JPS6215329A - Carbon fiber - Google Patents

Carbon fiber

Info

Publication number
JPS6215329A
JPS6215329A JP15238885A JP15238885A JPS6215329A JP S6215329 A JPS6215329 A JP S6215329A JP 15238885 A JP15238885 A JP 15238885A JP 15238885 A JP15238885 A JP 15238885A JP S6215329 A JPS6215329 A JP S6215329A
Authority
JP
Japan
Prior art keywords
carbon fiber
weight
filament yarn
resin
acrylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15238885A
Other languages
Japanese (ja)
Inventor
Yoshinori Torii
芳典 鳥居
Hiroshi Ozawa
小沢 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15238885A priority Critical patent/JPS6215329A/en
Publication of JPS6215329A publication Critical patent/JPS6215329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:Carbon fibers, obtained by spinning an aqueous solution of acrylamide polymer, drying the resultant filament yarn at a specific temperature and heat- treating the dried filament yarn at a specific temperature and firing the resultant filament yarn in an inert gas stream. CONSTITUTION:An aqueous solution of a polymer consisting of 70-100wt% acrylamide and 0-30wt% acrylonitrile is spun into a solvent, e.g. methanol, and wound. The resultant filament yarn is dried and heat-treated at <=300 deg.C, fired at 1,000-2,000 deg.C in an inert gas stream while heating normally for 2-10min and then carbonized and partially graphitized to afford the aimed carbon fibers. Preferably, the above-mentioned drying and heat treatment are carried out by first removing adsorbed moisture at 80-120 deg.C, slowly increasing the temperature and finally heating the yarn at 250-300 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化樹脂複合材料、導電性複合材料、繊維
強化コンクリート等に用いるのに好適な炭素繊維に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to carbon fibers suitable for use in fiber-reinforced resin composite materials, conductive composite materials, fiber-reinforced concrete, and the like.

〔従来技術とその問題点〕[Prior art and its problems]

高強度、高弾性率を有する炭素繊維は、樹脂、コンクリ
ート、金属等と複合し、複合材料として最近注目を浴び
ている。特に、樹脂をマトリックスとした炭素繊維複合
材料は、軽量でかつ金属を上回る強度、弾性率を有すこ
とから航空、宇宙材料への応用が進められている。炭素
繊維はポリアクリロニトリルや、ピッチを原料とし紡糸
後、焼成及びグラファイト化を行って作られている。
Carbon fiber, which has high strength and high modulus of elasticity, has recently attracted attention as a composite material that can be combined with resin, concrete, metal, etc. In particular, carbon fiber composite materials with a resin matrix are being applied to aviation and space materials because they are lightweight and have strength and elastic modulus that exceed those of metals. Carbon fiber is made from polyacrylonitrile or pitch, which is spun and then fired and graphitized.

これ等の炭素繊維は、極めてすぐれた強度及び弾性率を
有するが、マトリックスとなる樹脂との界面接着力か弱
(、この為、せん断力が複合材料にかかった湯合、炭素
繊維と樹脂の界面において破壊がおこり易く、本来の炭
素繊維の性質を複合材料に十分付与することが出来ない
欠点があり、炭素繊維の表面処理が種々行われているが
必しも満足すべき結果ではない。
Although these carbon fibers have extremely high strength and elastic modulus, their interfacial adhesion with the matrix resin is weak (for this reason, when shear force is applied to the composite material, the bond between the carbon fiber and the resin is weak). There is a drawback that fractures easily occur at the interface, and the inherent properties of carbon fiber cannot be fully imparted to the composite material. Various surface treatments have been carried out on carbon fiber, but the results are not always satisfactory.

