JPS62153118A - Production of easily sintering alumina powder - Google Patents

Production of easily sintering alumina powder

Info

Publication number
JPS62153118A
JPS62153118A JP60295687A JP29568785A JPS62153118A JP S62153118 A JPS62153118 A JP S62153118A JP 60295687 A JP60295687 A JP 60295687A JP 29568785 A JP29568785 A JP 29568785A JP S62153118 A JPS62153118 A JP S62153118A
Authority
JP
Japan
Prior art keywords
alumina
aluminum
alumina powder
powder
aluminum salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60295687A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
興一 山田
Shinro Yoshihara
吉原 真郎
Takuo Harato
原戸 卓雄
Saburo Nabeshima
鍋島 三郎
Toshiki Furubayashi
俊樹 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP60295687A priority Critical patent/JPS62153118A/en
Publication of JPS62153118A publication Critical patent/JPS62153118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce easily sintering alumina powder having small particle diameter at a low cost, by adding alpha-alumina powder to an aluminum salt or hydrated alumina which gives alumina by thermal decomposition, calcining the mixture and pulverizing the product. CONSTITUTION:A starting raw material for alumina is added with alpha-alumina powder and the mixture is calcined and pulverized to obtain the objective alumina powder. The starting raw material used in the above process is selected from an aluminum salt giving alumina by thermal decomposition (e.g. ammonium alum), a hydrated alumina obtained by the hydrolysis of an organoaluminum compound such as alkylaluminum, a hydrated alumina produced by the spark discharge of aluminum in water and a hydrated alumina produced by reacting an aqueous solution of sodium aluminate with ethylene chlorohydrin. The amount of the alpha-alumina is preferably 0.1-50pts.wt. per 100pts.wt. of the starting raw material and the particle diameter of the powder is preferably <=1.0mum.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はアルミナ粉末の製造法に関し、更に詳細には焼
成コストが低く、−欠粒子が微細でかつ、粉砕後の粒径
小さい易焼結性アルミナ粉末の製造法に関するものであ
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing alumina powder, and more specifically to a method for producing alumina powder, which is easy to sinter, has low firing costs, has fine particles, and has a small particle size after pulverization. The present invention relates to a method for producing alumina powder.

(従来の技術) アルミナは化学的に安定で融点が高く、機械的強度、硬
度、電気絶縁性などの物理的性質にも優れているため、
セラミック材料や研摩剤、充堰剤として汎用されている
。アルミナ焼結体の特性は原料であるアルミナ粉末の結
晶形、純度、粒度などの違いにより大きく異なるが、近
年省エネルギーの見地から、より低温で焼結密度の高い
アルミナ焼結体が得られるアルミナ粉末が要求されてい
る。
(Conventional technology) Alumina is chemically stable, has a high melting point, and has excellent physical properties such as mechanical strength, hardness, and electrical insulation.
It is widely used as a ceramic material, abrasive, and filler. The characteristics of alumina sintered bodies vary greatly depending on the crystal shape, purity, particle size, etc. of the raw material alumina powder, but in recent years, from the perspective of energy saving, alumina sintered bodies with high sintered density can be obtained from alumina powder at lower temperatures. is required.

このような易焼結性アルミナ粉末の製造方法としては、
従来有機アルミニウムを加水分解したアルミナ水和物を
約1100℃以上の温度で焼成した後粉砕する方法やア
ンモニウムミョウバン、硫酸アルミニウム、アンモニウ
ムアルミニウム炭酸塩等を熱分解してα−アルミナに転
移させた後粉砕する方法等が知られている。しかし得ら
れるアルミナ水和物は極めて微粒で、粒度分布はシャー
プであるが、転移に高温度での焼成を必要とするため、
焼成時に一次粒子の結晶成長が生起し、結果として得ら
れるアルミナ粉末の粒径が大きくなるという欠点を有す
る。
As a method for producing such easily sinterable alumina powder,
Conventional methods include a method in which alumina hydrate obtained by hydrolyzing organic aluminum is calcined at a temperature of about 1,100°C or higher, and then pulverized, or a method in which ammonium alum, aluminum sulfate, ammonium aluminum carbonate, etc. is thermally decomposed and transferred to α-alumina. Methods such as pulverization are known. However, although the resulting alumina hydrate has extremely fine particles and a sharp particle size distribution, it requires calcination at high temperatures for transformation.
It has the disadvantage that crystal growth of the primary particles occurs during firing, resulting in an increase in the particle size of the alumina powder obtained.

