JPS6215281B2 - - Google Patents

Info

Publication number
JPS6215281B2
JPS6215281B2 JP56032471A JP3247181A JPS6215281B2 JP S6215281 B2 JPS6215281 B2 JP S6215281B2 JP 56032471 A JP56032471 A JP 56032471A JP 3247181 A JP3247181 A JP 3247181A JP S6215281 B2 JPS6215281 B2 JP S6215281B2
Authority
JP
Japan
Prior art keywords
slab
steel
rolling
longitudinal direction
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56032471A
Other languages
Japanese (ja)
Other versions
JPS57149002A (en
Inventor
Minoru Tanaka
Takao Gishi
Takeshi Hirasawa
Ichiro Nakauchi
Shinichi Nagahashi
Kyotaka Morioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3247181A priority Critical patent/JPS57149002A/en
Publication of JPS57149002A publication Critical patent/JPS57149002A/en
Publication of JPS6215281B2 publication Critical patent/JPS6215281B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • B21B1/0883H- or I-sections using forging or pressing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は形鋼の製造方法の創案に係り、長手方
向両端でのクロツプの発生を有効に抑止すること
ができる連続鋳造鋳片から形鋼を製造する方法を
提供せんとするものである。 H形鋼、溝形鋼等の形鋼を製造する方法とし
て、連続鋳造によつて得られた鋳片を所定長さに
切断してブルーム、ビームブランク等の鋼片と
し、この鋼片を加熱し、これを粗圧延、中間圧
延、仕上圧延等を経て形鋼に圧延するという方法
が知られている。第1図はこのような圧延ライン
の一配設例を示すもので、1は加熱炉、2は粗圧
延機、3及び4は中間圧延機たる粗ユニバーサル
圧延機及びエツジヤー圧延機、5は仕上げユニバ
ーサル圧延機であり、これらによる圧延を経た圧
延材は鋸断機6により所定の長さに鋸断される。
ところがこのような圧延では、圧下のアンバラン
ス(ウエブ圧下率>フランジ圧下率)が原因で圧
延材長手方向の両端にクロツプが生じてしまい、
形鋼製造の歩留低下を招くという大きな問題を有
している。第2図イ,ロはH形鋼及び溝形鋼にお
けるクロツプ発生状況を示すものである。このク
ロツプAの発生は第3図に示すように特に上記圧
下のアンバランスが大きい粗圧延段階で著しいも
のとなる傾向にあるが、このように粗圧延段階で
大きなクロツプが生じてしまうと中間圧延等の次
工程で噛み込み不良を生じてしまう等のトラブル
の原因となり、このため従来では第1図に示すよ
うに粗圧延機2の後面に中間鋸断機7(タングカ
ツトソー)を設置し、中間圧延前の段階で上記ク
ロツプを切断するという対策を講じなければライ
ンの円滑な運転は望み得ないというのが実情であ
つた。 本発明は以上のような事情に鑑み創案されたも
ので、その基本的特徴は、連続鋳造によつて得ら
れた鋳片長手方向の適宜間隔をおいた部分に、鋳
片の周囲を拘束部材により拘束しつつ、拘束部材
の窓孔を通じた治具による圧迫加工によつて予成
形を施すことにより、当該部分の圧延段階でのウ
エブ圧下を受ける部位に所望の形鋼形状に応した
凹陥部を所定長さに亘つて形成せしめ、この鋳片
を前記凹陥部の長手方向略中心位置で順次切断す
ることにより長手方向両端に凹陥部を有する鋼片
を切り出し、この鋼片を形鋼に圧延するようにし
たものであり、このように鋼片両端部の圧延段階
でウエブ圧下を受ける部位に凹陥部を形成せしめ
ておくことにより、圧延段階での鋼片両端におけ
る断面内圧下バランスが均一化され、クロツプの
発生を効果的に減少せしめることができる。 本発明は形鋼の製造において、鋼片両端部の断
面内圧下バランス、つまりウエブ圧下率>フラン
ジ圧下率という状態がクロツプ発生の原因となつ
ているという事実に鑑み、かかる断面内圧下バラ
ンス不均一の解消を図るため、連続鋳造から得ら
れる鋳片の段階で予成形を施し、これによつて切
断後の鋼片長手方向両端に圧迫加工による凹陥部
を有せしめるようにしたものであり、従つて、こ
のような本発明はH形鋼、溝形鋼、I形鋼、T形
鋼等その製造の際にウエブ圧下率>フランジ圧下
率となる諸種の形式の形鋼をその対象とすること
ができる。しかして、上記圧迫加工による予成形
方法をより具体的に説明すると、この予成形は連
続鋳造から得られる切断前の鋳片に対して施され
るものである。また、この予成形は連続的に製造
される連続鋳造片の長手方向に適宜間隔をおい
て、しかも所定長さに亘つて施されるものであ
り、その間隔とは切り出すべき鋼片長さに対応す
る。本発明法はかかる予成形後、この予成形によ
り形成された凹陥部の長手方向略中間部の位置で
鋳片を切断するものであり、従つて、前記予成形
を施すべき鋳片長手方向の位置とは予め定められ
た鋳片切断予定位置に相当するものであるという
ことができ、より詳細には、予成形はこれにより
凹陥部の長手方向略中心位置が鋳片の切断予定位
置にするように施すようにする必要がある。しか
して、このような予成形による凹陥部の具体的な
形成部位及びその程度は圧延すべき所望の形鋼形
状に応じて決められる。例えばH形鋼の場合は鋳
片の上部及び下部に凹陥部を設け、また溝形鋼の
場合は鋳片両端部の上部又は下部のいずれか一方
に凹陥部を設けるようにすることが好ましいが、
必ずしもこれに限定されるものではなく、要する
に最低限、鋳片のうち圧延段階でウエブ圧下を受
ける部位を圧迫加工して、これにより凹陥部を形
成せしめるようにすれば足りるものである。ま
た、凹陥部は前記の如くその長手方向略中心位置
で切断されるため所定の長さを有する必要があ
る。また、本発明では以上の予成形を、加工すべ
き部分の周囲を拘束部材により拘束しつつ拘束部
材の窓孔を通じた治具による圧迫加工によつて行
うものである。これは鋳片の周囲を拘束しないで
圧迫加工した場合、圧迫による余肉が鋳片の幅方
向に流動してしまい、このため鋼片の端部形状が
不良となり、次工程たる圧延段階で阻害を生ずる
からであり、本発明ではこの余肉が幅方向に流動
しないようその加工部分の周囲を拘束して圧迫加
工を行うものである。しかして、このような長手
方向の適宜間隔をおいて予成形が施された鋳片
は、切断装置にて所定長さの鋼片に切断される。
この鋳片の切断位置は、前記凹陥部の長手方向略
中心位置であつて、前記した如く予め定められた
切断予定部でもある。このようにして切り出され
た鋼片はその長手方向両端に凹陥部を有するもの
