換器の当該流入口および流出口と外部配管(以下、プレート式熱交換器の外部に設けられた配管を外部配管と呼び、外部配管は冷凍サイクル装置内の配管も含む)との接続を流体毎に連続して行うことが可能である。 プ レ ー ト Plate-type heat exchangers that exchange heat between three fluids are known. Such a plate heat exchanger is described in, for example, Japanese Patent Application Laid-Open No. 11-94487 (Patent Document 1). In the plate heat exchanger described in this publication, the first fluid of the three fluids is distributed inside the plate, heat is exchanged between a part of the first fluid and the second fluid, Heat exchange is performed between the remaining portion of the first fluid and the third fluid. In the plate heat exchanger described in the above publication, since the inlet and outlet of each fluid are formed on the same plane, the inlet and outlet of the plate heat exchanger and external piping (hereinafter, A pipe provided outside the plate heat exchanger is referred to as an external pipe, and the external pipe can also be connected continuously for each fluid.
特開平11-94487号公報Japanese Patent Laid-Open No. 11-94487
 しかしながら、上記公報に記載のプレート式熱交換器では、第1流体の一部と残部とを分配させてから合流させる流路が設けられている。そのため、プレート式熱交換器内の流路の構造が複雑になるという問題がある。 However, the plate heat exchanger described in the above publication is provided with a flow path for distributing a part of the first fluid and the remaining part and then joining them. Therefore, there exists a problem that the structure of the flow path in a plate type heat exchanger becomes complicated.
 本発明は、上記のような課題を解決するためになされたものである。本発明の主たる目的は、プレート式熱交換器の流入口および流出口と外部配管との接続を流体毎に連続して行うことができ、かつ、構造が簡易なプレート式熱交換器を提供することにある。 The present invention has been made to solve the above-described problems. The main object of the present invention is to provide a plate-type heat exchanger that can continuously connect the inlet and outlet of the plate-type heat exchanger and the external piping for each fluid and has a simple structure. There is.
 本発明に係るプレート式熱交換器は、第1の面および第1の面と対向する第2の面を有し、第1流体と第2流体とが熱交換するための第1熱交換ユニットと、第3の面および第3の面と対向する第4の面を有し、第1熱交換ユニットの第2の面と第3の面とが接続されるように配置され、かつ第1熱交換ユニットにおいて熱交換された第1流体と、第3流体とが熱交換するための第2熱交換ユニットとを備える。第1熱交換ユニットは、第2流体を入出するための第2流入口および第2流出口を含む。第2熱交換ユニットは、第1流体を入出するための第1流入口および第1流出口と、第3流体を入出するための第3流入口および第3流出口とを含む。第1流入口および第1流出口は第2熱交換ユニットの第4の面上に設けられている。第2流入口および第2流出口は第1熱交換ユニットの第1の面上に設けられている。第3流入口および第3流出口は第2熱交換ユニットの第4の面上に設けられている。 The plate type heat exchanger according to the present invention has a first surface and a second surface opposite to the first surface, and a first heat exchange unit for exchanging heat between the first fluid and the second fluid. And a fourth surface opposite to the third surface and the third surface, the second surface and the third surface of the first heat exchange unit are arranged to be connected, and the first surface A first fluid exchanged in the heat exchange unit and a second heat exchange unit for exchanging heat with the third fluid are provided. The first heat exchange unit includes a second inlet and a second outlet for entering and leaving the second fluid. The second heat exchange unit includes a first inlet and a first outlet for entering and exiting the first fluid, and a third inlet and a third outlet for entering and exiting the third fluid. The first inlet and the first outlet are provided on the fourth surface of the second heat exchange unit. The second inlet and the second outlet are provided on the first surface of the first heat exchange unit. The third inlet and the third outlet are provided on the fourth surface of the second heat exchange unit.
 本発明によれば、プレート式熱交換器の流入口および流出口と外部配管との接続を流体毎に連続して行うことができ、かつ、構造が簡易なプレート式熱交換器を提供することができる。 According to the present invention, it is possible to provide a plate-type heat exchanger that can continuously connect the inlet and outlet of a plate heat exchanger and external piping for each fluid and has a simple structure. Can do.
実施の形態1に係るプレート式熱交換器を一方の出入口プレート側から示す斜視図である。It is a perspective view which shows the plate type heat exchanger which concerns on Embodiment 1 from the one entrance / exit plate side. 実施の形態1に係るプレート式熱交換器を他方の出入口プレート側から示す斜視図である。It is a perspective view which shows the plate-type heat exchanger which concerns on Embodiment 1 from the other entrance / exit plate side. 実施の形態1に係るプレート式熱交換器における各流体の流路の一例を示す図である。3 is a diagram illustrating an example of a flow path of each fluid in the plate heat exchanger according to Embodiment 1. FIG. 実施の形態1に係るプレート式熱交換器の構成の一例を示す分解図である。2 is an exploded view showing an example of the configuration of a plate heat exchanger according to Embodiment 1. FIG. 実施の形態1に係るプレート式熱交換器の第1伝熱プレートの一例を示す平面図である。4 is a plan view showing an example of a first heat transfer plate of the plate heat exchanger according to Embodiment 1. FIG. 図5に示す第1伝熱プレートの側面図である。FIG. 6 is a side view of the first heat transfer plate shown in FIG. 5. 実施の形態1に係るプレート式熱交換器の仕切プレートの一例を示す平面図である。4 is a plan view showing an example of a partition plate of the plate heat exchanger according to Embodiment 1. FIG. 図7に示す仕切プレートの側面図である。It is a side view of the partition plate shown in FIG. 実施の形態1に係るプレート式熱交換器の第2伝熱プレートの一例を示す平面図である。4 is a plan view showing an example of a second heat transfer plate of the plate heat exchanger according to Embodiment 1. FIG. 図9に示す第2伝熱プレートの側面図である。FIG. 10 is a side view of the second heat transfer plate shown in FIG. 9. 実施の形態1に係るプレート式熱交換器の他の第2伝熱プレートの一例を示す平面図である。6 is a plan view showing an example of another second heat transfer plate of the plate heat exchanger according to Embodiment 1. FIG. 図11に示す第2伝熱プレートの側面図である。It is a side view of the 2nd heat exchanger plate shown in FIG. 実施の形態2に係るプレート式熱交換器における各流体の流路の一例を示す図である。6 is a diagram illustrating an example of a flow path of each fluid in a plate heat exchanger according to Embodiment 2. FIG. 実施の形態2に係るプレート式熱交換器を備える冷凍サイクル装置の一例を示す概略図である。It is the schematic which shows an example of the refrigerating-cycle apparatus provided with the plate type heat exchanger which concerns on Embodiment 2. FIG. 実施の形態2に係る冷凍サイクル装置の筐体および接続配管の一例を示す斜視図である。It is a perspective view which shows an example of the housing | casing and connection piping of the refrigeration cycle apparatus which concern on Embodiment 2. FIG. 実施の形態1および実施の形態2に係るプレート式熱交換器の変形例を示す斜視図である。It is a perspective view which shows the modification of the plate type heat exchanger which concerns on Embodiment 1 and Embodiment 2. FIG. 実施の形態1および実施の形態2に係るプレート式熱交換器の第2伝熱プレートの変形例を示す平面図である。It is a top view which shows the modification of the 2nd heat exchanger plate of the plate type heat exchanger which concerns on Embodiment 1 and Embodiment 2. FIG. 実施の形態1および実施の形態2に係るプレート式熱交換器の第1伝熱プレートの変形例を示す平面図である。It is a top view which shows the modification of the 1st heat exchanger plate of the plate type heat exchanger which concerns on Embodiment 1 and Embodiment 2. FIG.
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 <プレート式熱交換器>
 図1~図3を参照して、実施の形態1に係るプレート式熱交換器100について説明する。プレート式熱交換器100は、第1流体と第2流体とが熱交換する第1熱交換ユニット10と、第1熱交換ユニット10において熱交換された第1流体と第3流体とが熱交換する第2熱交換ユニット20とを備える。第1熱交換ユニット10は、第1の面と、第1の面と対向する第2の面とを有している。第2熱交換ユニット20は、第3の面と、第3の面と対向する第4の面とを有している。第1熱交換ユニット10の第2の面は、第2熱交換ユニット20の第3の面と後述する仕切プレート4を介して接続されている。プレート式熱交換器100において、第1熱交換ユニット10の第1の面は、第2の面および第3の面を挟んで、第2熱交換ユニット20の第4の面と対向している。第1の面、第2の面、第3の面および第4の面は、曲面であってもよいし、平面であってもよい。
(Embodiment 1)
<Plate type heat exchanger>
A plate heat exchanger 100 according to Embodiment 1 will be described with reference to FIGS. The plate heat exchanger 100 includes a first heat exchange unit 10 that exchanges heat between the first fluid and the second fluid, and a heat exchange between the first fluid and the third fluid that exchanges heat in the first heat exchange unit 10. The second heat exchange unit 20 is provided. The first heat exchange unit 10 has a first surface and a second surface that faces the first surface. The second heat exchange unit 20 has a third surface and a fourth surface opposite to the third surface. The second surface of the first heat exchange unit 10 is connected to the third surface of the second heat exchange unit 20 via a partition plate 4 described later. In the plate heat exchanger 100, the first surface of the first heat exchange unit 10 faces the fourth surface of the second heat exchange unit 20 with the second surface and the third surface interposed therebetween. . The first surface, the second surface, the third surface, and the fourth surface may be curved surfaces or flat surfaces.