(発明が解決しようとする問題点) かかる事情下に鑑み、本発明者らは焼成コストが低く、
又粉砕後のアルミナ粒子が微粒でかつ、粒径及び粒形の
ばらつきの少ないα−アルミナ粉末を得るべく鋭意検討
した結果、微粒のα−アルミナ粉末をアルミニウム塩中
又は加水分解後のアルミナ水和物中に含有させておくこ
とにより上記目的が満足されることを見い出し、本発明
方法を完成するに至った。
(Problems to be Solved by the Invention) In view of the above circumstances, the present inventors have developed a method with low firing cost.
In addition, as a result of intensive studies to obtain α-alumina powder with fine alumina particles after pulverization and less variation in particle size and shape, we found that fine α-alumina powder was mixed in aluminum salt or after hydrolysis of alumina hydrate. The inventors have discovered that the above object can be satisfied by incorporating it into a product, and have completed the method of the present invention.

(問題点を解決するための手段) すなわち本発明は、熱分解によってアルミナとなるアル
ミニウム塩、有機アルミニウム化合物を加水分解して得
られるアルミナ水和物、水中でアルミニウムを火花放電
して得られるアルミナ水和物、及びアルミン酸ソーダ水
溶液とエチレンクロルヒドリンを反応させて得られるア
ルミナ水和物よりなる群から選ばれた少な(とも1種の
アルミニウム塩或いはアルミナ水和物を焼成、粉砕し、
アルミナ粉末を得るに際し、該アルミニウム塩或いはア
ルミナ水和物に予めα−アルミナ粉末を添加、存在せし
めた後、焼成し、粉砕することを特徴とする易焼結性ア
ルミナ粉末の製造法を提供するにある。
(Means for Solving the Problems) That is, the present invention provides an aluminum salt that becomes alumina through thermal decomposition, an alumina hydrate obtained by hydrolyzing an organic aluminum compound, and an alumina obtained by spark discharge of aluminum in water. hydrate, and alumina hydrate obtained by reacting an aqueous solution of sodium aluminate with ethylene chlorohydrin.
To provide a method for producing easily sinterable alumina powder, which comprises adding α-alumina powder to the aluminum salt or alumina hydrate in advance to make it present, followed by firing and pulverizing the alumina powder. It is in.

以下、本発明方法を更に詳細に説明する。The method of the present invention will be explained in more detail below.

本発明方法の実施に際し使用するアルミナ出発原料とし
ては、熱分解によってアルミナとなるアルミニウム塩、
例えばアンモニウムミョウバン、硫酸アルミニウム、ア
ンモニウムアルミニウム炭酸塩等が挙げられる。又アル
ミナ水和物としてはアルキルアルミニウム、アルコキシ
アルミニウム等の有機アルミニウム化合物を加水分解し
たもの、水中でアルミニウムベレットを火花放電させて
得たアルミナ水和物或いはアルミン酸ソーダ水溶液と有
機酸のエチレンクロルヒドリンを反応させて微粒のアル
ミナ水和物を析出させ、50℃以上の温度で熟成して擬
ベーマイトとしたもの等が挙げられる。
The alumina starting materials used in carrying out the method of the present invention include aluminum salts that become alumina through thermal decomposition;
Examples include ammonium alum, aluminum sulfate, ammonium aluminum carbonate, and the like. Alumina hydrates include those obtained by hydrolyzing organoaluminum compounds such as alkyl aluminum and alkoxy aluminum, alumina hydrates obtained by spark discharge of aluminum pellets in water, or ethylene chlorohydride of an aqueous solution of sodium aluminate and an organic acid. Examples include those in which phosphorus is reacted to precipitate fine alumina hydrate, which is then aged at a temperature of 50° C. or higher to produce pseudo-boehmite.