であり、かかる鋼片は引き続き粗圧延にはじまる
圧延を受け、形鋼が製造される。しかして、この
圧延の際には、鋼片の両端部のウエブ圧下を受け
る部位に凹陥部が設けられているので、そのウエ
ブ圧下率が軽減され、このため鋼片両端部の断面
内圧下バランスが均一化され、これによつてクロ
ツプの発生が効果的に減少せしめられる。なお、
上記圧延前の予成形は冷間のままで行うことも可
能であるが、冷間で行つた場合、鋼片の変形抵抗
が大きく、このため熱間で行うことが好ましい。 以下本発明の実施例を図面に基づいて説明する
と、第4図は本発明をH形鋼の製造に適用した場
合の一実施例を示すものである。即ち、第4図イ
に示す連続鋳造鋳片8の長手方向の適宜間隔をお
いた部分を同図ロに示すように治具9,9′によ
り圧迫加工する。この圧迫加工する部位は圧延段
階でウエブ圧下を受ける部位であり、本実施例の
如きH形鋼の場合は、鋳片8の幅方向中央部を上
下から同時に圧迫加工し、図面ハに示す如く鋳片
8の適宜間隔おいた位置の上下にそれぞれ対称的
に凹陥部B,B′を形成せしめるようにするもので
ある。また、図においてCは鋳片の切断予定部
で、治具9,9′による圧迫加工はその長手方向
略中心が前記切断予定部C上にくるように行われ
る必要がある。しかして、以上の如き圧迫加工は
当該圧迫加工部の周囲を拘束した状態で行われ
る。即ち、鋳片8を単に治具9,9′で圧迫した
だけでは第5図に示すように圧迫部の余肉の鋳片
幅方向への流動により切断後の鋼片端部形状が不
良となるからである。第6図ないし第8図はこの
ような拘束しつつ圧迫加工を行つている状況を示
すものである。即ち、鋳片8の圧迫加工すべき部
分をその上下面81,82及び両側面83,83
に密着した拘束部分10により拘束するととも
に、拘束部材10の上下面に設けられた窓孔10
1,101′を通じて圧迫用の治具9,9′で鋳片
8を圧迫加工するものであり、このようにするこ
とにより、圧迫部の余肉は鋳片長手方向に流動し
て形状不良が生ずることが防止され、鋳片8は第
4図ハに示すような形状に予成形加工されること
になる。このように予成形によつて凹陥部B,
B′が形成された鋳片8はその凹陥部B,B′長手方
向略中心位置の予め決められた切断予定部Cにて
切断され、これによつて長手方向両端にそれぞれ
凹陥部B,B′を有する鋼片11が切り出される。
そして、かかる鋼片11は引き続き粗圧延にはじ
まる圧延工程によつて形鋼に圧延される。なお、
上記圧迫用の治具9,9′による圧迫は電動、油
圧等適宜な駆動力により行われる。 以上述べた実施例はH形鋼の製造に本発明法を
適用した場合であるが、他の形鋼を製造する場合
にも上記実施例に準じた手順で行われる。例え
ば、溝形鋼を製造する場合には、上記と同様に鋳
片上下部を圧迫加工して上下に凹陥部を設けるよ
うな予成形を施してもよいが、一般には鋳片の上
部のみを圧迫加工して上部のみに凹陥部を設ける
ような予成形を施し、しかる後に圧延を行うよう
にするもので、かくすることによりクロツプの少
ない溝形鋼を製造することができる。なお、この
場合の予成形も鋳片の周囲を拘束した状態で行う
ことは言うまでもない。 なお、以上の実施例は鋳片から切り出された鋼
片がブルームである場合について述べたが、他に
切り出された鋼片がビームブランク等である場合
にも本発明法を適用することができる。 以下に示す表は、本発明法をH形鋼の製造に適
用した場合の歩留向上効果を示すものであり、第
9図に示すような凹陥部のa,b,cの寸法条件
を規定して実施したものである。
The present invention relates to a method for producing a section steel, and aims to provide a method for producing a section steel from a continuously cast slab, which can effectively suppress the occurrence of cropping at both ends in the longitudinal direction. As a method of manufacturing steel sections such as H-shaped steel and channel steel, slabs obtained by continuous casting are cut into predetermined lengths to produce blooms, beam blanks, etc., and the steel slabs are heated. However, a method is known in which this is rolled into a section steel through rough rolling, intermediate rolling, finishing rolling, etc. Figure 1 shows an example of the arrangement of such a rolling line, where 1 is a heating furnace, 2 is a rough rolling mill, 3 and 4 are intermediate rolling mills, a rough universal rolling mill and an edger rolling mill, and 5 is a finishing universal mill. This is a rolling mill, and the rolled material that has been rolled by these mills is sawed into predetermined lengths by a saw cutter 6.
However, in this type of rolling, crops occur at both ends of the rolled material in the longitudinal direction due to unbalanced rolling (web rolling ratio > flange rolling ratio).
This poses a major problem in that it leads to a decrease in the yield of shaped steel manufacturing. Figures 2A and 2B show the occurrence of cropping in H-section steel and channel steel. As shown in Fig. 3, the occurrence of this crop A tends to be particularly noticeable during the rough rolling stage where the unbalance of the reduction mentioned above is large. This can cause troubles such as defective biting in the next process such as cutting, etc. Therefore, conventionally, as shown in Fig. 1, an