本発明は、前記した従来の炭素繊維と樹脂の界面の接着
性の改善を目的とし、層間せん断強度にすぐれた樹脂複
合材料に好適な新規な炭素繊維を提供することを目的と
する。
The present invention aims to improve the adhesion between the conventional carbon fiber and resin interface described above, and to provide a novel carbon fiber suitable for a resin composite material having excellent interlaminar shear strength.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、アクリルアミド70〜100重量%、アクリ
ロニトリル30〜0重量%の重合体水溶液を紡糸し、乾
燥及び熱処理を300’C以下で行った後、不活性ガス
気流中で1000〜2000℃にて焼成し炭素化及び一
部黒鉛化を行って得られることを特長とする炭素繊維で
あり、驚くべきことに従来のポリアクリロニトリル及び
ピッチを出発原料とした炭素繊維に比し、樹脂複合材料
における層間せん断強度が著しくすぐれ、炭素繊維と樹
脂の界面の接着力が改善されていることが明白であった
In the present invention, an aqueous polymer solution containing 70 to 100% by weight of acrylamide and 30 to 0% by weight of acrylonitrile is spun, dried and heat treated at 300'C or less, and then heated at 1000 to 2000°C in an inert gas stream. It is a carbon fiber that is obtained by firing, carbonizing, and partially graphitizing, and surprisingly, compared to conventional carbon fibers made from polyacrylonitrile and pitch as starting materials, the interlayer in resin composite materials is It was obvious that the shear strength was significantly superior and the adhesive force at the interface between the carbon fiber and the resin was improved.

上記したアクリルアミド、アクリロニトリル重合体は、
アクリルアミドの単独重合体又はアクリルアミド、アク
リロニトリルの共重合体であり、アクリルアミド及びア
クリロニトリルを水溶液中で、過硫酸カリ、過硫酸アン
モニウム等の過硫酸塩類、アゾビス(4−シアノペンタ
ノイック酸)、アゾビス(2−アミノプロパン)塩酸塩
等の水溶性アゾニトリル類、過酸化水素等の水溶性過酸
化物類等のラジカル開始剤の存在下において容易に重合
体を得ることが出来る。又、この場合、反応速度や重合
変音制御する為、還元剤を併用しても良い。アクリロニ
トリルの含有量が全単量体中の30重量%乞こえると均
一な重合体を得ることが困難であり、本発明には不適当
である。アクリロニ) IJルの含有量は0〜20重量
%が特に好ましい。
The acrylamide and acrylonitrile polymers mentioned above are
It is a homopolymer of acrylamide or a copolymer of acrylamide and acrylonitrile. Acrylamide and acrylonitrile are mixed in an aqueous solution with persulfates such as potassium persulfate and ammonium persulfate, azobis(4-cyanopentanoic acid), and azobis(2-cyanopentanoic acid). The polymer can be easily obtained in the presence of a radical initiator such as a water-soluble azonitrile such as (aminopropane) hydrochloride or a water-soluble peroxide such as hydrogen peroxide. In this case, a reducing agent may also be used in order to control the reaction rate and polymerization sound. If the content of acrylonitrile exceeds 30% by weight of the total monomers, it will be difficult to obtain a uniform polymer, and this is inappropriate for the present invention. The content of acrylonitrile (IJ) is particularly preferably 0 to 20% by weight.

上記の重合体の分子量は、重合温度、水の量、重合開始
剤の種類及び量に依存するが、本発明に用いる重合体の
分子量は、重量平均分子量で5万〜200万であること
が望ましい。
The molecular weight of the above polymer depends on the polymerization temperature, the amount of water, and the type and amount of the polymerization initiator, but the weight average molecular weight of the polymer used in the present invention is preferably 50,000 to 2,000,000. desirable.

重合体は、モノマーを高濃度で重合した場合にはゲル状
を呈するが、必要な水を加えれば、紡糸可能な水溶液と
することが出来る。
When the monomers are polymerized at a high concentration, the polymer exhibits a gel-like appearance, but by adding the necessary water, it can be made into an aqueous solution that can be spun.