 図1に示されるように、第1熱交換ユニット10は、複数の第1伝熱プレート1と第1出入口プレート5とを含む。複数の第1伝熱プレート1は互いに積層されている。第1出入口プレート5は、第1伝熱プレート1の積層方向において、積層された複数の第1伝熱プレート1に対し第2熱交換ユニット20と反対側に配置されている。第1出入口プレート5は、第1熱交換ユニット10の第1の面を有している。複数の第1伝熱プレート1において第1出入口プレート5から最も離れた位置に配置された(後述する仕切プレート4と隣接して配置された)第1伝熱プレート1は、第1熱交換ユニット10の第2の面を有している。第1出入口プレート5の第1の面上には、第2流体をプレート式熱交換器100内に流出入するための第2流入口51および第2流出口52が形成されている。 As shown in FIG. 1, the first heat exchange unit 10 includes a plurality of first heat transfer plates 1 and first inlet / outlet plates 5. The plurality of first heat transfer plates 1 are stacked on each other. The first entrance / exit plate 5 is disposed on the opposite side of the second heat exchange unit 20 with respect to the plurality of stacked first heat transfer plates 1 in the stacking direction of the first heat transfer plates 1. The first entrance / exit plate 5 has the first surface of the first heat exchange unit 10. The first heat transfer plate 1 disposed at the position farthest from the first entrance / exit plate 5 in the plurality of first heat transfer plates 1 (arranged adjacent to the partition plate 4 described later) is a first heat exchange unit. It has ten second surfaces. On the first surface of the first inlet / outlet plate 5, a second inlet 51 and a second outlet 52 for flowing the second fluid into and out of the plate heat exchanger 100 are formed.
 図1および図2に示されるように、第2熱交換ユニット20は、複数の第2伝熱プレート2,3と第2出入口プレート6とを含む。複数の第2伝熱プレート2,3は、互いに異なる構造を有する少なくとも2種類の第2伝熱プレート2および第2伝熱プレート3を含む(詳細は後述する)。第2熱交換ユニット20は、第2伝熱プレート2および第2伝熱プレート3のそれぞれを少なくとも1枚以上ずつ含んでいればよいが、それぞれ複数枚ずつ含んでいるのが好ましい。複数の第2伝熱プレート2,3は互いに交互に積層されている。第2伝熱プレート2,3の積層方向は、第1伝熱プレート1の積層方向と同じである(以下、単に積層方向という)。第2出入口プレート6は、第2伝熱プレート2,3の積層方向において、積層された複数の第2伝熱プレート2,3に対し第1熱交換ユニット10と反対側に配置されている。第2出入口プレート6は、第2熱交換ユニット20の第4の面を有している。複数の第2伝熱プレート2,3において第2出入口プレート6から最も離れた位置に配置された(後述する仕切プレート4と隣接して配置された)第2伝熱プレート2は、第2熱交換ユニット20の第3の面を有している。第2出入口プレート6の第4の面上には、第1流体をプレート式熱交換器100内に流出入するための第1流入口61および第1流出口62と、第3流体をプレート式熱交換器100内に流出入するための第3流入口63および第3流出口64とが形成されている。 As shown in FIGS. 1 and 2, the second heat exchange unit 20 includes a plurality of second heat transfer plates 2, 3 and a second inlet / outlet plate 6. The plurality of second heat transfer plates 2 and 3 include at least two types of second heat transfer plates 2 and second heat transfer plates 3 having different structures (details will be described later). The second heat exchange unit 20 only needs to include at least one or more of each of the second heat transfer plate 2 and the second heat transfer plate 3, but preferably includes a plurality of each. The plurality of second heat transfer plates 2 and 3 are alternately stacked. The stacking direction of the second heat transfer plates 2 and 3 is the same as the stacking direction of the first heat transfer plate 1 (hereinafter simply referred to as the stacking direction). The second entrance / exit plate 6 is arranged on the opposite side of the first heat exchange unit 10 with respect to the plurality of stacked second heat transfer plates 2 and 3 in the stacking direction of the second heat transfer plates 2 and 3. The second entrance / exit plate 6 has a fourth surface of the second heat exchange unit 20. The second heat transfer plate 2 disposed at a position farthest from the second entrance / exit plate 6 in the plurality of second heat transfer plates 2 and 3 (arranged adjacent to the partition plate 4 described later) A third surface of the exchange unit 20 is provided. On the fourth surface of the second inlet / outlet plate 6, a first inlet 61 and a first outlet 62 for flowing the first fluid into and out of the plate heat exchanger 100, and a third fluid as the plate type A third inflow port 63 and a third outflow port 64 for flowing into and out of the heat exchanger 100 are formed.
 第1熱交換ユニット10と第2熱交換ユニット20とは、仕切プレート4により仕切られている。第1出入口プレート5と第2出入口プレート6とは、プレート式熱交換器100(第1熱交換ユニット10および第2熱交換ユニット20)において、それぞれ上記積層方向における一端と他端とを構成している。なお、以下において、上記積層方向における第1出入口プレート5側を前側、第2出入口プレート6側を後側という。 The first heat exchange unit 10 and the second heat exchange unit 20 are partitioned by the partition plate 4. The first entrance / exit plate 5 and the second entrance / exit plate 6 constitute one end and the other end in the laminating direction in the plate heat exchanger 100 (the first heat exchange unit 10 and the second heat exchange unit 20), respectively. ing. In the following, the first entrance / exit plate 5 side in the stacking direction is referred to as a front side, and the second entrance / exit plate 6 side is referred to as a rear side.
 図3に示されるように、第2流入口51から第1熱交換ユニット10に流入した第2流体は、第1熱交換ユニット10内に形成された流路8を通って第2流出口52から外部へ流出する。第3流入口63から第2熱交換ユニット20に流入した第3流体は、第2熱交換ユニット20内に形成された流路9を通って第3流出口64から外部へ流出する。第1流入口61から第2熱交換ユニット20に流入した第1流体は、第2熱交換ユニット20内に形成された流路7aを通って第1熱交換ユニット10に流入し、第1熱交換ユニット10内に形成された流路7b,7cを通って第2熱交換ユニット20に流入し、第2熱交換ユニット20内に形成された流路7dを通って第1流出口62から外部へ流出する。 As shown in FIG. 3, the second fluid that has flowed into the first heat exchange unit 10 from the second inlet 51 passes through the flow path 8 formed in the first heat exchange unit 10, and then reaches the second outlet 52. Out to the outside. The third fluid that has flowed into the second heat exchange unit 20 from the third inlet 63 flows out from the third outlet 64 through the flow path 9 formed in the second heat exchange unit 20. The first fluid that has flowed into the second heat exchange unit 20 from the first inlet 61 flows into the first heat exchange unit 10 through the flow path 7a formed in the second heat exchange unit 20, and the first heat. It flows into the second heat exchange unit 20 through the flow paths 7b and 7c formed in the exchange unit 10, and passes through the flow path 7d formed in the second heat exchange unit 20 from the first outlet 62. Spill to
 図3および図4に示されるように、第1流体の流路7bと第2流体の流路8とは、第1熱交換ユニット10において隣り合う第1伝熱プレート1間にそれぞれ複数形成されている。第1流体の流路7bと第2流体の流路8とは、第1伝熱プレート1の表面(図5に示される伝熱面17)に沿うように(上記積層方向に対して交差する方向に)設けられている。第1流体の流路7bと第2流体の流路8とは、第1伝熱プレート1を介して互いに隣接するように設けられている。第1熱交換ユニット10において隣り合う第1伝熱プレート1間には、第1流体の流路7bと第2流体の流路8とが交互に形成されている。 As shown in FIG. 3 and FIG. 4, a plurality of first fluid flow paths 7 b and second fluid flow paths 8 are respectively formed between adjacent first heat transfer plates 1 in the first heat exchange unit 10. ing. The flow path 7b of the first fluid and the flow path 8 of the second fluid intersect the surface of the first heat transfer plate 1 (heat transfer surface 17 shown in FIG. 5) (crossing the stacking direction). In the direction). The first fluid channel 7 b and the second fluid channel 8 are provided adjacent to each other via the first heat transfer plate 1. Between the first heat transfer plates 1 adjacent to each other in the first heat exchange unit 10, the first fluid flow paths 7 b and the second fluid flow paths 8 are alternately formed.
 図3および図4に示されるように、第1流体の流路7dと第3流体の流路9とは、第2熱交換ユニット20において隣り合う第2伝熱プレート2と第2伝熱プレート3との間にそれぞれ複数形成されている。第1流体の流路7dと第3流体の流路9とは、第2伝熱プレート2および第2伝熱プレート3の表面(図9,11に示される伝熱面29,39)に沿うように設けられており、第2伝熱プレート2または第2伝熱プレート3を介して互いに隣接するように設けられている。第2熱交換ユニット20において隣り合う第2伝熱プレート2と第2伝熱プレート3との間には、第1流体の流路7dと第2流体の流路9とが交互に形成されている。 As shown in FIGS. 3 and 4, the first fluid flow path 7 d and the third fluid flow path 9 are adjacent to each other in the second heat exchange unit 20, the second heat transfer plate 2 and the second heat transfer plate. 3 are formed between each of them. The flow path 7d of the first fluid and the flow path 9 of the third fluid are along the surfaces of the second heat transfer plate 2 and the second heat transfer plate 3 (heat transfer surfaces 29 and 39 shown in FIGS. 9 and 11). The second heat transfer plate 2 or the second heat transfer plate 3 is provided adjacent to each other. Between the second heat transfer plate 2 and the second heat transfer plate 3 adjacent to each other in the second heat exchange unit 20, the first fluid flow path 7 d and the second fluid flow path 9 are alternately formed. Yes.
 図3および図4に示されるように、第1流体の流路7aは、第1流入口61から第1熱交換ユニット10まで、複数の第2伝熱プレート2,3の表面に垂直な方向(上記積層方向)に沿うように設けられている。第1流体の流路7aは、第2熱交換ユニット20に含まれる複数の第2伝熱プレート2,3の全ておよび仕切プレート4を貫通している。 As shown in FIGS. 3 and 4, the flow path 7 a of the first fluid is a direction perpendicular to the surfaces of the plurality of second heat transfer plates 2, 3 from the first inlet 61 to the first heat exchange unit 10. It is provided along (the above-mentioned lamination direction). The first fluid flow path 7 a passes through all of the plurality of second heat transfer plates 2 and 3 and the partition plate 4 included in the second heat exchange unit 20.