又、これらアルミニウム塩又はアルミナ水和物に添加す
るα−アルミナ粉末はX線回折でα−アルミナのピーク
が存在するものをいい、好ましくは焼成後のα化率が5
0%以上、好ましくは80%以上のアルミナであればよ
く、これをそのまま、或いは粉砕して平均粒径1μm、
好ましくは0.5μm以下の粉末として用いる。X線回
折にお、いてα−アルミナのピークが見られないアルミ
ナ、或いはアルミナ水和物等を種子として用いる場合に
はα化転移時の焼成温度の低下が見られないとともに粉
砕しても微粒でかつ粒度分布が狭いα−アルミナ粉末を
得ることはできない。
The α-alumina powder added to these aluminum salts or alumina hydrates is one that has an α-alumina peak in X-ray diffraction, and preferably has a α-alumina ratio of 5 after firing.
Any alumina with a content of 0% or more, preferably 80% or more, can be used as it is or by pulverizing it to obtain an alumina with an average particle size of 1 μm.
It is preferably used as a powder of 0.5 μm or less. When using alumina with no α-alumina peak in X-ray diffraction, or alumina hydrate, etc., as seeds, there is no decrease in the firing temperature during α-transformation, and even when crushed, fine particles are obtained. It is not possible to obtain α-alumina powder that is large and has a narrow particle size distribution.

アルミニウム塩やアルミナ水和物に対するα−アル之す
粉末の添加量としては、アルミニウム塩或いはアルミナ
水和物中のアルミナ100重量部に対して001〜50
M571部、好ましくは3〜15重量部の範囲で使用し
、添加方法としてはアルミニウム塩では結晶中にα−ア
ルミナ粉末を含有存在させ、また有機アルミニウム化合
物の加水分解時にα−アルミナ粉末を添加してアルミナ
水和物結晶中にα−アルミナ粉末を含有存在させること
等が好ましい。
The amount of α-aluminum powder added to the aluminum salt or alumina hydrate is 0.001 to 50.0% per 100 parts by weight of alumina in the aluminum salt or alumina hydrate.
M571 parts, preferably in the range of 3 to 15 parts by weight, is used, and the method of addition is to include α-alumina powder in the crystals for aluminum salts, and to add α-alumina powder during hydrolysis of organoaluminum compounds. It is preferable to include α-alumina powder in the alumina hydrate crystal.

該添加量が0.1重量部に満たないと、α−アルミナへ
の転移に高温で長時間を必要とするため焼成コストが高
くなり、又得られるα−アルミナも粒成長を生起し、目
的とする微粒のα−アルミナ粉末を得ることができない
。他方、50重量部を越える場合には添加量に見合う効
果がなく、経済的でないばかりか、種子として添加した
α−アルミナ粉末が凝集、焼結し、目的とする物性のα
−アルミナ粉末を得ることができない。
If the amount added is less than 0.1 part by weight, the conversion to α-alumina requires a long time at high temperature, which increases the firing cost, and the resulting α-alumina also causes grain growth, which can lead to It is not possible to obtain fine-grained α-alumina powder. On the other hand, if the amount exceeds 50 parts by weight, the effect is not commensurate with the amount added, and it is not only uneconomical, but also the α-alumina powder added as seeds will aggregate and sinter, resulting in the α-alumina powder having the desired physical properties.
- Unable to obtain alumina powder.

このようにして得られたα−アルミナ粉末を含有するア
ルミニウム塩又はアルミナ水和物は電気炉、ロータリー
キルン、シャトルキルン、トンネルキルン等を用いて焼
成後、粉砕すればよく、焼成条件は通常1000〜14
00℃の温度で10分〜6時間焼成すればよい。又粉砕
機としては、ジェットミル、ミクロンミル、ボールミル
、振動ミル、メディアミル等を用いればよく、粉砕時間
は粉砕に用いる粉砕機種、粉砕条件、所望の平均粒子径
により異なるので一喪的に決めることはできないが、通
常数分〜数時間粉砕すればよい。
The aluminum salt or alumina hydrate containing α-alumina powder obtained in this way may be fired and then crushed using an electric furnace, rotary kiln, shuttle kiln, tunnel kiln, etc., and the firing conditions are usually 1000~ 14
What is necessary is just to bake at the temperature of 00 degreeC for 10 minutes - 6 hours. Further, as a crusher, a jet mill, a micron mill, a ball mill, a vibration mill, a media mill, etc. may be used, and the crushing time varies depending on the type of crushing machine used for crushing, the crushing conditions, and the desired average particle size, so it is determined on a case-by-case basis. However, it is usually sufficient to grind for several minutes to several hours.

