JPS62151569A - Deposited film forming device - Google Patents

Deposited film forming device

Info

Publication number
JPS62151569A
JPS62151569A JP60294451A JP29445185A JPS62151569A JP S62151569 A JPS62151569 A JP S62151569A JP 60294451 A JP60294451 A JP 60294451A JP 29445185 A JP29445185 A JP 29445185A JP S62151569 A JPS62151569 A JP S62151569A
Authority
JP
Japan
Prior art keywords
film
gas
gaseous
pipe
deposited film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60294451A
Other languages
Japanese (ja)
Other versions
JPH0645894B2 (en
Inventor
Eiji Takeuchi
栄治 竹内
Masaaki Hirooka
広岡 政昭
Junichi Hanna
純一 半那
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60294451A priority Critical patent/JPH0645894B2/en
Publication of JPS62151569A publication Critical patent/JPS62151569A/en
Priority to US08/073,976 priority patent/US5391232A/en
Publication of JPH0645894B2 publication Critical patent/JPH0645894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a titled device which economizes energy and permits the easy control of film quality by forming a gaseous raw material release pipe and a release pipe for a gaseous halogen oxidizing agent for said raw material into coaxial cylindrical construction and providing gas release holes to the wall surface of the inside pipe. CONSTITUTION:A deposited film is manufactured by using a film forming device shown in the figure. More specifically gaseous SiH4 101 which is the gaseous raw material is introduced from a gas introducing pipe 109 and gaseous F2 103 which is the gaseous halogen oxidizing agent diluted with gaseous He is introduce from a gas introducing pipe 110, respectively into a low port 111. The pressure in a vacuum vessel 120 is reduced down to a prescribed pressure and a substrate 118 made of quartz glass is used. The above-mentioned two gases are passed in the vessel 120 and an Si:H:F film having the film thickness shown in the table 1 is deposited on the substrate 118. The gas introduced into the space sandwiched by the release part 111, inside pipe 111b and outside pipe 111c is passed through the holes 111a provided to the inside pipe 111b in the gas release part 111 to change the flow toward the central direction of the pipe 111b. The gases 110 are thus uniformly and efficiently mixed to react with each other mainly in the release part 111.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性膜、殊に半導体デバイス、電子写真用
の感光デフへイス、光学的画像入力装置用の光入力セン
サーデバイス等の電子デバイスの用途に有用な機能性堆
積膜の形成に使用する堆積膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applicable to functional films, especially electronic devices such as semiconductor devices, photosensitive differentials for electrophotography, and optical input sensor devices for optical image input devices. The present invention relates to a deposited film forming apparatus used to form a functional deposited film useful for device applications.

〔従来の技術〕[Conventional technology]

従来、半導体膜、絶縁膜、光導電膜、磁性膜或いは金属
膜等の非晶質乃至多結晶質の機能性■りは、所望される
物理的特性や用途等の観点から個々に適した成膜方法が
採用されている。
Conventionally, the functionality of amorphous or polycrystalline films such as semiconductor films, insulating films, photoconductive films, magnetic films, or metal films has been determined by making them individually suitable from the viewpoint of desired physical properties and applications. A membrane method is used.

例えば、必要に応じて、水素原子(H)やハロゲン原子
(x)等の補償剤で不対電子が補償された非晶質や多結
晶質の非単結晶シリコン(以後rNON−S i (H
、X)Jと略記し、その中でも殊に非晶質シリコンを示
す場合にはrA−S i  (H、X) J 、多結晶
質シリコンを示す場合にはrpo立y−5i (H、X
) J と記す)膜等のシリコン堆積膜(尚、俗に言う
微結晶シリコンは、 A−5i (H、X)の範囲には
いることは断るまでもない)の形成には、真空ノN着法
、プラズマCVD法、熱CVD法、反応スパッタリング
法、イオンブレーティング法。
For example, if necessary, amorphous or polycrystalline non-single crystal silicon (rNON-S i (H
,
) For the formation of silicon deposited films such as (denoted as J) films (it goes without saying that microcrystalline silicon, commonly referred to as microcrystalline silicon, falls within the range of A-5i (H, Deposition method, plasma CVD method, thermal CVD method, reactive sputtering method, ion blating method.

光CVD法などが試みられており、一般的には、プラズ
マCVD法が広く用いられ、企業化されている。
Photo-CVD methods and the like have been tried, and in general, plasma CVD methods are widely used and commercialized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

面乍ら、従来から一般化されているプラズマCVD法に
よるシリコン堆積膜の形成に於ての反応プロセスは、従
来のCVD法に比較してかなり複雑であり、その反応機
構も不明な点が少なくない。又、その堆積膜の形成パラ
メータも多く(例えば、基体温度、導入ガスの流量と比
、形成時の圧力、高周波電力、電極構造、反応容器の構
造、排気の速度、プラズマ発生方式など)これらの多く
のパラメータの組み合せによるため1時にはプラズマが
不安定な状態になり、形成された堆積膜に著しい悪影響
を与えることが少なくなかった。そのうえ、装置特有の
パラメータを装置ごとに選定しなければならず、したが
って製造条件を一般化することがむずかしいというのが
実状であった。
However, the reaction process in forming silicon deposited films by the conventionally popular plasma CVD method is considerably more complicated than that of the conventional CVD method, and there are still many unknowns about the reaction mechanism. do not have. In addition, there are many formation parameters for the deposited film (e.g., substrate temperature, flow rate and ratio of introduced gas, pressure during formation, high frequency power, electrode structure, reaction vessel structure, pumping speed, plasma generation method, etc.). Due to the combination of many parameters, the plasma becomes unstable at one time, often having a significant adverse effect on the deposited film formed. Moreover, it is necessary to select device-specific parameters for each device, making it difficult to generalize manufacturing conditions.