 <各プレートの具体的構成>
 図4~図12に示されるように、第1伝熱プレート1、第2伝熱プレート2,3、仕切プレート4,第1および第2出入口プレート5,6の平面形状は、たとえば略矩形状である。第1伝熱プレート1、第2伝熱プレート2,3、仕切プレート4,第1および第2出入口プレート5,6は、上記積層方向に重なる通路孔同士が互いに接続されている。各プレート間は、たとえばろう付けにより接続されている。
<Specific configuration of each plate>
As shown in FIGS. 4 to 12, the planar shape of the first heat transfer plate 1, the second heat transfer plate 2, 3, the partition plate 4, the first and second inlet / outlet plates 5, 6 is, for example, a substantially rectangular shape. It is. The first heat transfer plate 1, the second heat transfer plate 2, 3, the partition plate 4, the first and second inlet / outlet plates 5, 6 are connected to each other in the passage holes overlapping in the stacking direction. The plates are connected by, for example, brazing.
 図4および図5に示されるように、第1伝熱プレート1の外周部(4隅)には、第1流体または第2流体を流通させるための4つの通路孔11,12,13,15が設けられている。具体的には、通路孔11と通路孔12、通路孔13と通路孔15が、それぞれ第2伝熱プレート2の長手方向において間隔を隔てて対向するように設けられている。さらに、通路孔11と通路孔15、通路孔12と通路孔13が、それぞれ第2伝熱プレート2の短手方向において間隔を隔てて対向するように設けられている。通路孔11,12,13,15は、第1伝熱プレート1を厚み方向(上記積層方向)に貫通している。 As shown in FIGS. 4 and 5, four passage holes 11, 12, 13, 15 for allowing the first fluid or the second fluid to flow through the outer peripheral portion (four corners) of the first heat transfer plate 1. Is provided. Specifically, the passage hole 11 and the passage hole 12, and the passage hole 13 and the passage hole 15 are provided so as to face each other with an interval in the longitudinal direction of the second heat transfer plate 2. Further, the passage hole 11 and the passage hole 15, and the passage hole 12 and the passage hole 13 are provided so as to face each other with an interval in the short direction of the second heat transfer plate 2. The passage holes 11, 12, 13, and 15 penetrate the first heat transfer plate 1 in the thickness direction (the laminating direction).
 第1伝熱プレート1の中央部には、たとえばヘリンボーン状の波形模様(図示しない)が形成された伝熱面17が設けられている。図4~図6に示されるように、第1伝熱プレート1には、伝熱面17に対して上記積層方向の前側に突出している凸部14,16が設けられている。通路孔13,15は、凸部14,16の頂面上に設けられている。凸部14,16の当該頂面は、上記積層方向の前側において隣り合う他の第1伝熱プレート1または第1出入口プレート5の背面と接触している。 In the central portion of the first heat transfer plate 1, for example, a heat transfer surface 17 on which a herringbone-like corrugated pattern (not shown) is formed is provided. As shown in FIGS. 4 to 6, the first heat transfer plate 1 is provided with convex portions 14 and 16 that protrude to the front side in the stacking direction with respect to the heat transfer surface 17. The passage holes 13 and 15 are provided on the top surfaces of the convex portions 14 and 16. The top surfaces of the protrusions 14 and 16 are in contact with the back surfaces of the other first heat transfer plates 1 or the first entrance / exit plates 5 adjacent on the front side in the stacking direction.
 図4、図7に示されるように、仕切プレート4の外周部には、第1流体を流通させるための2つの通路孔41,43が設けられている。通路孔41,43は、仕切プレート4の長手方向において互いに間隔を隔てて設けられている。通路孔41,43は、仕切プレート4を厚み方向(上記積層方向)に貫通している。仕切プレート4には、中央部の表面45に対して上記積層方向の前側に突出している凸部42,44が設けられている。通路孔41,43は、凸部42,44の頂面上に設けられている。凸部42,44の当該頂面は、上記積層方向において隣り合う第1伝熱プレート1の背面(伝熱面17の反対側に位置する面)と接触している。 As shown in FIGS. 4 and 7, two passage holes 41 and 43 for allowing the first fluid to flow are provided in the outer peripheral portion of the partition plate 4. The passage holes 41 and 43 are provided at intervals in the longitudinal direction of the partition plate 4. The passage holes 41 and 43 penetrate the partition plate 4 in the thickness direction (the stacking direction). The partition plate 4 is provided with convex portions 42 and 44 that protrude to the front side in the stacking direction with respect to the surface 45 of the center portion. The passage holes 41 and 43 are provided on the top surfaces of the convex portions 42 and 44. The top surfaces of the convex portions 42 and 44 are in contact with the back surface of the first heat transfer plate 1 adjacent in the stacking direction (the surface located on the opposite side of the heat transfer surface 17).
 図4、図9および図10に示されるように、第2伝熱プレート2の外周部には、第3流体を流通させるための2つの通路孔21,22と、第1流体を流通させるための3つの通路孔23,25,27とが設けられている。通路孔21,22,25,27は、第2伝熱プレート2の4隅に設けられている。具体的には、通路孔21と通路孔22、通路孔25と通路孔27が、それぞれ第2伝熱プレート2の長手方向において間隔を隔てて対向するように設けられている。さらに、通路孔21と通路孔27、通路孔22と通路孔25が、それぞれ第2伝熱プレート2の短手方向において間隔を隔てて対向するように設けられている。通路孔23は、当該短手方向において、通路孔22と通路孔25との間に設けられている。通路孔21,22,23,25,27は、第2伝熱プレート2を厚み方向(上記積層方向)に貫通している。 As shown in FIGS. 4, 9, and 10, two passage holes 21 and 22 for allowing the third fluid to flow and the first fluid to flow through the outer peripheral portion of the second heat transfer plate 2. These three passage holes 23, 25 and 27 are provided. The passage holes 21, 22, 25, 27 are provided at the four corners of the second heat transfer plate 2. Specifically, the passage hole 21 and the passage hole 22, and the passage hole 25 and the passage hole 27 are provided so as to face each other with an interval in the longitudinal direction of the second heat transfer plate 2. Further, the passage hole 21 and the passage hole 27, and the passage hole 22 and the passage hole 25 are provided so as to face each other with an interval in the short direction of the second heat transfer plate 2. The passage hole 23 is provided between the passage hole 22 and the passage hole 25 in the short direction. The passage holes 21, 22, 23, 25, and 27 penetrate the second heat transfer plate 2 in the thickness direction (the stacking direction).
 第2伝熱プレート2の中央部には、たとえばヘリンボーン状の波形模様(図示しない)が形成された伝熱面29が設けられている。図4、図9および図10に示されるように、第2伝熱プレート2には、伝熱面29に対して上記積層方向の前側に突出している凸部24,26,28が設けられている。通路孔23,25,27は、凸部24,26,28の頂面上に設けられている。凸部24,26,28の当該頂面は、上記積層方向の前側において隣り合う仕切プレート4の背面または他の第2伝熱プレート3の背面(図11に示される伝熱面39の反対側に位置する面)と接触している。なお、凸部24と凸部26とは、連なるように設けられている。 At the center of the second heat transfer plate 2, for example, a heat transfer surface 29 on which a herringbone corrugated pattern (not shown) is formed is provided. As shown in FIGS. 4, 9, and 10, the second heat transfer plate 2 is provided with convex portions 24, 26, and 28 that protrude to the front side in the stacking direction with respect to the heat transfer surface 29. Yes. The passage holes 23, 25 and 27 are provided on the top surfaces of the convex portions 24, 26 and 28. The top surfaces of the protrusions 24, 26, and 28 are the back surfaces of the partition plates 4 adjacent to each other on the front side in the stacking direction or the back surfaces of the other second heat transfer plates 3 (opposite the heat transfer surfaces 39 shown in FIG. 11). In contact with the surface). In addition, the convex part 24 and the convex part 26 are provided so that it may continue.
 <第1熱交換ユニットおよび第2熱交換ユニットの具体的構成>
 第1熱交換ユニット10は、たとえば4枚の第1伝熱プレート1と1枚の第1出入口プレート5により構成されている。4枚の第1伝熱プレート1および1枚の第1出入口プレート5は、それぞれの長手方向が鉛直方向に沿うように配置され、積層されている。各第1伝熱プレート1は、通路孔11が通路孔12に対して鉛直方向の上方または下方に位置するように配置されている。第1出入口プレート5は、第2流体の第2流入口51が第2流出口52に対して鉛直方向の下方に位置するように配置されている。
<Specific Configuration of First Heat Exchange Unit and Second Heat Exchange Unit>
The first heat exchange unit 10 includes, for example, four first heat transfer plates 1 and one first entrance / exit plate 5. The four first heat transfer plates 1 and the first first entrance / exit plate 5 are arranged and stacked such that their longitudinal directions are along the vertical direction. Each first heat transfer plate 1 is arranged such that the passage hole 11 is positioned above or below the passage hole 12 in the vertical direction. The first inlet / outlet plate 5 is disposed such that the second inlet 51 of the second fluid is positioned below the second outlet 52 in the vertical direction.
 第1熱交換ユニット10において、第1出入口プレート5と隣り合う第1伝熱プレート1は、通路孔11,12が第1出入口プレート5の第2流入口51および第2流出口52のそれぞれと接続されている。言い換えると、第1出入口プレート5と第1伝熱プレート1との間に形成された通路孔11,12および伝熱面17を含む空間は、第2流入口51および第2流出口52のそれぞれと接続されている。 In the first heat exchange unit 10, the first heat transfer plate 1 adjacent to the first inlet / outlet plate 5 has passage holes 11 and 12 that are respectively connected to the second inlet 51 and the second outlet 52 of the first inlet / outlet plate 5. It is connected. In other words, the spaces including the passage holes 11 and 12 and the heat transfer surface 17 formed between the first inlet / outlet plate 5 and the first heat transfer plate 1 are respectively the second inlet 51 and the second outlet 52. Connected with.