紡糸は通常50〜1000μの径のノズルから水溶液を
押しだし、水分を除去することによって達成され、その
方法は特に限定されるものではないが、例えばメタノー
ル、エタノール、イソプロパツール、テトラヒドロフラ
ン、ジメチルホルムアミド、ジメチルアセトアミド、ア
セトン等水に可溶でかつ、重合体を溶解しない溶媒中に
重合体水溶液をノズルから押しだし、ひきとることによ
って容易に行うことが出来る。この際重合体水溶液中に
食塩、硫酸ソーダ等の電解質を包含させたり、相分離?
生じない程度に溶媒を含有させても差し支えない。
Spinning is usually accomplished by extruding an aqueous solution through a nozzle with a diameter of 50 to 1000 μ to remove moisture, and the method is not particularly limited, but examples include methanol, ethanol, isopropanol, tetrahydrofuran, dimethylformamide, This can be easily carried out by forcing an aqueous polymer solution out of a nozzle into a water-soluble solvent such as dimethylacetamide or acetone, which does not dissolve the polymer, and drawing it out. At this time, do you incorporate electrolytes such as salt or sodium sulfate into the aqueous polymer solution or phase separate?
There is no problem even if the solvent is contained to such an extent that it does not occur.

紡糸された重合体はハンドリング可能な状態まで水及び
溶媒を乾燥除去し、ボビンに巻きとり、次に300℃以
下で加熱する。この加熱工程において、吸着水分は除去
されると共に、脱水反応によって環化が行われる。環化
反応は、空気中でも、不活性ガス中でも、又真空下にお
いても進行する。
The spun polymer is dried to remove water and solvent until it can be handled, wound onto a bobbin, and then heated at 300° C. or lower. In this heating step, adsorbed water is removed and cyclization is performed by a dehydration reaction. The cyclization reaction proceeds in air, in an inert gas, or under vacuum.

この加熱は、80〜120℃で吸着水分音除去し、徐々
に昇温し、最終的に250〜600℃に加熱することが
好ましい。この処理工程の時間は、アミド基のカルボニ
ルの赤外吸収スペクトルの減少によってモニターされ、
アミド基の吸収量が初期(加熱前)の30%以下となる
ことが望ましい。
It is preferable that this heating is carried out at 80 to 120°C to remove the sound of adsorbed water, gradually raising the temperature, and finally heating to 250 to 600°C. The time of this treatment step is monitored by the decrease in the infrared absorption spectrum of the carbonyl of the amide group,
It is desirable that the absorption amount of amide groups is 30% or less of the initial value (before heating).

上記の加熱工程の後、1000〜2000℃において不
活性ガス気流中で焼成を行う。上記の加熱工程を行わな
い場合又は不十分な場合には、繊維が焼成したり、或い
は極めて強度の低い繊維しか得られない。本焼成過程に
おいて炭化が進行し、又一部黒鉛化が行われるものと考
えられる。通常この間の加熱時間は2〜10分であり、
更に黒鉛化を進める為2000〜3000℃において不
活性ガス中で加熱を行ってもよい。黒鉛化を進めると弾
性率は向上するが、強度は若干低下する傾向にあり、使
用目的に応じ焼成温度及び焼成時間を適宜選択すること
が出来る。
After the above heating step, firing is performed at 1000 to 2000°C in an inert gas stream. If the above heating step is not performed or is insufficient, the fibers will be burned or only fibers with extremely low strength will be obtained. It is thought that carbonization progresses and some graphitization occurs during the main firing process. Usually, the heating time during this period is 2 to 10 minutes,
Furthermore, in order to advance graphitization, heating may be performed in an inert gas at 2000 to 3000°C. As graphitization progresses, the elastic modulus improves, but the strength tends to decrease slightly, and the firing temperature and firing time can be appropriately selected depending on the purpose of use.

得られる繊維は通常5〜20μ径のフィラメントであり
、実用に際しては、1000以上のノズルから同時に紡
糸し、加熱処理及び焼成を行ってフィラメントの束(ロ
ービングという)として製造する。フィラメントのバラ
けを防ぐ為、少量のエポキシ樹脂等により集束して巻き
とることが一般的である。
The resulting fibers are usually filaments with a diameter of 5 to 20 μm, and in practical use, they are produced as a bundle of filaments (referred to as rovings) by simultaneously spinning from 1000 or more nozzles, heating them, and firing them. In order to prevent the filament from coming apart, it is common to bundle it with a small amount of epoxy resin and then wind it.