intermediate saw 7 (tang cut saw) is installed at the rear of the rough rolling mill 2. The reality is that unless measures are taken to cut off the crops before rolling, smooth operation of the line cannot be expected. The present invention was devised in view of the above circumstances, and its basic feature is that restraining members are placed around the slab at appropriate intervals in the longitudinal direction of the slab obtained by continuous casting. By performing preforming by compressing with a jig through the window hole of the restraining member while restraining the part, a recess corresponding to the desired shape of the steel section is formed at the part that receives the web rolling during the rolling stage. is formed over a predetermined length, and this slab is sequentially cut at approximately the central position in the longitudinal direction of the recessed portion to cut out a steel slab having recessed portions at both ends in the longitudinal direction, and this steel slab is rolled into a section steel. In this way, by forming concave portions at the parts of both ends of the steel billet that are subject to web reduction during the rolling stage, the internal reduction balance within the cross section at both ends of the steel billet during the rolling stage is made uniform. The occurrence of cropping can be effectively reduced. In consideration of the fact that, in the manufacture of section steel, the balance of the cross-sectional reduction at both ends of a steel piece, that is, the condition of web reduction ratio > flange reduction ratio, is the cause of cropping, the present invention has developed an uneven cross-sectional reduction balance. In order to solve this problem, the steel slab obtained from continuous casting is preformed so that both ends of the slab in the longitudinal direction after being cut have recesses created by compression processing. Therefore, the present invention is applicable to various types of steel sections such as H-section steel, channel steel, I-section steel, and T-section steel, in which the web reduction ratio exceeds the flange reduction ratio during manufacture. I can do it. Therefore, to explain the preforming method using compression processing in more detail, this preforming is performed on an uncut slab obtained from continuous casting. In addition, this preforming is performed at appropriate intervals in the longitudinal direction of the continuous cast piece that is continuously manufactured, and over a predetermined length, and the interval corresponds to the length of the steel piece to be cut. do. In the method of the present invention, after such preforming, the slab is cut at a position approximately in the longitudinal direction of the recess formed by this preforming. It can be said that the position corresponds to a predetermined position where the slab is to be cut, and more specifically, the preforming is performed so that the approximate center position in the longitudinal direction of the concave portion is at the scheduled cutting position of the slab. It is necessary to make sure that it is applied accordingly. Therefore, the specific location and degree of formation of the recessed portion by such preforming are determined depending on the desired shape of the steel section to be rolled. For example, in the case of H-shaped steel, it is preferable to provide recesses at the top and bottom of the slab, and in the case of channel steel, it is preferable to provide recesses at either the top or bottom of both ends of the slab. ,