 上記第1伝熱プレート1の後側(背面側)において当該第1伝熱プレート1と隣り合う他の第1伝熱プレート1は、通路孔11,12がそれぞれ当該第1伝熱プレート1の通路孔13,15と接続され、通路孔13,15がそれぞれ当該第1伝熱プレート1の通路孔11,12と接続されている。さらに、上記他の第1伝熱プレート1の後側(背面側)において当該他の第1伝熱プレート1と隣り合うさらに他の第1伝熱プレート1は、通路孔11,12がそれぞれ当該他の第1伝熱プレート1の通路孔13,15と接続され、通路孔13,15がそれぞれ当該他の第1伝熱プレート1の通路孔11,12と接続されている。 The other first heat transfer plate 1 adjacent to the first heat transfer plate 1 on the rear side (back side) of the first heat transfer plate 1 has passage holes 11 and 12, respectively, of the first heat transfer plate 1. The passage holes 13 and 15 are connected to the passage holes 13 and 15, and the passage holes 13 and 15 are connected to the passage holes 11 and 12 of the first heat transfer plate 1, respectively. Furthermore, the other first heat transfer plate 1 adjacent to the other first heat transfer plate 1 on the rear side (back side) of the other first heat transfer plate 1 has passage holes 11 and 12 respectively. The passage holes 13 and 15 are connected to the other first heat transfer plates 1, and the passage holes 13 and 15 are connected to the passage holes 11 and 12 of the other first heat transfer plates 1, respectively.
 異なる観点から言えば、第1熱交換ユニット10において隣り合う一方の第1伝熱プレート1と他方の第1伝熱プレート1とは、上記積層方向から視て、各第1伝熱プレート1の中心に対し互いに点対称となるように配置されている。 Speaking from a different point of view, one first heat transfer plate 1 and the other first heat transfer plate 1 that are adjacent to each other in the first heat exchange unit 10 are, as viewed from the stacking direction, of each first heat transfer plate 1. They are arranged so as to be point-symmetric with respect to the center.
 これにより、第1出入口プレート5と第1伝熱プレート1との間に形成された伝熱面17を含む空間は、当該第1伝熱プレート1の通路孔12および上記他の第1伝熱プレート1の通路孔15を介して、上記他の第1伝熱プレート1と上記さらに他の第1伝熱プレート1との間に形成された伝熱面17を含む空間と接続されている。 As a result, the space including the heat transfer surface 17 formed between the first inlet / outlet plate 5 and the first heat transfer plate 1 is formed in the passage hole 12 of the first heat transfer plate 1 and the other first heat transfer plate. Via the passage hole 15 of the plate 1, it is connected to a space including the heat transfer surface 17 formed between the other first heat transfer plate 1 and the other first heat transfer plate 1.
 第1熱交換ユニット10において第1出入口プレート5から最も離れた場所に配置された第1伝熱プレート1は、通路孔11,12が仕切プレート4の通路孔43,41とそれぞれ接続されている。言い換えると、図4、図7に示されるように、仕切プレート4の通路孔41,43は、第1出入口プレート5から最も離れて配置された第1伝熱プレート1の通路孔12,11とそれぞれと接続されている。また、仕切プレート4の通路孔41,43は、第2出入口プレート6から最も離れて配置された第2伝熱プレート2の通路孔27,25とそれぞれと接続されている。 In the first heat exchange unit 10, the first heat transfer plate 1 disposed at a position farthest from the first entrance / exit plate 5 has the passage holes 11 and 12 connected to the passage holes 43 and 41 of the partition plate 4, respectively. . In other words, as shown in FIG. 4 and FIG. 7, the passage holes 41 and 43 of the partition plate 4 are separated from the passage holes 12 and 11 of the first heat transfer plate 1 disposed farthest from the first inlet / outlet plate 5. Connected with each. Further, the passage holes 41 and 43 of the partition plate 4 are respectively connected to the passage holes 27 and 25 of the second heat transfer plate 2 arranged farthest from the second entrance / exit plate 6.
 第2熱交換ユニット20は、たとえば積層された4枚の第2伝熱プレート2,3により構成されている。4枚の第2伝熱プレート2,3は、それぞれの長手方向が鉛直方向に沿うように配置されている。各第2伝熱プレート2は、通路孔21が通路孔22に対して鉛直方向の下方に位置するように配置されている。各第2伝熱プレート3は、通路孔31が通路孔33に対して鉛直方向の下方に位置するように配置されている。第2出入口プレート6は、第流3体の第3流入口63が第3流出口64に対して鉛直方向の下方に位置するように配置されている。 The second heat exchange unit 20 is composed of, for example, four stacked second heat transfer plates 2 and 3. The four second heat transfer plates 2 and 3 are arranged such that their longitudinal directions are along the vertical direction. Each second heat transfer plate 2 is disposed such that the passage hole 21 is positioned below the passage hole 22 in the vertical direction. Each second heat transfer plate 3 is disposed such that the passage hole 31 is positioned below the passage hole 33 in the vertical direction. The second inlet / outlet plate 6 is arranged such that the third inlet 63 of the third flow body is positioned below the third outlet 64 in the vertical direction.
 第2熱交換ユニット20において、仕切プレート4と隣り合う第2伝熱プレート2は、通路孔27,25が仕切プレート4の通路孔41,43とそれぞれ接続されている。上記第2伝熱プレート2の後側(背面側)において当該第2伝熱プレート2と隣り合う他の第2伝熱プレート3は、通路孔31,33,35,36,38がそれぞれ当該第2伝熱プレート2の通路孔21,22,23,25,27と接続されている。 In the second heat exchange unit 20, the second heat transfer plate 2 adjacent to the partition plate 4 has passage holes 27 and 25 connected to the passage holes 41 and 43 of the partition plate 4, respectively. The other second heat transfer plate 3 adjacent to the second heat transfer plate 2 on the rear side (back side) of the second heat transfer plate 2 has passage holes 31, 33, 35, 36, and 38 respectively. 2 It is connected to the passage holes 21, 22, 23, 25, 27 of the heat transfer plate 2.
 さらに、上記他の第2伝熱プレート3の後側(背面側)において当該他の第2伝熱プレート3と隣り合うさらに他の第2伝熱プレート2は、通路孔21,22,23,25,27が当該他の第2伝熱プレート3の通路孔31,33,35,36,38とそれぞれ接続されている。 Furthermore, the other second heat transfer plate 2 adjacent to the other second heat transfer plate 3 on the rear side (rear side) of the other second heat transfer plate 3 includes passage holes 21, 22, 23, 25 and 27 are connected to the passage holes 31, 33, 35, 36 and 38 of the other second heat transfer plate 3, respectively.
 第2熱交換ユニット20において、第2出入口プレート6と隣り合う第2伝熱プレート3は、通路孔31,33が第2出入口プレート6の第3流入口63および第3流出口64のそれぞれと接続されている。 In the second heat exchange unit 20, the second heat transfer plate 3 adjacent to the second inlet / outlet plate 6 has passage holes 31 and 33 that are respectively connected to the third inlet 63 and the third outlet 64 of the second inlet / outlet plate 6. It is connected.
 第1熱交換ユニット10において、第1流体の流路7bは、鉛直方向の下方および上方にそれぞれ通路孔12,11が配置された第1伝熱プレート1の伝熱面17と、当該第1伝熱プレート1と前側において隣り合い、鉛直方向の下方および上方に通路孔11,12がそれぞれ配置された第1伝熱プレート1の伝熱面17との間に形成されている。 In the first heat exchange unit 10, the flow path 7 b of the first fluid includes the heat transfer surface 17 of the first heat transfer plate 1 in which the passage holes 12 and 11 are respectively disposed below and above in the vertical direction, and the first heat exchange unit 10. It is formed between the heat transfer plate 1 and the heat transfer surface 17 of the first heat transfer plate 1 which is adjacent to the front side and in which the passage holes 11 and 12 are respectively arranged below and above in the vertical direction.
 第1熱交換ユニット10において、第2流体の流路8は、鉛直方向の下方および上方にそれぞれ通路孔11,12が配置された第1伝熱プレート1の伝熱面17と、当該第1伝熱プレート1と前側において隣り合い、鉛直方向の下方および上方に通路孔12,11がそれぞれ配置された第1伝熱プレート1の伝熱面17との間に形成されている。 In the first heat exchange unit 10, the flow path 8 of the second fluid includes the heat transfer surface 17 of the first heat transfer plate 1 in which the passage holes 11 and 12 are respectively arranged below and above in the vertical direction, and the first heat exchange unit 10. It is formed between the heat transfer plate 1 and the heat transfer surface 17 of the first heat transfer plate 1 which is adjacent to the front side and in which the passage holes 12 and 11 are respectively arranged below and above in the vertical direction.
 第2熱交換ユニット20において、第1流体の流路7aは、上記積層方向に重なるように設けられ、かつ互いに接続された第2伝熱プレート2,3の各通路孔25,36内に形成されている。 In the second heat exchange unit 20, the flow path 7 a for the first fluid is formed in the passage holes 25 and 36 of the second heat transfer plates 2 and 3 that are provided so as to overlap with each other in the stacking direction. Has been.
 第2熱交換ユニット20において、第1流体の流路7dは、第2伝熱プレート3の伝熱面39と、当該第2伝熱プレート3と前側において隣り合う第2伝熱プレート2の伝熱面29との間に形成されている。第2熱交換ユニット20において、第3流体の流路9は、第2伝熱プレート2の伝熱面29と、当該第2伝熱プレート2と前側において隣り合う第2伝熱プレート3の伝熱面39との間に形成されている。 In the second heat exchange unit 20, the flow path 7 d of the first fluid is provided between the heat transfer surface 39 of the second heat transfer plate 3 and the second heat transfer plate 2 adjacent to the second heat transfer plate 3 on the front side. It is formed between the hot surface 29. In the second heat exchange unit 20, the flow path 9 of the third fluid is provided between the heat transfer surface 29 of the second heat transfer plate 2 and the second heat transfer plate 3 adjacent to the second heat transfer plate 2 on the front side. It is formed between the hot surface 39.