上記した本発明の炭素繊維は、ロービング状態又はロー
ビングを織って織布となし、エポキシ樹脂、イミド樹脂
等の熱硬化樹脂やポリカーボネート樹脂、ポリアミド樹
脂、ポリエステル樹脂、熱可塑ポリイミド樹脂、ポリフ
ェニン/スルフィド樹脂、ポリスルフォン樹脂、ポリエ
ーテルスルフォン樹脂、ポリエーテルエーテルケトン樹
脂等の熱可塑性樹脂を含浸せしめ、加熱成形することに
よって樹脂複合材料として用いられる。
The above-mentioned carbon fibers of the present invention can be in a roving state or woven into a woven fabric by weaving rovings, and can be made from thermosetting resins such as epoxy resins and imide resins, polycarbonate resins, polyamide resins, polyester resins, thermoplastic polyimide resins, and polyphenylene/sulfide resins. It is used as a resin composite material by impregnating it with a thermoplastic resin such as polysulfone resin, polyether sulfone resin, polyether ether ketone resin, etc., and thermoforming it.

上記の樹脂複合材料において、本発明の炭素繊維は樹脂
との接着性が改善され、層間せん断強度においてすぐれ
た結果を示し、樹脂複合材料の信頼性を著しく向上する
ことが出来る。
In the above-mentioned resin composite material, the carbon fiber of the present invention has improved adhesion with the resin, shows excellent results in interlaminar shear strength, and can significantly improve the reliability of the resin composite material.

又、本発明の炭素繊維は、切断したチョップトストラン
ド状態で樹脂と混合し、射出成形して用いることも可能
である。
Further, the carbon fiber of the present invention can also be used by mixing the chopped strand with a resin and injection molding.

以下、本発明の実施例を具体的に説明する。Examples of the present invention will be specifically described below.

〔実施例〕〔Example〕

実施例1 アクリルアミド100重量部、イオン交換水1000重
量部、過硫酸アンモニウム0.1重量部を反応器に仕込
み、液中に窒素ガスを通人しながら60℃で5時間加熱
混合し、更にイオン交換水1400重量部を加えて希釈
しポリアクリルアミド重合体水溶液を得た。
Example 1 100 parts by weight of acrylamide, 1000 parts by weight of ion-exchanged water, and 0.1 part by weight of ammonium persulfate were charged into a reactor, heated and mixed at 60°C for 5 hours while passing nitrogen gas through the liquid, and further ion-exchanged. The mixture was diluted by adding 1,400 parts by weight of water to obtain an aqueous polyacrylamide polymer solution.

上記ポリアクリルアミド重合体水溶液Y、0.5m径の
ノズルからメタノール中に押し出し、メタノール中から
線速10m/分でひきだしながら、80°Cの乾燥ゾー
ンを通過させてボビンにまきあげて紡糸を行った。
The above polyacrylamide polymer aqueous solution Y was extruded into methanol through a nozzle with a diameter of 0.5 m, and while being drawn out from the methanol at a linear speed of 10 m/min, it was passed through a drying zone at 80 °C and wound up onto a bobbin to perform spinning. .

次にボビンから上記の原糸を(りだし、第1ゾーン80
℃、第2ゾーン120℃、第3ゾーン200℃、第4ゾ
ーン270℃の乾燥ゾーンを通過させた。
Next, take out the above yarn from the bobbin and
The sample was passed through drying zones of 120°C in the second zone, 200°C in the third zone, and 270°C in the fourth zone.

各ゾーンの滞留時間は第1ゾーン3分、第2ゾーン5分
、第3ゾーン6分、第4ゾーン3分とした。
The residence time in each zone was 3 minutes in the first zone, 5 minutes in the second zone, 6 minutes in the third zone, and 3 minutes in the fourth zone.