The present invention is not necessarily limited to this, but in short, it is sufficient to at least press the portion of the slab that receives web rolling during the rolling step to form a concave portion. Further, since the recessed portion is cut approximately at its longitudinal center position as described above, it needs to have a predetermined length. Further, in the present invention, the above-mentioned preforming is performed by compressing the portion to be processed using a jig through a window hole in the restraining member while restraining the periphery of the portion to be processed by a restraining member. This is because when pressure processing is performed without restraining the surrounding area of the slab, the excess metal due to the compression flows in the width direction of the slab, resulting in poor end shape of the slab and hindering the rolling process, which is the next process. This is because, in the present invention, the periphery of the processed portion is restrained and compression processing is performed so that this excess material does not flow in the width direction. The slab, which has been preformed at appropriate intervals in the longitudinal direction, is then cut into steel slabs of a predetermined length by a cutting device.
The cutting position of this slab is approximately the center position in the longitudinal direction of the recessed portion, and is also the predetermined cut portion as described above. The steel piece cut out in this manner has concave portions at both ends in the longitudinal direction, and the steel piece is subsequently subjected to rolling starting from rough rolling to produce a section steel. However, during this rolling, since recesses are provided at the parts of both ends of the billet that receive web rolling, the web rolling reduction rate is reduced, and this results in a balance of cross-sectional reduction at both ends of the billet. is evened out, thereby effectively reducing the occurrence of cropping. In addition,
The above-mentioned preforming before rolling can be carried out in the cold state, but when carried out in the cold state, the deformation resistance of the steel billet is large, and therefore it is preferable to carry out the preforming in the hot state. Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows an embodiment in which the present invention is applied to the manufacture of H-beam steel. That is, portions of the continuously cast slab 8 shown in FIG. 4A are compressed at appropriate intervals in the longitudinal direction using jigs 9 and 9' as shown in FIG. 4B. The area to be compressed is the area that receives web reduction in the rolling stage, and in the case of H-beam steel like the one in this example, the central part in the width direction of the slab 8 is compressed from above and below at the same time, as shown in Figure C. Recesses B and B' are formed symmetrically above and below the slab 8 at appropriate