 これにより、第1熱交換ユニット10には、複数の第1流体の流路7bが互いに並列に設けられ、また、複数の第2流体の流路8が互いに並列に設けられている。第1流体の流路7bと第2流体の流路8とは、各第1伝熱プレート1の伝熱面17を挟んで隣り合うように設けられている。第2熱交換ユニット20には、複数の第1流体の流路7dが互いに並列に設けられ、また、複数の第3流体の流路9が互いに並列に設けられている。第1流体の流路7dと第3流体の流路9とは、各第2伝熱プレート2,3の伝熱面29,39を挟んで隣り合うように設けられている。第2熱交換ユニット20において、第1流体の流路7aは、第2伝熱プレート2,3の伝熱面29,39を含む空間を通ることなく第1熱交換ユニット10に達するように設けられている。 Thereby, in the first heat exchange unit 10, a plurality of first fluid flow paths 7b are provided in parallel with each other, and a plurality of second fluid flow paths 8 are provided in parallel with each other. The first fluid flow path 7b and the second fluid flow path 8 are provided adjacent to each other with the heat transfer surface 17 of each first heat transfer plate 1 interposed therebetween. The second heat exchange unit 20 includes a plurality of first fluid flow paths 7d in parallel with each other, and a plurality of third fluid flow paths 9 in parallel with each other. The first fluid flow path 7d and the third fluid flow path 9 are provided adjacent to each other with the heat transfer surfaces 29 and 39 of the second heat transfer plates 2 and 3 interposed therebetween. In the second heat exchange unit 20, the first fluid flow path 7 a is provided so as to reach the first heat exchange unit 10 without passing through the space including the heat transfer surfaces 29 and 39 of the second heat transfer plates 2 and 3. It has been.
 第1流入口61からプレート式熱交換器100内に流入した第1流体は、第2熱交換ユニット20において第3流体などとの間で熱交換されることなく第1熱交換ユニット10に達し、第1熱交換ユニット10において第2流体との間で初めて熱交換される。第2流体と熱交換された第1流体は、第2熱交換ユニット20に達し、第2熱交換ユニット20において第3流体との間でさらに熱交換される。 The first fluid that has flowed into the plate heat exchanger 100 from the first inlet 61 reaches the first heat exchange unit 10 without exchanging heat with the third fluid or the like in the second heat exchange unit 20. The first heat exchange unit 10 exchanges heat with the second fluid for the first time. The first fluid that has exchanged heat with the second fluid reaches the second heat exchange unit 20, and further exchanges heat with the third fluid in the second heat exchange unit 20.
 プレート式熱交換器100は、たとえば冷凍サイクル装置において圧縮機、膨張弁および他の熱交換器などと接続される。第1流入口61、第1流出口62、第2流入口51、第2流出口52、第3流入口63、および第3流出口64は、圧縮機、膨張弁および他の熱交換器などと接続され、冷媒が流通する冷媒配管や、水または不凍液が流通する配管などと接続される。第1流入口61、第1流出口62、第2流入口51、第2流出口52、第3流入口63、および第3流出口64と各配管とは、任意の方法により接続されていればよく、たとえばろう付けにより接続されていてもよい。また、第1流入口61、第1流出口62、第2流入口51、第2流出口52、第3流入口63、および第3流出口64と上記配管とがそれぞれフランジ部を有し、フランジ部同士が締結または接合されることにより接続されていてもよい。 The plate heat exchanger 100 is connected to, for example, a compressor, an expansion valve, and other heat exchangers in a refrigeration cycle apparatus. The first inlet 61, the first outlet 62, the second inlet 51, the second outlet 52, the third inlet 63, and the third outlet 64 are a compressor, an expansion valve, and other heat exchangers. And a refrigerant pipe through which the refrigerant flows, a pipe through which water or antifreeze liquid flows, and the like. The first inflow port 61, the first outflow port 62, the second inflow port 51, the second outflow port 52, the third inflow port 63, the third outflow port 64, and each pipe may be connected by any method. For example, it may be connected by brazing. In addition, the first inlet 61, the first outlet 62, the second inlet 51, the second outlet 52, the third inlet 63, the third outlet 64 and the pipe each have a flange portion, The flange portions may be connected by being fastened or joined together.
 <作用効果>
 次に、プレート式熱交換器100の作用効果について説明する。
<Effect>
Next, the effect of the plate heat exchanger 100 will be described.
 プレート式熱交換器100は、第1の面と第1の面と対向する第2の面とを有し、第1流体と第2流体とが熱交換するための第1熱交換ユニット10と、第3の面と第3の面と対向する第4の面とを有し、第1熱交換ユニット10の第2の面と第3の面とが接続されるように配置され、かつ第1熱交換ユニット10において熱交換された第1流体と第3流体とが熱交換するための第2熱交換ユニット20とを備える。第1熱交換ユニット10は、第2流体を入出するための第2流入口51および第2流出口52を含む。第2熱交換ユニット20は、第1流体を入出するための第1流入口61および第1流出口62と、第3流体を入出するための第3流入口63および第3流出口64とを含む。第1流入口61および第1流出口62は第2熱交換ユニット20の第4の面上に設けられている。第2流入口51および第2流出口52は第1熱交換ユニット10の第1の面上に設けられている。第3流入口63および第3流出口64は第2熱交換ユニット20の第4の面上に設けられている。 The plate heat exchanger 100 has a first surface and a second surface opposite to the first surface, and the first heat exchange unit 10 for exchanging heat between the first fluid and the second fluid; , Having a third surface and a fourth surface opposite to the third surface, arranged such that the second surface and the third surface of the first heat exchange unit 10 are connected, and The 1st heat exchange unit 10 is equipped with the 2nd heat exchange unit 20 for the heat exchange of the 1st fluid and the 3rd fluid which were heat-exchanged. The first heat exchange unit 10 includes a second inlet 51 and a second outlet 52 for entering and leaving the second fluid. The second heat exchange unit 20 includes a first inlet 61 and a first outlet 62 for entering and leaving the first fluid, and a third inlet 63 and a third outlet 64 for entering and leaving the third fluid. Including. The first inflow port 61 and the first outflow port 62 are provided on the fourth surface of the second heat exchange unit 20. The second inlet 51 and the second outlet 52 are provided on the first surface of the first heat exchange unit 10. The third inlet 63 and the third outlet 64 are provided on the fourth surface of the second heat exchange unit 20.
 このようにすれば、第1流体、第2流体、および第3流体の各流入口・流出口が第1熱交換ユニット10または第2熱交換ユニット20に対して同一面上に設けられている。そのため、第1流体の第1流入口61と外部配管との接続、および第1流出口62と外部配管との接続を連続して行うことができる。さらに、第2流体の第2流入口51と外部配管との接続、および第2流出口52と外部配管との接続を連続して行うことができる。さらに、第3流体の第3流入口63と外部配管との接続、および第3流出口64と外部配管との接続を連続して行うことができる。つまり、プレート式熱交換器100によれば、各流入口・流出口と外部配管との接続を流体毎に連続して行うことができる。そのため、各流入口および流出口と外部配管とを接続しやすい。よって、当該接続の作業性を向上させることができる。 If it does in this way, each inflow port and outflow port of the 1st fluid, the 2nd fluid, and the 3rd fluid are provided on the same surface to the 1st heat exchange unit 10 or the 2nd heat exchange unit 20. . Therefore, the connection between the first inlet 61 of the first fluid and the external pipe and the connection between the first outlet 62 and the external pipe can be continuously performed. Furthermore, the connection between the second inlet 51 of the second fluid and the external pipe, and the connection between the second outlet 52 and the external pipe can be performed continuously. Furthermore, the connection between the third inlet 63 of the third fluid and the external piping, and the connection between the third outlet 64 and the external piping can be continuously performed. That is, according to the plate heat exchanger 100, the connection between each inlet / outlet and the external pipe can be continuously performed for each fluid. Therefore, it is easy to connect each inlet / outlet and the external pipe. Therefore, the workability of the connection can be improved.
 また、プレート式熱交換器100には、第1流体の一部と残部とを分配させてから合流させる流路が設けられてない。そのため、プレート式熱交換器100は、構造が簡易である。 In addition, the plate heat exchanger 100 is not provided with a flow path for distributing a part of the first fluid and the remaining part and then joining them. Therefore, the plate heat exchanger 100 has a simple structure.
 また、プレート式熱交換器100を備える冷凍サイクル装置(たとえば、後述する冷凍サイクル装置200(図14参照))は、流入口・流出口が流体毎に同一面上に設けられていないプレート式熱交換器を備える冷凍サイクル装置と比べて、配管の取り回しが容易になる。そのため、プレート式熱交換器100を備える当該冷凍サイクル装置は、流入口・流出口が流体毎に同一面上に設けられていない冷凍サイクル装置と比べて小型化することができる。 Further, a refrigeration cycle apparatus (for example, a refrigeration cycle apparatus 200 (see FIG. 14) described later) provided with a plate heat exchanger 100 has plate-type heat in which an inlet / outlet is not provided on the same surface for each fluid. Compared with a refrigeration cycle apparatus including an exchanger, the piping can be easily handled. Therefore, the said refrigeration cycle apparatus provided with the plate-type heat exchanger 100 can be reduced in size compared with the refrigeration cycle apparatus in which the inlet / outlet is not provided on the same surface for every fluid.
 また、プレート式熱交換器100によれば、第1熱交換ユニット10において第2流体との間で熱交換された第1流体は、第2熱交換ユニット20において第3流体との間で熱交換されるため、第1流体に対し2段階で熱交換させることができる。そのため、プレート式熱交換器100は、第1流体に対し1段階で熱交換させるプレート式熱交換器と比べて、熱交換効率を向上させることができる。 Further, according to the plate heat exchanger 100, the first fluid exchanged with the second fluid in the first heat exchange unit 10 is heated with the third fluid in the second heat exchange unit 20. Since they are exchanged, the first fluid can be subjected to heat exchange in two stages. Therefore, the plate heat exchanger 100 can improve the heat exchange efficiency as compared with the plate heat exchanger that exchanges heat with the first fluid in one stage.
 上記プレート式熱交換器100において、複数の第1伝熱プレート1の各々は、第1流体または第2流体を流通させるための通路孔を4つ有している。また、複数の第2伝熱プレート2,3の各々は、第1流体または第3流体を流通させるための5つの通路孔を有している。このようにすれば、上記第1伝熱プレート1を含む第1熱交換ユニット10において第1流体の流路7bと第2流体の流路8とを形成することができ、かつ上記第2伝熱プレート2,3を含む第2熱交換ユニット20において第1流体の流路7aおよび流路7dと、第3流体の流路9とを形成することができる。その結果、プレート式熱交換器100は、第1流体に対して2段階で熱交換させることができる。 In the plate heat exchanger 100, each of the plurality of first heat transfer plates 1 has four passage holes for circulating the first fluid or the second fluid. Each of the plurality of second heat transfer plates 2 and 3 has five passage holes for allowing the first fluid or the third fluid to flow therethrough. In this way, the first fluid flow path 7b and the second fluid flow path 8 can be formed in the first heat exchange unit 10 including the first heat transfer plate 1, and the second heat transfer unit 10 can be formed. In the second heat exchange unit 20 including the heat plates 2 and 3, the flow path 7 a and the flow path 7 d for the first fluid and the flow path 9 for the third fluid can be formed. As a result, the plate heat exchanger 100 can exchange heat with the first fluid in two stages.