本発明方法を実施することにより何故従来の方法に比較
し、焼成コストが低く、粉砕粒径が小さいα−アルミナ
が得られるのかその理由は詳らかではないが、α〜アル
ミナ粉末を含有するアルミニウム塩又はアルミナ水和物
は焼成によるα化転移促進剤として作用し、α化転移温
度が低下し、結果として一次粒成長及び凝集粒の少ない
α−アルミナ粉末が得られるため、後の粉砕により容易
に微粒化するものと推測される。
Although it is not clear why α-alumina with lower firing cost and smaller pulverized particle size can be obtained by carrying out the method of the present invention than with conventional methods, aluminum salt containing α-alumina powder Alternatively, alumina hydrate acts as a gelatinization transition accelerator during calcination, lowers the gelatinization transition temperature, and as a result, α-alumina powder with less primary grain growth and agglomerated grains can be obtained, making it easier to grind later. It is assumed that the particles become atomized.

(実施例) 以下、実施例により本発明方法を更に詳細に説明するが
、実施例は本発明方法を限定するものではない。
(Examples) Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the Examples are not intended to limit the method of the present invention.

実施例1 試薬の硫酸アルミニウム73.5 gを75gの温水(
100’C)に熔解し、また硫酸アンモニウム14.6
gを100℃の温水25gに′/g解した後、これら2
種の溶液を混合し、続いて攪拌、冷却することによりア
ンモニウムミョウバンの結晶88gを得た。この結晶を
再度100℃の温水100gに溶解した後、析出するア
ンモニウムミョウバン100重量部に対して粒径0.2
μmのα−アルミナ粉末を1重量部添加し、次いで攪拌
、冷却してα−アルミナを含有するアンモニウムミョウ
バンの結晶約80gを得た。得られた結晶をシャトルキ
ルンを用い、空気中1200℃で4時間焼成し、次いで
振動ミルで1時間粉砕した。
Example 1 73.5 g of aluminum sulfate as a reagent was mixed with 75 g of warm water (
100'C) and ammonium sulfate 14.6
g in 25g of hot water at 100℃, then dissolve these 2
By mixing the seed solution, followed by stirring and cooling, 88 g of ammonium alum crystals were obtained. After dissolving this crystal again in 100 g of hot water at 100°C, the particle size was 0.2 with respect to 100 parts by weight of ammonium alum precipitated.
1 part by weight of α-alumina powder of μm was added, followed by stirring and cooling to obtain about 80 g of ammonium alum crystals containing α-alumina. The obtained crystals were calcined in air at 1200° C. for 4 hours using a shuttle kiln, and then ground for 1 hour using a vibration mill.

得られた粉末は平均粒径が0.3μmで、粒径は均一で
あり、又焼成後の粉体のα化率は93%であった。
The obtained powder had a uniform particle size with an average particle size of 0.3 μm, and the gelatinization rate of the powder after firing was 93%.

このようにして得られたα−アルミナ粉末をラバープレ
スを用いてIt/c+Jの圧力で20■嘗φ×5flの
大きさに成形し、1400℃で2時間焼結したところ、
焼結密度3.9 g / cutとなった。
The thus obtained α-alumina powder was molded using a rubber press at a pressure of It/c+J to a size of 20 mmφ x 5 fl, and sintered at 1400°C for 2 hours.
The sintered density was 3.9 g/cut.

比較例1 α−アルミナ粉末を添加しない他は実施例1と同一条件
で結晶化、焼成、粉砕した。このようにして得られたア
ルミナは凝集粒子が多く混じっており、平均粒径は0.
5μmで、粉体のα化率は70%であった。
Comparative Example 1 Crystallization, firing, and pulverization were carried out under the same conditions as in Example 1 except that α-alumina powder was not added. The alumina thus obtained contains many aggregated particles and has an average particle size of 0.
At 5 μm, the gelatinization rate of the powder was 70%.

又実施例1と同一方法で得た成形体を1400℃2時間
焼結した結果、得られた焼結体の焼結体密度は3.3 
g / cutであった。
Furthermore, as a result of sintering the compact obtained by the same method as in Example 1 at 1400°C for 2 hours, the density of the obtained sintered compact was 3.3.
g/cut.

実施例2 試薬の硫酸アルミニウム100gに水90gを加えて加
温、溶解、濾過し、析出した硫酸アルミニウム100重
量部に対して粒径0.2μmのα−アルミナ粉末を1.
5重量部添加した後、冷却してα−アルミナを含む硫酸
アルミニウム結晶を析出させた。
Example 2 90 g of water was added to 100 g of aluminum sulfate as a reagent, heated, dissolved, and filtered, and 1.0 g of α-alumina powder with a particle size of 0.2 μm was added to 100 parts by weight of the precipitated aluminum sulfate.
After adding 5 parts by weight, it was cooled to precipitate aluminum sulfate crystals containing α-alumina.