intervals. Further, in the figure, C indicates a portion of the slab to be cut, and the compression processing using the jigs 9 and 9' must be performed so that the approximately center in the longitudinal direction thereof is placed on the portion C to be cut. Therefore, the above-described compression processing is performed while the periphery of the compression processing portion is restrained. That is, if the slab 8 is simply compressed with the jigs 9 and 9', the end shape of the slab after cutting will become defective due to the flow of the excess thickness of the pressed portion in the width direction of the slab, as shown in FIG. It is from. FIGS. 6 to 8 show the situation in which compression processing is performed while being restrained. That is, the portion of the slab 8 to be compressed is placed on its upper and lower surfaces 81, 82 and both side surfaces 83, 83.
The window holes 10 provided on the upper and lower surfaces of the restraining member 10 are restrained by the restraining portion 10 that is in close contact with the
1,101', the slab 8 is compressed using compression jigs 9, 9', and by doing this, the excess thickness at the compressed part flows in the longitudinal direction of the slab, thereby preventing shape defects. This is prevented, and the slab 8 is preformed into the shape shown in FIG. 4C. In this way, by preforming, the concave portion B,
The cast slab 8 with B' formed therein is cut at a predetermined cut portion C located approximately in the longitudinal center of the concave portions B and B', thereby creating concave portions B and B at both longitudinal ends, respectively. A steel piece 11 having a diameter of 1 is cut out.
Then, the steel piece 11 is subsequently rolled into a section steel through a rolling process starting with rough rolling. In addition,
Compression by the compression jigs 9, 9' is performed using an appropriate driving force such as electric or hydraulic power. The embodiments described above are cases in which the method of the present invention is applied to the production of H-section steel, but the procedure similar to the above embodiments can also be used when producing other section steels. For example, when manufacturing channel steel, the upper and lower parts of the slab may be compressed and preformed to provide recesses at the top and bottom, as described above, but generally only the upper part of the slab is processed. In this method, the steel is preformed by compression to form a concave portion only in the upper part, and then rolled. By doing this, it is possible to manufacture a channel steel with less cropping. It goes without saying that the preforming in this case is also performed with the periphery of the slab restrained. In addition, although the above embodiment described the case where the steel piece cut out from the cast slab is a bloom, the method of the present invention can also be applied to other cases where the steel piece cut out is a beam blank or the like. . The table below shows the yield improvement effect when the method of the present invention is applied to the production of H-section steel, and specifies the dimensional conditions of a, b, and c of the recessed part as shown in Figure 9. This was carried out as follows.