次に、上記の熱処理した糸を、アルゴンガス気流中で1
500℃で3分、2000℃で5分焼成し本発明の直径
11μの炭素繊維(1)を得た。
Next, the heat-treated yarn was heated in an argon gas stream for 1 hour.
The carbon fibers (1) of the present invention having a diameter of 11 μm were obtained by firing at 500° C. for 3 minutes and at 2000° C. for 5 minutes.

実施例2 アクリルアミド80重量部、アクリロニトリル20重量
部、イオン交換水1000重量部、アゾビス(4−シア
ノペンタノイック酸0.2重量部’&反応器中に仕込み
、液中に窒素ガスを通人しながら60℃で7時間加熱混
合し、更にイオン交換水1400F4加えて希釈しアク
リルアミドアクリロニトリル共重合体水溶液を得た。
Example 2 80 parts by weight of acrylamide, 20 parts by weight of acrylonitrile, 1000 parts by weight of ion-exchanged water, and 0.2 parts by weight of azobis (4-cyanopentanoic acid) were charged into a reactor and nitrogen gas was passed through the liquid. While heating and mixing at 60° C. for 7 hours, the mixture was further diluted by adding 1400F4 ion-exchanged water to obtain an aqueous solution of acrylamide acrylonitrile copolymer.

上記の共重合体水溶液を実施例1と同様な方法で紡糸、
加熱処理及び焼成して本発明の炭素繊維(n)を得た。
Spinning the above copolymer aqueous solution in the same manner as in Example 1,
The carbon fiber (n) of the present invention was obtained by heat treatment and firing.

評価例1 実施例1及び2で得た本発明の炭素繊維(I)及び(I
I]を各々6000フイラメントづつ、フェノキシ樹脂
の1重量%メチルエチルケトン溶液に浸漬し乾燥してロ
ービングを得た。
Evaluation Example 1 Carbon fibers (I) and (I) of the present invention obtained in Examples 1 and 2
6,000 filaments of each were immersed in a 1% by weight solution of phenoxy resin in methyl ethyl ketone and dried to obtain rovings.

次にエポキシ樹脂エビコー) 1001 (シェル化学
社製商品名)100重量部、メチレンジアニリン200
重量部、ジメチルアミノフェノール10重量部、及びア
セトン800重景部の溶液中にロービングを浸漬し、テ
フロン製の直径100uのドラムにトラバースをかけな
がらまきとり、60℃で減圧乾燥した後、切り開いて巾
150m、長さ31411Mの一方向性プリプレグを得
た。各々のプリプレグの炭素繊維含有量は61容積%及
び59容積%の範囲にあった。
Next, epoxy resin Ebiko) 1001 (trade name manufactured by Shell Chemical Co., Ltd.) 100 parts by weight, methylene dianiline 200
The roving was immersed in a solution of 10 parts by weight, 10 parts by weight of dimethylaminophenol, and 800 parts by weight of acetone, rolled up on a Teflon drum with a diameter of 100 u while traversing, dried under reduced pressure at 60°C, and then cut open. A unidirectional prepreg with a width of 150 m and a length of 31411 m was obtained. The carbon fiber content of each prepreg ranged between 61% and 59% by volume.

上記の一方向性プリプレグを8枚積層し、真空バッグに
封入後、オートクレーブで8に4/−の圧力下170℃
4時間加熱加圧成形し、各一方向性複合材料試験片(1
)及び(11)を得た。
8 sheets of the above unidirectional prepreg were laminated, sealed in a vacuum bag, and then autoclaved at 170°C under a pressure of 8 to 4/-.
Each unidirectional composite material test piece (1
) and (11) were obtained.