このようにして得られた結晶をシャトルキルンを用いて
空気中12 Q O”cの温度で4時間焼成し、次いで
振動ミルで1時間粉砕した。
The crystals thus obtained were calcined in air at a temperature of 12 Q O''c for 4 hours using a shuttle kiln and then ground for 1 hour in a vibratory mill.

得られた粉末は平均粒径がO,、’、 p mで、粒径
は均一であり、又焼成後の粉体のα化率は909%であ
った。
The obtained powder had an average particle size of O,,',pm, and the particle size was uniform, and the gelatinization rate of the powder after firing was 909%.

このようにしてfSられたα−アルミナ粉末をラバープ
レスを用いてl t / c+Jの圧力で20−1φ×
51■の大きさに成形し、1400℃で2時間焼結した
ところ、焼結密度3.8 g /ctlとなった。
The α-alumina powder subjected to fS in this way was pressed using a rubber press at a pressure of lt/c+J to 20-1φ×
When molded into a size of 51 cm and sintered at 1400°C for 2 hours, the sintered density was 3.8 g/ctl.

比較例2 α−アルミナ粉末を添加しない他は実施例2と同一条件
で結晶化、焼成、粉砕した。このようにして得られたア
ルミナは凝集粒子が多(混じっており、平均粒径は0.
6μmで、粉体のα化率は60%であった。
Comparative Example 2 Crystallization, firing, and pulverization were carried out under the same conditions as in Example 2 except that α-alumina powder was not added. The alumina thus obtained contains a large number of aggregated particles (mixed) with an average particle size of 0.
At 6 μm, the gelatinization rate of the powder was 60%.

又実施例2と同一方法で得た成形体を1400℃2時間
焼結した結果、得られた焼結体の焼結体密度は3.0 
g / cnfであった。
Furthermore, as a result of sintering the compact obtained by the same method as in Example 2 at 1400°C for 2 hours, the density of the obtained sintered compact was 3.0.
g/cnf.

実施例3 2、0モル濃度の炭酸水素アンモニウム溶液に0.2μ
mの平均粒径を有するα−アルミナを添加した2、 0
モル濃度のアンモニウムミョウバン溶液を滴下し、2.
5%のα−アルミナを含むアンモニウムアルミニウム炭
酸塩を得た。これをシャトルキルンを用いて空気中12
00℃の温度で4時間焼成し、次いで振動ミルで1時間
粉砕した。
Example 3 0.2 μ in 2.0 molar ammonium bicarbonate solution
2,0 with addition of α-alumina having an average particle size of m
Drop the molar ammonium alum solution; 2.
An ammonium aluminum carbonate containing 5% α-alumina was obtained. This is heated in air using a shuttle kiln for 12 hours.
It was calcined at a temperature of 00°C for 4 hours and then ground in a vibrating mill for 1 hour.

得られた粉末は平均粒径が0.4μmで、粒径は均一で
あり、又焼成後の粉体のα化率は90%であった・ このようにして得られたα−アルミナ粉末をラバープレ
スを用いてit/cfflの圧力で20i■φ×5鰭の
大きさに成形し、1400℃で2時間焼結したところ、
焼結密度3.9 g / Cl11となった。
The obtained powder had an average particle size of 0.4 μm, and the particle size was uniform, and the α-alumina powder after firing had a gelatinization rate of 90%. Using a rubber press, it was molded into a size of 20i φ x 5 fins at a pressure of IT/cffl, and sintered at 1400°C for 2 hours.
The sintered density was 3.9 g/Cl11.

比較例3 α−アルミナ粉末を用いない他は実施例3と同一条件で
α−アルミナを得た。このようにして得られたアルミナ
は平均粒径は0.6μmで、粉体のα化率は70%であ
った。
Comparative Example 3 α-alumina was obtained under the same conditions as in Example 3 except that α-alumina powder was not used. The alumina thus obtained had an average particle size of 0.6 μm, and the gelatinization rate of the powder was 70%.