【表】 上記から明らかなように本発明によれば、クロ
ツプの発生が適正に抑止されるので、従来法によ
つて製造したものに較べ0.3〜0.4重量%もの歩留
向上を図ることができるものである。 以上述べた本発明の製造法によれば、連続鋳造
鋳片から得られる鋼片を形鋼に圧延する場合の鋼
片長手方向両端に生ずる断面内圧下バランスの不
均一を解消し、均一な圧下の下に鋼片を形鋼に圧
延することができるため、形鋼長手方向両端での
クロツプの発生を適正に抑止することができ、こ
のため歩留の向上を図ることができるとともに、
噛み込み不良等の危険を防止できることから圧延
ラインの円滑な運転を可能ならしめる等の優れた
効果がある。
[Table] As is clear from the above, according to the present invention, the generation of crops is appropriately suppressed, so that the yield can be improved by 0.3 to 0.4% by weight compared to products manufactured by conventional methods. It is something. According to the manufacturing method of the present invention described above, when a steel slab obtained from a continuously cast slab is rolled into a section steel, unevenness in the cross-sectional reduction balance that occurs at both ends of the steel slab in the longitudinal direction is eliminated, and uniform rolling reduction is achieved. Since the steel slab can be rolled into a section steel under the same conditions, it is possible to properly prevent the occurrence of cropping at both longitudinal ends of the section steel, thereby improving the yield.
It has excellent effects such as enabling smooth operation of the rolling line since dangers such as jamming defects can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の形鋼圧延ラインを示す説明図で
ある。第2図イ,ロは形鋼のクロツプ発生状況を
示す説明図である。第3図は粗圧延終了段階での
クロツプ発生状況を示す説明図である。第4図イ
ないしハは本発明における予成形工程を示す説明
図である。第5図は予成形を拘束しないで行つた
場合の端部形状不良の状況を示す説明図である。
第6図ないし第8図は本発明における予成形状況
をより具体的に示すもので、第6図は斜視図、第
7図は第6図中―線に沿う断面図、第8図は
同じく第6図中―線に沿う断面図である。第
9図は凹陥部の寸法条件を規定するための説明図
である。 図において、8は鋳片、9,9′は治具、10
は拘束部材、11は鋼片、B,B′は凹陥部を各示
す。
FIG. 1 is an explanatory diagram showing a conventional shape steel rolling line. Figures 2A and 2B are explanatory diagrams showing the occurrence of cropping in a section steel. FIG. 3 is an explanatory diagram showing the occurrence of crops at the end of rough rolling. FIGS. 4A to 4C are explanatory diagrams showing the preforming process in the present invention. FIG. 5 is an explanatory diagram showing a situation where the end shape is defective when preforming is performed without restraint.
6 to 8 show the preforming situation in the present invention more specifically, FIG. 6 is a perspective view, FIG. 7 is a sectional view taken along the line in FIG. 6, and FIG. 8 is a similar view. FIG. 6 is a sectional view taken along the line in FIG. FIG. 9 is an explanatory diagram for defining the dimensional conditions of the recessed portion. In the figure, 8 is a slab, 9 and 9' are jigs, and 10
11 is a restraining member, 11 is a steel piece, and B and B' are concave portions.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造により得られた鋳片を所定長さの鋼
片に切断し、これを形鋼に圧延する方法におい
て、鋳片長手方向の適宜間隔をおいた部分に、鋳
片の周囲を拘束部材により拘束しつつ、拘束部材
の窓孔を通じた治具による圧迫加工によつて予成
形を施すことにより、当該部分の圧延段階でウエ
ブ圧下を受ける部位に所望の形鋼形状に応じた凹
陥部を所定長さに亘つて形成せしめ、この鋳片を
前記凹陥部の長手方向略中心位置で順次切断する
ことにより長手方向両端に凹陥部を有する鋼片を
切り出し、この鋼片を形鋼に圧延することを特徴
とする形鋼の圧延方法。
1 In a method in which a slab obtained by continuous casting is cut into steel slabs of a predetermined length and then rolled into sections, restraining members are placed around the slab at appropriate intervals in the longitudinal direction of the slab. By performing preforming by compression processing using a jig through the window hole of the restraining member while restraining the part, a concave portion corresponding to the desired shape of the steel section is created at the part that is subjected to web rolling during the rolling stage of the relevant part. A steel slab is formed over a predetermined length, and this slab is sequentially cut at approximately the central position in the longitudinal direction of the recessed portion to cut out a steel slab having recessed portions at both ends in the longitudinal direction, and this steel slab is rolled into a section steel. A method for rolling section steel characterized by:
JP3247181A 1981-03-09 1981-03-09 Production of shape steel Granted JPS57149002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3247181A JPS57149002A (en) 1981-03-09 1981-03-09 Production of shape steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3247181A JPS57149002A (en) 1981-03-09 1981-03-09 Production of shape steel