 (実施の形態2)
 次に、図13を参照して、実施の形態2に係るプレート式熱交換器101について説明する。実施の形態2に係るプレート式熱交換器101は、基本的には実施の形態1に係るプレート式熱交換器100と同様の構成を備えるが、第1流体の第1流出口62から流出した第1流体が、第3流体の第3流入口63から第3流体として流入可能に設けられている点で異なる。
(Embodiment 2)
Next, a plate heat exchanger 101 according to Embodiment 2 will be described with reference to FIG. The plate heat exchanger 101 according to the second embodiment basically has the same configuration as the plate heat exchanger 100 according to the first embodiment, but flows out from the first outlet 62 of the first fluid. The first fluid is different in that it is provided so as to be able to flow in as the third fluid from the third inlet 63 of the third fluid.
 具体的には、プレート式熱交換器101の外部において、第1流出口62と第3流入口63との間には、第1流出口62からプレート式熱交換器101の外部へ流出した第1流体を第3流入口63からプレート式熱交換器101内に流入するための第1流体の流路7eが形成されている。第1流体の流路7eは、第1流体の流路7dと、第1流体の流路7fとの間を接続している。第1流体の流路7fは、図3に示されるプレート式熱交換器100における第3流体の流路9に相当する。つまり、プレート式熱交換器101を備える冷凍サイクル装置は、一端および他端がそれぞれ第1流出口62および第3流入口63に接続され、第1流体の流路7eを構成する配管部をさらに備えている。 Specifically, outside of the plate heat exchanger 101, the first outflow from the first outlet 62 to the outside of the plate heat exchanger 101 is between the first outlet 62 and the third inlet 63. A first fluid flow path 7 e for allowing one fluid to flow into the plate heat exchanger 101 from the third inlet 63 is formed. The first fluid channel 7e connects between the first fluid channel 7d and the first fluid channel 7f. The flow path 7f of the first fluid corresponds to the flow path 9 of the third fluid in the plate heat exchanger 100 shown in FIG. That is, in the refrigeration cycle apparatus including the plate heat exchanger 101, one end and the other end are connected to the first outlet 62 and the third inlet 63, respectively, and a piping part that constitutes the first fluid flow path 7e is further provided. I have.
 図14を参照して、プレート式熱交換器101を備える冷凍サイクル装置200は、たとえば圧縮機71、膨張弁72、蒸発器73、インジェクション膨張弁74、およびポンプ75をさらに備える。プレート式熱交換器101は、第1流入口61が圧縮機71の吐出側と接続されている。なお、図14では、説明の便宜上、プレート式熱交換器101内における第1流体および第2流体の各流路(第1流入口61と第1流出口62との間に形成された第1流体の各流路7a,7b,7c,7d、第3流入口63と第3流出口64との間に形成された第1流体の流路7f、および第2流入口51と第2流出口52との間に形成された第2流体の流路8)を直線状に図示している。 14, the refrigeration cycle apparatus 200 including the plate heat exchanger 101 further includes, for example, a compressor 71, an expansion valve 72, an evaporator 73, an injection expansion valve 74, and a pump 75. In the plate heat exchanger 101, the first inlet 61 is connected to the discharge side of the compressor 71. In FIG. 14, for convenience of explanation, each flow path of the first fluid and the second fluid in the plate heat exchanger 101 (the first flow path formed between the first inlet 61 and the first outlet 62 is used. The fluid flow paths 7a, 7b, 7c, 7d, the first fluid flow path 7f formed between the third inlet 63 and the third outlet 64, and the second inlet 51 and the second outlet. The flow path 8) of the second fluid formed between the first fluid 52 and the fluid 52 is shown in a straight line.
 プレート式熱交換器101の第1流入口61は、圧縮機71の吐出側と接続されている。第1流出口62は、膨張弁72と接続されているとともに、インジェクション膨張弁74と接続されている。第3流入口63は、インジェクション膨張弁74と接続されている。第3流出口64は、圧縮機71の中間部に接続(インジェクション)されている。言い換えると、第1流出口62と膨張弁72との間を接続する配管から分岐する配管が形成されており、当該配管がインジェクション膨張弁74を介して第3流入口63に接続されている。蒸発器73は、膨張弁72と圧縮機71との間に配置されている。第2流入口51は、ポンプ75と接続されている。冷凍サイクル装置200は、プレート式熱交換器101、圧縮機71、膨張弁72、蒸発器73、インジェクション膨張弁74、およびポンプ75を収容する筐体76をさらに備える。図14および図15に示されるように、筐体76には、第2流体を冷凍サイクル装置200の内外に入出させるための接続配管77,78が設けられている。接続配管77,78はプレート式熱交換器101の第2流出口52、第2流入口51とそれぞれ接続されている。このとき、第1流体(第3流体)は冷媒であり、第2流体は水または不凍液(ブライン)である。 The first inlet 61 of the plate heat exchanger 101 is connected to the discharge side of the compressor 71. The first outlet 62 is connected to the expansion valve 72 and is connected to the injection expansion valve 74. The third inlet 63 is connected to the injection expansion valve 74. The third outlet 64 is connected (injected) to an intermediate portion of the compressor 71. In other words, a pipe branched from the pipe connecting between the first outlet 62 and the expansion valve 72 is formed, and the pipe is connected to the third inlet 63 via the injection expansion valve 74. The evaporator 73 is disposed between the expansion valve 72 and the compressor 71. The second inlet 51 is connected to the pump 75. The refrigeration cycle apparatus 200 further includes a housing 76 that houses the plate heat exchanger 101, the compressor 71, the expansion valve 72, the evaporator 73, the injection expansion valve 74, and the pump 75. As shown in FIGS. 14 and 15, the casing 76 is provided with connection pipes 77 and 78 for allowing the second fluid to enter and exit the refrigeration cycle apparatus 200. The connection pipes 77 and 78 are connected to the second outlet 52 and the second inlet 51 of the plate heat exchanger 101, respectively. At this time, the first fluid (third fluid) is a refrigerant, and the second fluid is water or antifreeze (brine).
 プレート式熱交換器101は、第1流体の第1流出口62から流出した第1流体が、第3流体の第3流入口63から第3流体として流入可能に設けられている。そのため、プレート式熱交換器101は、第1流体を3段階で熱交換させることができる。 The plate heat exchanger 101 is provided so that the first fluid flowing out from the first outlet 62 of the first fluid can flow in as the third fluid from the third inlet 63 of the third fluid. Therefore, the plate heat exchanger 101 can exchange heat with the first fluid in three stages.
 プレート式熱交換器101は、第1流体を冷媒とし、第2流体を水または不凍液(ブライン)とすることにより、水または不凍液(ブライン)を熱源とする空気調和装置または冷凍装置としての冷凍サイクル装置200に好適である。たとえば、第1流体は、第1熱交換ユニット10において第2流体との間で熱交換されることにより凝縮される。凝縮された第1冷媒は、第2熱交換ユニット20を通った後、インジェクション膨張弁74により減圧される。減圧された第1冷媒は、第2熱交換ユニット20において上記凝縮された第1冷媒との間で熱交換される。これにより、プレート式熱交換器101および冷凍サイクル装置200によれば、第1流体を過冷却させることができる。 The plate heat exchanger 101 uses a first fluid as a refrigerant and a second fluid as water or antifreeze liquid (brine), so that the refrigeration cycle as an air conditioner or refrigeration apparatus using water or antifreeze liquid (brine) as a heat source. Suitable for the device 200. For example, the first fluid is condensed by exchanging heat with the second fluid in the first heat exchange unit 10. The condensed first refrigerant is decompressed by the injection expansion valve 74 after passing through the second heat exchange unit 20. The decompressed first refrigerant is heat-exchanged with the condensed first refrigerant in the second heat exchange unit 20. Thereby, according to plate type heat exchanger 101 and refrigeration cycle device 200, the 1st fluid can be supercooled.
 また、冷凍サイクル装置200において、第1流入口61、第1流出口62、第3流入口63、および第3流出口64はいずれも冷媒としての第1流体を入出させるものである。また、上記プレート式熱交換器100において、第1流入口61、第1流出口62、第3流入口63、および第3流出口64は、いずれも第2熱交換ユニット20において第2出入口プレート6上(同一平面上)に設けられている。そのため、第1流入口61、第1流出口62、第3流入口63、および第3流出口64のそれぞれと外部配管(冷凍サイクル装置200の内部配管)との接続を、連続して行うことができる。また、プレート式熱交換器101によれば、外部配管(冷凍サイクル装置200の内部配管)の取り回しを単純化させることができるため、冷凍サイクル装置200を小型化することができる。 Further, in the refrigeration cycle apparatus 200, the first inlet 61, the first outlet 62, the third inlet 63, and the third outlet 64 all allow the first fluid as the refrigerant to enter and exit. In the plate heat exchanger 100, the first inlet 61, the first outlet 62, the third inlet 63, and the third outlet 64 are all the second inlet / outlet plates in the second heat exchange unit 20. 6 (on the same plane). Therefore, each of the first inlet 61, the first outlet 62, the third inlet 63, and the third outlet 64 is continuously connected to the external pipe (the internal pipe of the refrigeration cycle apparatus 200). Can do. Moreover, according to the plate type heat exchanger 101, since the handling of external piping (internal piping of the refrigeration cycle apparatus 200) can be simplified, the refrigeration cycle apparatus 200 can be reduced in size.