比較評価例1 ポリアクリロニトリル系炭素繊維(フィラメント径11
μ)を評価例1と同様にしてローピン湾得た。次に評価
例1と全く同様な方法で一方向性プリプレグの製造なら
びに積層成形し、比較評価測用一方向性複合材料試験片
(III)を得た。尚、プリプレグの炭素繊維含有量は
61容積%であった。
Comparative evaluation example 1 Polyacrylonitrile carbon fiber (filament diameter 11
μ) was obtained in the same manner as in Evaluation Example 1. Next, a unidirectional prepreg was manufactured and laminated in the same manner as in Evaluation Example 1 to obtain a unidirectional composite material test piece (III) for comparative evaluation. Note that the carbon fiber content of the prepreg was 61% by volume.

評価例2 評価例1で得た本発明の炭素繊維(Il及び(I[)を
用いた各ロービングを、ポリカーボネート樹脂の10%
塩化メチレン溶液に浸漬し、評価例1と同様な方法で一
方向性プリプレグを得た。次に上記の一方向性プリプレ
グ8枚と50μのポリカーボネートフィルム9枚とを交
互に積層し、500℃に加熱した平板金型に挿入し70
に9/−の圧力で5分間加圧し、金型な130°Cに冷
却後説型して、各一方向性複合材料試験片(IV)及び
(Vl ’に得た。
Evaluation Example 2 Each roving using the carbon fibers (Il and (I[) of the present invention obtained in Evaluation Example 1) was mixed with 10% of polycarbonate resin.
A unidirectional prepreg was obtained by immersing it in a methylene chloride solution in the same manner as in Evaluation Example 1. Next, 8 sheets of the above-mentioned unidirectional prepreg and 9 sheets of 50 μm polycarbonate film were alternately laminated and inserted into a flat plate mold heated to 500°C.
The specimens were pressurized at a pressure of 9/- for 5 minutes, cooled to 130°C, and then molded to obtain unidirectional composite material specimens (IV) and (Vl').

各試験片の炭素繊維含有量は58容量%及び57容量%
であった。
The carbon fiber content of each specimen was 58% by volume and 57% by volume.
Met.

比較評価例2 比較評価例、で作成したポリアクリロニトリル系炭素繊
維ロービングを用い評価例2と全(同様な方法で一方向
性プリプルグの製造、積層成形を行って比較評価測用一
方向性複合材料試験片、倒)を得た。尚、試験片の炭素
繊維含有量は58容積%であった。
Comparative Evaluation Example 2 Using the polyacrylonitrile-based carbon fiber roving prepared in Comparative Evaluation Example, a unidirectional composite material for comparison evaluation was prepared using the same method as Evaluation Example 2 to manufacture unidirectional pre-pulg and laminated molding. A test piece was obtained. The carbon fiber content of the test piece was 58% by volume.

各試験片の評価 各一方向性複合材料試験片(11〜(Vo暑用いて、常
温における曲げ強度、曲げ弾性率及び層間せん断強変音
測定した。その結果を表1に示す。
Evaluation of each test piece Using each unidirectional composite material test piece (11-(Vo), the bending strength, bending elastic modulus, and interlaminar shear intensity sound at room temperature were measured. The results are shown in Table 1.

表1 〔発明の効果〕 曲げ強度及び曲げ弾性率に関しては、本発明の水側と比
較例の間に差は見られないが、層間せん断強度において
は、明かに本発明の炭素繊維を用いた試験片(I)〜(
財)は、優れた結果を示した。
Table 1 [Effect of the invention] Regarding bending strength and bending elastic modulus, no difference is observed between the water side of the present invention and the comparative example, but in terms of interlaminar shear strength, it is clear that the carbon fibers of the present invention Test piece (I) ~ (
) showed excellent results.