又実施例3と同一方法で得た成形体を1400’C2時
間焼結した結果、得られた焼結体の焼結体密度は3.1
g/cdであった。
Furthermore, as a result of sintering the compact obtained by the same method as in Example 3 at 1400'C for 2 hours, the density of the obtained sintered compact was 3.1.
g/cd.

実施例4 20重量%のアルミニウムイソプロポキシドを混合した
イソプロパツール溶液中に、加水分解生成物であるベー
マイト100重量部に対して0.2μmのα−アルミナ
粉末を5重量部となる如く添加、混合した後アルミニウ
ムイソプロポキシドに対しモル比で10倍の水を加えて
加水分解させ、α−アルミナを含むベーマイトを得た。
Example 4 Into an isopropanol solution containing 20% by weight of aluminum isopropoxide, 5 parts by weight of α-alumina powder of 0.2 μm was added to 100 parts by weight of boehmite, which is a hydrolysis product. After mixing, water was added in a molar ratio of 10 times that of aluminum isopropoxide to cause hydrolysis, thereby obtaining boehmite containing α-alumina.

このベーマイトを乾燥後、シャトルキルンを用いて空気
中1200℃の温度で4時間焼成し、次いで振動ミルで
1時間粉砕した。
After drying, this boehmite was calcined in air at a temperature of 1200° C. for 4 hours using a shuttle kiln, and then ground for 1 hour using a vibration mill.

得られた粉末は平均粒径が0.3μmで、粒径は均一で
あり、又焼成後の粉体のα化率は90%であった。
The obtained powder had an average particle size of 0.3 μm and was uniform in particle size, and the gelatinization rate of the powder after firing was 90%.

このようにして得られたα−アルミナ粉末をラバープレ
スを用いて1t/c−の圧力で20鶴φ×5龍の大きさ
に成形し、1400℃で2時間焼結したところ、焼結密
度3.9g/cn?となった。
The thus obtained α-alumina powder was molded using a rubber press at a pressure of 1 t/c- to a size of 20 cranes φ x 5 dragons, and sintered at 1400°C for 2 hours, resulting in a sintered density of 3.9g/cn? It became.

比較例4 α−アルミナ粉末を添加しない他は実施例4と同一条件
でα−アルミナを得た。得られた粉末の平均粒径は0.
5μmで、α化率は60%であった。
Comparative Example 4 α-alumina was obtained under the same conditions as in Example 4 except that α-alumina powder was not added. The average particle size of the obtained powder was 0.
At 5 μm, the gelatinization rate was 60%.

又実施例4と同一方法で得た成形体を1400”c 2
時間焼結した結果、得られた焼結体の焼結体密度は3.
2 g / craであった。
In addition, a molded body obtained in the same manner as in Example 4 was 1400"c 2
As a result of time sintering, the sintered body density of the obtained sintered body was 3.
It was 2 g/cra.

実施例5 アルミン酸ソーダ溶液(N a 20/A 1203モ
ル比1.2、Af2.03として15g/4)中に予め
0.2μmのα−アルミナ粉末を、析出するアルミナ水
和物100重量部に対して5重量部となる如く添加混合
した後、エチレンクロルヒドリンを2重量部(アルミン
酸ソーダ溶液100重量部に対して)加え、反応温度7
0°Cで2時間保持してアルミナ水和物を得た。このア
ルミナ水和物を乾燥後シャトルキルンを用いて空気中1
200℃の温度で4時間焼成し、次いで振動ミルで1時
間粉砕した。
Example 5 0.2 μm α-alumina powder was precipitated into 100 parts by weight of alumina hydrate in a sodium aluminate solution (N a 20/A 1203 molar ratio 1.2, Af 2.03 15 g/4). 2 parts by weight of ethylene chlorohydrin (relative to 100 parts by weight of the sodium aluminate solution) were added, and the reaction temperature was increased to 7 parts by weight.
Alumina hydrate was obtained by holding at 0°C for 2 hours. After drying this alumina hydrate, it was immersed in air using a shuttle kiln.
It was calcined at a temperature of 200° C. for 4 hours and then ground in a vibrating mill for 1 hour.

得られた粉末は平均粒径が0.4μmで、粒径は均一で
あり、又焼成後の粉体のα化率は90%であった。
The obtained powder had an average particle size of 0.4 μm and was uniform in particle size, and the gelatinization rate of the powder after firing was 90%.