 プレート式熱交換器101において、第2流入口51および第2流出口52は、いずれも第1熱交換ユニット10において第1出入口プレート5上(同一平面上)に設けられている。そのため、冷凍サイクル装置200の筐体76において接続配管77,78は同一平面上に設けられている。そのため、冷凍サイクル装置200によれば、接続配管77,78のそれぞれと外部配管との接続を連続して行うことができる。また、冷凍サイクル装置200によれば、当該外部配管の取り回しを単純化することができる。これにより、たとえば冷凍サイクル装置200が複数並べられて設置される場合にも、設置場所の省スペース化を図ることができる。 In the plate heat exchanger 101, the second inlet 51 and the second outlet 52 are both provided on the first inlet / outlet plate 5 (on the same plane) in the first heat exchange unit 10. Therefore, the connection pipes 77 and 78 are provided on the same plane in the casing 76 of the refrigeration cycle apparatus 200. Therefore, according to the refrigeration cycle apparatus 200, each of the connection pipes 77 and 78 and the external pipe can be continuously connected. Further, according to the refrigeration cycle apparatus 200, the handling of the external pipe can be simplified. Thereby, for example, even when a plurality of refrigeration cycle apparatuses 200 are installed side by side, it is possible to save the installation space.
 <変形例>
 実施の形態1および実施の形態2に係るプレート式熱交換器100は、第1伝熱プレート1と第2伝熱プレート2とがいずれも同数であるが、これに限られるものでは無い。たとえば、図16を参照して、第1熱交換ユニット10に含まれる第1伝熱プレート1の数が第2熱交換ユニット20に含まれる第2伝熱プレート2,3の数よりも多くてもよい。たとえば、4枚の第2伝熱プレート2,3を含む第2熱交換ユニット20に対し、第1熱交換ユニット10は6枚の第1伝熱プレート1を含んでいてもよい。このようにすれば、第1熱交換ユニット10において第1流体と第2流体との間で熱交換可能な領域を大きくすることができる。
<Modification>
In the plate heat exchanger 100 according to the first embodiment and the second embodiment, the number of the first heat transfer plates 1 and the number of the second heat transfer plates 2 are the same, but the present invention is not limited to this. For example, referring to FIG. 16, the number of first heat transfer plates 1 included in first heat exchange unit 10 is greater than the number of second heat transfer plates 2 and 3 included in second heat exchange unit 20. Also good. For example, the first heat exchange unit 10 may include six first heat transfer plates 1 with respect to the second heat exchange unit 20 including the four second heat transfer plates 2 and 3. If it does in this way, the field which can exchange heat between the 1st fluid and the 2nd fluid in the 1st heat exchange unit 10 can be enlarged.
 実施の形態1および実施の形態2に係るプレート式熱交換器100,101の各プレートの具体的構成は、図4~図11に示される構成に限られるものでは無い。 The specific configuration of each plate of the plate heat exchangers 100 and 101 according to the first and second embodiments is not limited to the configuration shown in FIGS.
 図17を参照して、たとえば第2伝熱プレート3は、第1流体が流れる前記第2伝熱プレートの前記通路孔は、水平方向(たとえば短手方向)において第2伝熱プレート3の中央に位置し、かつ鉛直方向(たとえば長手方向)の下方に配置された第1通路孔38と、第1通路孔38に対し鉛直方向の上方に配置された第2通路孔35とを有していてもよい。このようにすれば、第1流体が第1通路孔38から第2通路孔35へ鉛直方向の下方から上方へ第2伝熱プレート3の伝熱面39上を流通する際に、第1流体が水平方向において非対称に流通することを抑制することができる。そのため、たとえば第1熱交換ユニット10において熱交換された第1流体が気液2相状態で第2熱交換ユニット20に流入する場合であっても、第1流体が第2伝熱プレート3上で分配されることを抑制することができ、プレート式熱交換器100,101における第1流体の分配特性を向上させることができる。 Referring to FIG. 17, for example, in the second heat transfer plate 3, the passage hole of the second heat transfer plate through which the first fluid flows is the center of the second heat transfer plate 3 in the horizontal direction (for example, the short direction). And a first passage hole 38 disposed below the vertical direction (for example, the longitudinal direction) and a second passage hole 35 disposed above the first passage hole 38 in the vertical direction. May be. In this way, when the first fluid flows from the first passage hole 38 to the second passage hole 35 on the heat transfer surface 39 of the second heat transfer plate 3 from below in the vertical direction to above, the first fluid Can be prevented from flowing asymmetrically in the horizontal direction. Therefore, for example, even when the first fluid heat-exchanged in the first heat exchange unit 10 flows into the second heat exchange unit 20 in a gas-liquid two-phase state, the first fluid remains on the second heat transfer plate 3. The distribution characteristics of the first fluid in the plate heat exchangers 100 and 101 can be improved.
 また、図18を参照して、第1伝熱プレート1の平面形状は、たとえば台形状であってもよい。このとき、たとえば第1熱交換ユニット10において流入時にガス状態であった第1流体が凝縮されて液状態で流出する場合には、第1伝熱プレート1において鉛直方向の上方に配置される上辺の長さが鉛直方向の下方に配置される下辺の長さよりも長くなるように設けられているのが好ましい。このようにすれば、図4に示されるように第1熱交換ユニット10において第1流体は鉛直方向の上方から下方に向けて流通するため、鉛直方向の下方において第1流体の流路7bが狭くなることで、第1伝熱プレート1上において第1流体の流速を上昇させることができる。その結果、第1熱交換ユニット10における第1流体と第2流体との間の熱交換量を大きくすることができる。なお、このような第1伝熱プレート1を備えるプレート式熱交換器は、第2伝熱プレート2,3、仕切プレート4および第1および第2出入口プレート5,6の平面形状も、第1伝熱プレート1の平面形状と同一形状を有していればよい。 Referring to FIG. 18, the planar shape of the first heat transfer plate 1 may be, for example, a trapezoidal shape. At this time, for example, when the first fluid that is in the gas state at the time of inflow in the first heat exchange unit 10 is condensed and flows out in the liquid state, the upper side that is arranged above the vertical direction in the first heat transfer plate 1. It is preferable that the length is longer than the length of the lower side arranged below in the vertical direction. In this way, as shown in FIG. 4, in the first heat exchange unit 10, the first fluid flows from the upper side to the lower side in the vertical direction. By narrowing, the flow rate of the first fluid can be increased on the first heat transfer plate 1. As a result, the amount of heat exchange between the first fluid and the second fluid in the first heat exchange unit 10 can be increased. In addition, the plate type heat exchanger provided with such a 1st heat-transfer plate 1 also has the planar shape of the 2nd heat- transfer plates 2 and 3, the partition plate 4, and the 1st and 2nd entrance-and- exit plates 5 and 6, It is only necessary to have the same shape as the planar shape of the heat transfer plate 1.
 また、実施の形態1および実施の形態2に係るプレート式熱交換器100,101は、第2流体の第2流入口51および第3流体の第3流入口63が第1および第2出入口プレート5,6の鉛直方向の下方に、第2流出口52および第3流出口64が第1および第2出入口プレート5,6の鉛直方向の上方に、それぞれ設けられているが、これに限られるものでは無い。第2流入口51および第3流入口63が第1および第2出入口プレート5,6の鉛直方向の上方に、第2流出口52および第3流出口64が第1および第2出入口プレート5,6の鉛直方向の下方に、それぞれ設けられていてもよい。プレート式熱交換器100,101において、第2流入口51、第2流出口52、第3流入口63、および第3流出口64は、第1熱交換ユニット10および第2熱交換ユニット20における各流体の状態、および第1伝熱プレート1および第2伝熱プレート2,3上での各流体の分配特性を考慮して、第1および第2出入口プレート5,6上での位置関係を適宜変更することが可能である。また、そのようにすることで、第1熱交換ユニット10および第2熱交換ユニット20における各流体の流れを、対向流または並行流とすることができる。 In the plate heat exchangers 100 and 101 according to the first and second embodiments, the second inlet 51 for the second fluid and the third inlet 63 for the third fluid are the first and second inlet / outlet plates. The second outflow port 52 and the third outflow port 64 are provided above the first and second inlet / outlet plates 5 and 6 in the vertical direction below the vertical directions 5 and 6, respectively. It is not a thing. The second inlet 51 and the third inlet 63 are vertically above the first and second inlet / outlet plates 5 and 6, and the second outlet 52 and the third outlet 64 are the first and second inlet / outlet plates 5 and 5. 6 may be respectively provided below the vertical direction. In the plate heat exchangers 100 and 101, the second inlet 51, the second outlet 52, the third inlet 63, and the third outlet 64 are the same in the first heat exchange unit 10 and the second heat exchange unit 20. Considering the state of each fluid and the distribution characteristics of each fluid on the first heat transfer plate 1 and the second heat transfer plates 2, 3, the positional relationship on the first and second inlet / outlet plates 5, 6 is determined. It can be changed as appropriate. In addition, by doing so, the flow of each fluid in the first heat exchange unit 10 and the second heat exchange unit 20 can be set to a counter flow or a parallel flow.
 今回開示された実施の形態はすべての点において例示であって制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 第1伝熱プレート、2,3 第2伝熱プレート、4 仕切プレート、5 第1出入口プレート、6 第2出入口プレート、7a,7b,7c,7d,7e,7f,8,9 流路、10 第1熱交換ユニット、11,12,13,15,21,22,23,25,27,31,33,35,36,38,41,43 通路孔、14,16,24,26,28,42,44 凸部、17,29,39 伝熱面、20 第2熱交換ユニット、45 表面、51 第2流入口、52 第2流出口、61 第1流入口、62 第1流出口、63 第3流入口、64 第3流出口、71 圧縮機、72 膨張弁、73 蒸発器、74 インジェクション膨張弁、75 ポンプ、76 筐体、77,78 接続配管、100,101 プレート式熱交換器、200 冷凍サイクル装置。 1 1st heat transfer plate, 2, 3 2nd heat transfer plate, 4 partition plate, 5 1st entrance / exit plate, 6 2nd entrance / exit plate, 7a, 7b, 7c, 7d, 7e, 7f, 8, 9 flow path, 10 1st heat exchange unit, 11, 12, 13, 15, 21, 22, 23, 25, 27, 31, 33, 35, 36, 38, 41, 43 passage hole, 14, 16, 24, 26, 28 , 42, 44 convex part, 17, 29, 39 heat transfer surface, 20 second heat exchange unit, 45 surface, 51 second inlet, 52 second outlet, 61 first inlet, 62 first outlet, 63 3rd inlet, 64 3rd outlet, 71 compressor, 72 expansion valve, 73 evaporator, 74 injection expansion valve, 75 pump, 76 housing, 77, 78 connection piping, 100, 101 plate type heat exchange Vessel, 200 refrigeration cycle apparatus.