Claims (1)

【特許請求の範囲】[Claims] (1)アクリルアミド70〜100重量%、アクリロニ
トリル30〜0重量%からなる重合体の水溶液を紡糸し
、乾燥及び熱処理を300℃以下の温度で行った後、不
活性ガス気流中で1000〜2000℃にて焼成し、炭
素化及び一部黒鉛化を行って得られることを特長とする
炭素繊維。
(1) An aqueous solution of a polymer consisting of 70 to 100% by weight of acrylamide and 30 to 0% by weight of acrylonitrile is spun, dried and heat treated at a temperature below 300°C, and then heated to 1000 to 2000°C in an inert gas stream. A carbon fiber characterized by being obtained by firing, carbonizing and partially graphitizing.
JP15238885A 1985-07-12 1985-07-12 Carbon fiber Pending JPS6215329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15238885A JPS6215329A (en) 1985-07-12 1985-07-12 Carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15238885A JPS6215329A (en) 1985-07-12 1985-07-12 Carbon fiber

Publications (1)

Publication Number Publication Date
JPS6215329A true JPS6215329A (en) 1987-01-23

Family

ID=15539423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15238885A Pending JPS6215329A (en) 1985-07-12 1985-07-12 Carbon fiber

Country Status (1)

Country Link
JP (1) JPS6215329A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590134B1 (en) 1998-12-11 2003-07-08 Johnson & Johnson Kabushiki Kaisha Pad, production method therefor, and emergency adhesive plaster using the pad
JP2018090791A (en) * 2016-11-28 2018-06-14 株式会社豊田中央研究所 Carbon material precursor and method for producing carbon material using the same
WO2018216517A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
WO2018216518A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
JP2019167271A (en) * 2018-03-23 2019-10-03 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP2019172950A (en) * 2017-07-27 2019-10-10 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing same, and method for producing carbon material using same
JP2019172800A (en) * 2018-03-28 2019-10-10 株式会社豊田中央研究所 Carbon material precursor composition, method for producing same, and method for producing carbon material using same
JP2019172801A (en) * 2018-03-28 2019-10-10 株式会社豊田中央研究所 Carbon material precursor composition, method for producing same, and method for producing carbon material using same
JP2019203107A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same
JP2020117634A (en) * 2019-01-24 2020-08-06 株式会社豊田中央研究所 Carbon material precursor molding, method for producing the same, and method for producing carbon material using the same
JP2020117630A (en) * 2019-01-24 2020-08-06 株式会社豊田中央研究所 Carbon material precursor and method for producing carbon material using the same
CN112522814A (en) * 2019-09-19 2021-03-19 丰田自动车株式会社 Flame-resistant fiber, method for producing same, and method for producing carbon fiber
JP2021046630A (en) * 2019-09-19 2021-03-25 株式会社豊田中央研究所 Flame-resistant fiber and method for producing carbon fiber
JP2021046631A (en) * 2019-09-19 2021-03-25 株式会社豊田中央研究所 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
JP2022085514A (en) * 2020-11-27 2022-06-08 株式会社豊田中央研究所 Carbon fiber precursor fiber bundle, flame resistant fiber bundle, method for producing them and method for producing carbon fiber bundle
JP2022143757A (en) * 2021-03-18 2022-10-03 株式会社豊田中央研究所 Carbon fiber and manufacturing method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590134B1 (en) 1998-12-11 2003-07-08 Johnson & Johnson Kabushiki Kaisha Pad, production method therefor, and emergency adhesive plaster using the pad
JP2018090791A (en) * 2016-11-28 2018-06-14 株式会社豊田中央研究所 Carbon material precursor and method for producing carbon material using the same
KR20200010173A (en) * 2017-05-24 2020-01-30 미츠비시 가스 가가쿠 가부시키가이샤 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
WO2018216518A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
US11466132B2 (en) 2017-05-24 2022-10-11 Mitsubishi Gas Chemical Company, Inc. Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
JPWO2018216518A1 (en) * 2017-05-24 2020-03-26 三菱瓦斯化学株式会社 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
JPWO2018216517A1 (en) * 2017-05-24 2020-05-07 三菱瓦斯化学株式会社 Sheet made of carbon fiber reinforced thermoplastic resin and method for producing the sheet