Publications (2)

Publication Number Publication Date
JPS57149002A JPS57149002A (en) 1982-09-14
JPS6215281B2 true JPS6215281B2 (en) 1987-04-07

Family

ID=12359882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3247181A Granted JPS57149002A (en) 1981-03-09 1981-03-09 Production of shape steel

Country Status (1)

Country Link
JP (1) JPS57149002A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142350A (en) * 1977-05-17 1978-12-12 Kawasaki Steel Co Preventive process of fish tail of billet at hot rolling
JPS5550901A (en) * 1978-09-21 1980-04-14 Nippon Kokan Kk <Nkk> Rolling method for steel shape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142350A (en) * 1977-05-17 1978-12-12 Kawasaki Steel Co Preventive process of fish tail of billet at hot rolling
JPS5550901A (en) * 1978-09-21 1980-04-14 Nippon Kokan Kk <Nkk> Rolling method for steel shape

Also Published As

Publication number Publication date
JPS57149002A (en) 1982-09-14

Similar Documents

Publication Publication Date Title
US4086801A (en) H-shape metallic material rolling process
US3606785A (en) Apparatus and method for eliminating or reducing the internal flaws of semifinished products,especially at cast ingots,blocks,blooms,slabs,billets or the like
JPS6215281B2 (en)
JPH09182932A (en) Production of connecting rod
US4295354A (en) Method for producing beam blank for large size H-beam from flat slab
JP2534223B2 (en) Rolling method of rough billet for H-section steel
JP3267241B2 (en) Deburring method for forged crankshafts and its cutting tool
JPS6137020B2 (en)
JPH0219721B2 (en)
JPS5934444B2 (en) Direct forming method for continuously cast slabs
JP2641233B2 (en) Method of manufacturing beam blank in continuous casting
JPH07227658A (en) Production of thick steel plate having excellent inner quality
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JPH10156408A (en) Die for edging press of slab for hot rolling and edging method
US1408330A (en) Process of manufacturing metallic shapes
JPH09174102A (en) Manufacture of shape having web part and flange part
JPH01178301A (en) Manufacture of roughly shaped bloom for shape steel
JPH0116201B2 (en)
JPH0824926B2 (en) Rolling method for profile with flange
JPS6032541B2 (en) Continuous metal casting method
JPH07164020A (en) Production of seamless steel pipe
RU2074776C1 (en) Method of band type rolling products production
JPH07314003A (en) Method for hot-rolling wide flange shape
JPS5816776A (en) Production of shape steel padded in vertical angle part
JPS5865501A (en) Rolling method for rough shape steel ingot for u-shaped steel sheet pile