このようにして得られたα−アルミナ粉末をラバープレ
スを用いてlt/calの圧力で20mmφ×5璽lの
大きさに成形し、1400°Cで2時間焼結したところ
、焼結密度3.9g/cfflとなった。
The thus obtained α-alumina powder was molded into a size of 20 mmφ x 5 squares using a rubber press at a pressure of lt/cal and sintered at 1400°C for 2 hours, resulting in a sintered density of 3. It became .9g/cffl.

比較例5 α−アルミナ粉末を添加しない他は実施例5と同一条件
でα−アルミナを得た。得られた粉末の”c 2時間焼
結した結果、得られた焼結体の焼結体密度は3.0g/
−であった。
Comparative Example 5 α-alumina was obtained under the same conditions as in Example 5 except that α-alumina powder was not added. As a result of sintering the obtained powder for 2 hours, the density of the obtained sintered body was 3.0 g/
-It was.

(発明の効果) 以上詳述した本発明方法によれば、本発明において特定
したアルミニウム塩或いはアルミナ水和物に予めα−ア
ルミナ粉末を添加存在せしめた後境成、粉砕するという
簡単な方法で焼成コストが低く、−次位子が微細でかつ
、粉砕後の粒径が小さく、又粒径のばらつきも少ない易
焼結性のα−アルミナ粉末の提供を可能とし、かつ該粉
末を焼結体用原料として使用する場合には著しく焼結温
度の低下を可能とするもので、その工業的価値は頗る大
なるものである。
(Effects of the Invention) According to the method of the present invention detailed above, α-alumina powder is preliminarily added to the aluminum salt or alumina hydrate specified in the present invention, and then preformed and pulverized. It is possible to provide α-alumina powder that is low in firing cost, has fine particles, has a small particle size after pulverization, and is easy to sinter with little variation in particle size, and can be used to produce a sintered body of the powder. When used as a raw material, it is possible to significantly lower the sintering temperature, and its industrial value is enormous.

Claims (1)

【特許請求の範囲】 1)熱分解によってアルミナとなるアルミニウム塩、有
機アルミニウム化合物を加水分解して得られるアルミナ
水和物、水中でアルミニウムを火花放電して得られるア
ルミナ水和物、及びアルミン酸ソーダ水溶液とエチレン
クロルヒドリンを反応させて得られるアルミナ水和物よ
りなる群から選ばれた少なくとも1種のアルミニウム塩
或いはアルミナ水和物を焼成、粉砕し、アルミナ粉末を
得るに際し、該アルミニウム塩或いはアルミナ水和物に
予めα−アルミナ粉末を添加、存在せしめた後、焼成し
、粉砕することを特徴とする易焼結性アルミナ粉末の製
造法。 2)アルミニウム塩或いはアルミナ水和物に添加存在せ
しめるα−アルミナの量がアルミニウム塩或いはアルミ
ナ水和物中のアルミナ水和物100重量部に対し0.1
〜50重量部である特許請求の範囲第1項記載の易焼結
性アルミナ粉末の製造法。 3)アルミニウム塩或いはアルミナ水和物に添加存在せ
しめるα−アルミナ粉末の粒径が1.0μm以下である
特許請求の範囲第1項記載の易焼結性アルミナ粉末の製
造法。 4)熱分解によってアルミナとなるアルミニウム塩が硫
酸アルミニウム、アンモニウムミョウバン又はアンモニ
ウム・アルミニウム炭酸塩である特許請求の範囲第1項
記載の易焼結性アルミナ粉末の製造法。 5)有機アルミニウム化合物がアルキルアルミニウム又
はアルコキシアルミニウムである特許請求の範囲第1項
記載の易焼結性アルミナ粉末の製造法。
[Claims] 1) Aluminum salt that becomes alumina through thermal decomposition, alumina hydrate obtained by hydrolyzing an organic aluminum compound, alumina hydrate obtained by spark discharge of aluminum in water, and aluminic acid. At least one aluminum salt or alumina hydrate selected from the group consisting of alumina hydrate obtained by reacting an aqueous soda solution and ethylene chlorohydrin is calcined and pulverized to obtain alumina powder. Alternatively, a method for producing easily sinterable alumina powder, which comprises adding α-alumina powder to alumina hydrate in advance to make it present, followed by firing and pulverizing. 2) The amount of α-alumina added to the aluminum salt or alumina hydrate is 0.1 parts by weight per 100 parts by weight of the alumina hydrate in the aluminum salt or alumina hydrate.
The method for producing easily sinterable alumina powder according to claim 1, wherein the amount is 50 parts by weight. 3) The method for producing easily sinterable alumina powder according to claim 1, wherein the α-alumina powder added to the aluminum salt or alumina hydrate has a particle size of 1.0 μm or less. 4) The method for producing easily sinterable alumina powder according to claim 1, wherein the aluminum salt that becomes alumina by thermal decomposition is aluminum sulfate, ammonium alum, or ammonium aluminum carbonate. 5) The method for producing easily sinterable alumina powder according to claim 1, wherein the organoaluminum compound is alkyl aluminum or alkoxy aluminum.
JP60295687A 1985-12-26 1985-12-26 Production of easily sintering alumina powder Pending JPS62153118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295687A JPS62153118A (en) 1985-12-26 1985-12-26 Production of easily sintering alumina powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295687A JPS62153118A (en) 1985-12-26 1985-12-26 Production of easily sintering alumina powder