WO2018216517A1 (en) * 2017-05-24 2018-11-29 三菱瓦斯化学株式会社 Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
US11498310B2 (en) 2017-05-24 2022-11-15 Mitsubishi Gas Chemical Company, Inc. Sheet formed from carbon fiber reinforced thermoplastic resin, and production method of said sheet
JP2019172950A (en) * 2017-07-27 2019-10-10 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing same, and method for producing carbon material using same
JP2019167271A (en) * 2018-03-23 2019-10-03 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using these
JP2019172800A (en) * 2018-03-28 2019-10-10 株式会社豊田中央研究所 Carbon material precursor composition, method for producing same, and method for producing carbon material using same
JP2019172801A (en) * 2018-03-28 2019-10-10 株式会社豊田中央研究所 Carbon material precursor composition, method for producing same, and method for producing carbon material using same
JP2019203107A (en) * 2018-05-25 2019-11-28 株式会社豊田中央研究所 Carbon material precursor, carbon material precursor composition containing the same, and method for producing carbon material using the same
JP2020117634A (en) * 2019-01-24 2020-08-06 株式会社豊田中央研究所 Carbon material precursor molding, method for producing the same, and method for producing carbon material using the same
JP2020117630A (en) * 2019-01-24 2020-08-06 株式会社豊田中央研究所 Carbon material precursor and method for producing carbon material using the same
JP2021046630A (en) * 2019-09-19 2021-03-25 株式会社豊田中央研究所 Flame-resistant fiber and method for producing carbon fiber
JP2021046631A (en) * 2019-09-19 2021-03-25 株式会社豊田中央研究所 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
JP2021046629A (en) * 2019-09-19 2021-03-25 株式会社豊田中央研究所 Flame-resistant fiber, method for producing the same, and method for producing carbon fiber
CN112522814A (en) * 2019-09-19 2021-03-19 丰田自动车株式会社 Flame-resistant fiber, method for producing same, and method for producing carbon fiber
CN112522814B (en) * 2019-09-19 2022-12-20 丰田自动车株式会社 Flame-resistant fiber, method for producing same, and method for producing carbon fiber
US11702769B2 (en) 2019-09-19 2023-07-18 Toyota Jidosha Kabushiki Kaisha Stabilized fiber, method of producing the same, and method of producing carbon fiber
JP2022085514A (en) * 2020-11-27 2022-06-08 株式会社豊田中央研究所 Carbon fiber precursor fiber bundle, flame resistant fiber bundle, method for producing them and method for producing carbon fiber bundle
JP2022143757A (en) * 2021-03-18 2022-10-03 株式会社豊田中央研究所 Carbon fiber and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS6215329A (en) Carbon fiber
CN101316956B (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
KR102507899B1 (en) Densification of polyacrylonitrile fibers
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
JP6546606B2 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand and method for producing them
KR102528151B1 (en) Preparation of medium modulus carbon fibers
JP2003073932A (en) Carbon fiber
WO2013050779A1 (en) Formation of carbon nanotube-enhanced fibers and carbon nanotube-enhanced hybrid structures
CN111139554A (en) High-permeability polyacrylonitrile-based carbon fiber and preparation method thereof
JP4023226B2 (en) Carbon fiber bundle processing method
US4581437A (en) Method of treating filaments of poly(p-phenylene-trans-benzobisthiazole) or poly(p-phenylene-cis-benzobisoxazole)
US4526770A (en) Method of producing carbon fiber and product thereof
US4925604A (en) Process for preparing a carbon fiber of high strength
Zhang et al. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4
US3708326A (en) Stabilization of acrylic fibers and films
US3681023A (en) Production of carbon fibers
EP0252985A1 (en) Carbon fiber for composite materials
JPH02242920A (en) Carbon fiber containing composite metal
KR102016272B1 (en) Carbon material and its manufacturing method
JPS6385167A (en) Surface modified carbon fiber and its production
JPH0583642B2 (en)
GB2084975A (en) Carbon fibres
CA1182957A (en) Thermal stabilization of acrylonitrile copolymer fibers
JPH0726415A (en) Polybenzobisoxazole fiber having improved adhesiveness and its production
JP2546810B2 (en) Carbon fiber coated with polycyanoaryl ether and method for producing the same