Claims (7)

  1.  第1の面および前記第1の面と対向する第2の面を有し、第1流体と第2流体とが熱交換するための第1熱交換ユニットと、
     第3の面および前記第3の面と対向する第4の面を有し、前記第1熱交換ユニットの前記第2の面と前記第3の面とが接続されるように配置され、かつ前記第1熱交換ユニットにおいて熱交換された前記第1流体と、第3流体とが熱交換するための第2熱交換ユニットとを備え、
     前記第1熱交換ユニットは、前記第2流体を入出するための第2流入口および第2流出口を含み、
     前記第2熱交換ユニットは、前記第1流体を入出するための第1流入口および第1流出口と、前記第3流体を入出するための第3流入口および第3流出口とを含み、
     前記第1流入口および前記第1流出口は前記第2熱交換ユニットの前記第4の面上に設けられており、
     前記第2流入口および前記第2流出口は前記第1熱交換ユニットの前記第1の面上に設けられており、
     前記第3流入口および前記第3流出口は前記第2熱交換ユニットの前記第4の面上に設けられている、プレート式熱交換器。
    A first heat exchange unit having a first surface and a second surface facing the first surface, wherein the first fluid and the second fluid exchange heat;
    A third surface and a fourth surface opposite to the third surface, wherein the second surface and the third surface of the first heat exchange unit are connected to each other; and The first fluid exchanged in the first heat exchange unit and a second heat exchange unit for exchanging heat with the third fluid;
    The first heat exchange unit includes a second inlet and a second outlet for entering and exiting the second fluid,
    The second heat exchange unit includes a first inlet and a first outlet for entering and leaving the first fluid, and a third inlet and a third outlet for entering and leaving the third fluid,
    The first inlet and the first outlet are provided on the fourth surface of the second heat exchange unit;
    The second inlet and the second outlet are provided on the first surface of the first heat exchange unit;
    The plate-type heat exchanger, wherein the third inflow port and the third outflow port are provided on the fourth surface of the second heat exchange unit.
  2.  前記第1流体の前記第1流出口から流出した前記第1流体が、前記第3流体の前記第3流入口から前記第3流体として流入可能に設けられている、請求項1に記載のプレート式熱交換器。 2. The plate according to claim 1, wherein the first fluid flowing out from the first outlet of the first fluid is provided so as to be able to flow in as the third fluid from the third inlet of the third fluid. Type heat exchanger.
  3.  前記第1熱交換ユニットは複数の第1伝熱プレートを含み、
     前記第2熱交換ユニットは複数の第2伝熱プレートを含み、
     前記第1伝熱プレートの数は前記第2伝熱プレートの数以上である、請求項1または請求項2に記載のプレート式熱交換器。
    The first heat exchange unit includes a plurality of first heat transfer plates,
    The second heat exchange unit includes a plurality of second heat transfer plates,
    The plate-type heat exchanger according to claim 1 or 2, wherein the number of the first heat transfer plates is equal to or greater than the number of the second heat transfer plates.
  4.  複数の前記第1伝熱プレートの各々は、前記第1流体または前記第2流体を流通させるための通路孔を4つ有し、
     複数の前記第2伝熱プレートの各々は、前記第1流体または前記第3流体を流通させるための通路孔を5つ有している、請求項3に記載のプレート式熱交換器。
    Each of the plurality of first heat transfer plates has four passage holes for circulating the first fluid or the second fluid,
    4. The plate heat exchanger according to claim 3, wherein each of the plurality of second heat transfer plates has five passage holes through which the first fluid or the third fluid flows.
  5.  前記第1流体が流れる前記第2伝熱プレートの前記通路孔は、水平方向において前記第2伝熱プレートの中央に位置し、かつ鉛直方向の下方に配置された第1通路孔と、前記第1通路孔に対し鉛直方向の上方に配置された第2通路孔とを有している、請求項4に記載のプレート式熱交換器。 The passage hole of the second heat transfer plate through which the first fluid flows is positioned in the center of the second heat transfer plate in the horizontal direction and is disposed below the vertical direction; The plate-type heat exchanger according to claim 4, further comprising a second passage hole disposed vertically above the one passage hole.
  6.  請求項1~請求項5のいずれか1項に記載の前記プレート式熱交換器と、前記プレート式熱交換器に前記第1流体を吐出するための圧縮機とを備える、冷凍サイクル装置。 A refrigeration cycle apparatus comprising: the plate heat exchanger according to any one of claims 1 to 5; and a compressor for discharging the first fluid to the plate heat exchanger.
  7.  前記第1流体および前記第3流体は冷媒を含み、
     前記第2流体は不凍液または水の少なくともいずれか一方を含む、請求項6に記載の冷凍サイクル装置。
    The first fluid and the third fluid include a refrigerant,
    The refrigeration cycle apparatus according to claim 6, wherein the second fluid includes at least one of antifreeze or water.
PCT/JP2016/054134 2016-02-12 2016-02-12 Plate-type heat exchanger and refrigeration cycle device WO2017138145A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/054134 WO2017138145A1 (en) 2016-02-12 2016-02-12 Plate-type heat exchanger and refrigeration cycle device
JP2016563207A JP6177459B1 (en) 2016-02-12 2016-02-12 Plate heat exchanger and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054134 WO2017138145A1 (en) 2016-02-12 2016-02-12 Plate-type heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017138145A1 true WO2017138145A1 (en) 2017-08-17

Family

ID=59559142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054134 WO2017138145A1 (en) 2016-02-12 2016-02-12 Plate-type heat exchanger and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6177459B1 (en)
WO (1) WO2017138145A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210231355A1 (en) * 2018-10-10 2021-07-29 Mitsubishi Electric Corporation Plate heat exchanger and heat pump apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213718A1 (en) * 2014-07-15 2016-01-21 Mahle International Gmbh Heat exchanger
KR102308613B1 (en) * 2020-05-15 2021-10-05 주식회사 동화엔텍 Printed circuit heat exchanger for easy prevention and removal of icing
US20230324128A1 (en) * 2020-07-10 2023-10-12 Hanon Systems Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194487A (en) * 1997-09-26 1999-04-09 Hisaka Works Ltd Plate-type heat exchanger
JP2005527777A (en) * 2002-05-29 2005-09-15 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger device and heat transfer plate
JP2007514124A (en) * 2003-12-10 2007-05-31 スウェップ インターナショナル アクティエボラーグ Plate heat exchanger
WO2009117885A1 (en) * 2008-03-25 2009-10-01 Danfoss Qinbao (Hangzhou) Plate Heat Exchanger Company Limited Heat exchanger assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE514092C2 (en) * 1999-05-20 2001-01-08 Alfa Laval Ab Apparatus for treating a gas
CA2451934C (en) * 2003-12-02 2015-01-13 International Thermal Investments Ltd. Combination diesel/electric heating appliance systems
KR100651642B1 (en) * 2005-09-21 2006-12-06 오철주 System of heat exchanger a board type
US20120291478A1 (en) * 2011-05-20 2012-11-22 Kia Motors Corporation Condenser for vehicle and air conditioning system for vehicle
JP6222042B2 (en) * 2014-05-23 2017-11-01 株式会社デンソー Laminate heat exchanger
EP2952832A1 (en) * 2014-06-06 2015-12-09 Vaillant GmbH Heat pump system with integrated economizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194487A (en) * 1997-09-26 1999-04-09 Hisaka Works Ltd Plate-type heat exchanger
JP2005527777A (en) * 2002-05-29 2005-09-15 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger device and heat transfer plate
JP2007514124A (en) * 2003-12-10 2007-05-31 スウェップ インターナショナル アクティエボラーグ Plate heat exchanger
WO2009117885A1 (en) * 2008-03-25 2009-10-01 Danfoss Qinbao (Hangzhou) Plate Heat Exchanger Company Limited Heat exchanger assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210231355A1 (en) * 2018-10-10 2021-07-29 Mitsubishi Electric Corporation Plate heat exchanger and heat pump apparatus

Also Published As

Publication number Publication date
JP6177459B1 (en) 2017-08-09
JPWO2017138145A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
US7406998B2 (en) Heat storing device
CN108603732B (en) Plate heat exchanger and heat pump type heating and hot water supply system provided with plate heat exchanger
US6640579B2 (en) Laminated heat exchanger and refrigeration cycle
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
US10161687B2 (en) Plate heat exchanger and heat pump outdoor unit
JP6177459B1 (en) Plate heat exchanger and refrigeration cycle equipment
CN102980328B (en) Plate type heat exchanger
WO2021027511A1 (en) Liquid cooling heat sink
JP6735918B2 (en) Plate heat exchanger and heat pump hot water supply system
WO2012176336A1 (en) Plate heater and refrigeration cycle device
JP5819592B2 (en) Plate heat exchanger and heat pump device
JP6138264B2 (en) Laminated header, heat exchanger, and air conditioner
JPWO2019176565A1 (en) Plate heat exchanger, heat pump device including plate heat exchanger, and heat pump cooling and heating hot water supply system including heat pump device
WO2012063355A1 (en) Plate heat exchanger and heat pump device
CN111316057A (en) Multi-fluid heat exchanger
JP2018189352A (en) Heat exchanger
JP5295330B2 (en) Plate heat exchanger and refrigeration air conditioner
JP6554182B2 (en) Heat exchanger having a plurality of stacked plates
JP2013122368A (en) Vehicle heat exchanger
JP4738116B2 (en) Cross flow core plate heat exchanger
JP6716016B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP4879292B2 (en) Plate heat exchanger and refrigeration air conditioner
JP2007085594A5 (en)
JP2009192140A (en) Plate type heat exchanger
KR20140123677A (en) Fluid-fluid heat exchager and heat exchange method using it

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563207

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889847

Country of ref document: EP

Kind code of ref document: A1