Publications (1)

Publication Number Publication Date
JPS62153118A true JPS62153118A (en) 1987-07-08

Family

ID=17823877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295687A Pending JPS62153118A (en) 1985-12-26 1985-12-26 Production of easily sintering alumina powder

Country Status (1)

Country Link
JP (1) JPS62153118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065917A (en) * 2004-08-25 2006-03-09 Sumitomo Chemical Co Ltd alpha-ALUMINA POWDER FOR MAGNETIC RECORDING MEDIUM
KR100837357B1 (en) 2007-02-09 2008-06-12 한국과학기술연구원 Fabrication method of alumina powders using microwave
WO2009028888A3 (en) * 2007-08-31 2009-04-23 Jps Micro Tech Co Ltd Method of manufacturing flake aluminum oxide using microwave

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267858A (en) * 1985-01-18 1986-11-27 Nec Corp Microcomputer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267858A (en) * 1985-01-18 1986-11-27 Nec Corp Microcomputer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065917A (en) * 2004-08-25 2006-03-09 Sumitomo Chemical Co Ltd alpha-ALUMINA POWDER FOR MAGNETIC RECORDING MEDIUM
JP4670279B2 (en) * 2004-08-25 2011-04-13 住友化学株式会社 Alpha alumina powder for magnetic recording media
KR100837357B1 (en) 2007-02-09 2008-06-12 한국과학기술연구원 Fabrication method of alumina powders using microwave
WO2009028888A3 (en) * 2007-08-31 2009-04-23 Jps Micro Tech Co Ltd Method of manufacturing flake aluminum oxide using microwave
US8052957B2 (en) 2007-08-31 2011-11-08 Jps Micro-Tech Co., Ltd. Method of manufacturing flake aluminum oxide using microwave

Similar Documents

Publication Publication Date Title
AU595463B2 (en) Preparation of microcrystalline boehmite and ceramic bodies
US5383945A (en) Abrasive material and method
US4623364A (en) Abrasive material and method for preparing the same
US5395407A (en) Abrasive material and method
EP0152768B1 (en) Abrasive grits or ceramic bodies and preparation thereof
CA1250130A (en) Aluminum oxide powders and products
KR101286825B1 (en) PROCESS FOR PRODUCING FINE α-ALUMINA PARTICLES
TWI450864B (en) Method for preparing cerium carbonate, method for cerium oxide prepared and crystalline cerium oxide
BRPI0613043B1 (en) Process for the production of alpha aluminum oxide nanocrystalline sintered bodies
JP4281943B2 (en) Method for producing plate-like alumina particles
JPS62167209A (en) Alpha-sialon powder and its production
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
JP2869287B2 (en) Method for producing plate-like boehmite particles
JPS62153118A (en) Production of easily sintering alumina powder
JP2843909B2 (en) Method for producing yttrium oxide transparent sintered body
US4774068A (en) Method for production of mullite of high purity
JPH06329411A (en) Production of flaky transition alumina
JP2790951B2 (en) Method for producing plate-like alumina particles
JP2843908B2 (en) Method for producing yttrium oxide fine powder
JPS6345118A (en) Production of sintered abrasive alumina grain
JPS62230614A (en) Production of alumina powder
JPH0262488B2 (en)
JPS61127619A (en) Production of superfine granular alpha-alumina
JPH10139424A (en) Low temperature transition alpha-alumina and its production
JPS62148319A (en) Preparation of easily sinterable alumina powder