他方、シリコン堆積膜として電気的、光学的特性を各用
途毎に十分に満足させ得るものを発現させるためには、
現状ではプラズマCVD法によって形成することが最良
とされている。
On the other hand, in order to develop a silicon deposited film that satisfies electrical and optical properties for each application,
At present, it is considered best to form by plasma CVD method.

面乍ら、シリコン堆積膜の応用用途によっては、犬面枯
化、膜厚均−性、膜品質の均一性を」−分満足させて再
現性のある量産化を図らねばならないため、プラズマC
VD法によるシリコン堆積膜の形成においては、量産装
置に多大な設備投資が必要となり、またその量産の為の
管理項目も複雑になり、管理許容幅も狭く、装置の調整
も微妙であることから、これらのことが、今後改善すべ
き問題点として指摘されている。
However, depending on the application of the silicon deposited film, it is necessary to satisfy the requirements of surface drying, film thickness uniformity, and film quality uniformity in order to achieve reproducible mass production.
Forming a silicon deposited film using the VD method requires a large amount of equipment investment for mass production equipment, and the management items for mass production are complicated, the tolerance range for management is narrow, and equipment adjustments are delicate. , these have been pointed out as problems that should be improved in the future.

又゛、プラズマCVD法の場合には、成膜される基体の
配されている成膜空間に於いて高周波或いはマイクロ波
等によって直接プラズマを生成している為に、発生する
電子や多数のイオン種が成膜過程に於いて膜にダメージ
を与え膜品質の低下、膜品質の不均一化の要因となって
いる。
Furthermore, in the case of the plasma CVD method, since plasma is directly generated by high frequency waves or microwaves in the film forming space where the substrate to be film is placed, the generated electrons and large number of ions are The seeds damage the film during the film formation process, causing deterioration in film quality and non-uniform film quality.

この点の改良として提案されている方法には、間接プラ
ズマCVD法がある。
An indirect plasma CVD method has been proposed as an improvement in this respect.

該間接プラズマCVD法は、成膜空間から離れた上流位
置にてマイクロ波等によってプラズマを生成し、該プラ
ズマを成膜空間まで輸送することで、成膜に有効な化学
種を選択的に使用出来る様に計ったものである。
The indirect plasma CVD method generates plasma using microwaves or the like at an upstream location away from the film-forming space, and transports the plasma to the film-forming space to selectively use chemical species that are effective for film-forming. It was planned to be possible.

面乍ら、斯かるプラズマCVD法でも、プラズマの輸送
が必須であることから、成膜に有効な化学種の寿命が長
くければならず、自ずと、使用するカス種が制限され、
種々の堆積膜が得られないこと、及びプラズマを発生す
る為に多大なエネルギーを要すること、成膜に有効な化
学種の生成及び借が簡便な管理下に木質的に置かれない
こと等の問題点は残端している。
However, since the plasma CVD method also requires plasma transport, the lifetime of the chemical species effective for film formation must be long, which naturally limits the species of waste that can be used.
Various deposited films cannot be obtained, a large amount of energy is required to generate plasma, and the generation and production of chemical species effective for film formation cannot be easily controlled. Problems remain.

プラズマCVD法に対して、光CVD法は、I&成膜時
II!2品質にダメージを与えるイオン種や電子か発生
しないという点で有利ではあるが、光源にそれ程多くの
種類がないこと、光源の波長も紫外に片寄っていること
、T業化する場合には大型の光源とその電源を要するこ
と、光源からの光を成膜空間に導入する窓が成膜時に被
膜されて仕舞う為に成膜中に光量の低下、強いては、光
源からの光が成膜空間に入射されなくなるという問題点
がある。
In contrast to the plasma CVD method, the photo-CVD method uses I & II! during film formation. 2.It is advantageous in that it does not generate ion species or electrons that damage quality, but there are not so many types of light sources, the wavelength of the light source is biased towards ultraviolet, and if it is to become a T industry, it will be large. The light source and its power supply are required, and the window that introduces the light from the light source into the deposition space is covered with a film during deposition, so the amount of light decreases during deposition, and in the end, the light from the light source enters the deposition space. There is a problem that the light will not be incident on the area.

1、述の如く、シリコン堆積膜の形成に於ては、解決さ
れるべき点は、まだまだ残っており、その実用可能な特
性、均一性を維持させながら低コストな装置で省エネル
ギー化を計って早産化できる形成方法を開発することが
切望されている。これ等のことは、他の機能性膜、例え
ば窒化シリコン膜、炭化シリコン膜、酸化シリコン膜に
於ても各々同様の解決されるべき問題とし挙げることが
出来る。
1. As mentioned above, there are still many issues to be solved in the formation of silicon deposited films, and we are trying to save energy with low-cost equipment while maintaining its practical characteristics and uniformity. There is a strong desire to develop a formation method that allows premature birth. These problems can be cited as similar problems to be solved in other functional films, such as silicon nitride films, silicon carbide films, and silicon oxide films.

:目的〕 本発明の目的は、上述した堆積19形成用法の欠−1、
(を除去すると同時に、従来の形成方法によらない新規
な堆積膜形成装置を提供するものである。
:Object] The object of the present invention is to solve the above-described method for forming the deposit 19;
(), and at the same time provides a novel deposited film forming apparatus that does not rely on conventional forming methods.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成装置を提供するものである。
Another object of the present invention is to provide a deposited film forming apparatus that saves energy, allows easy control of film quality, and provides a deposited film with uniform characteristics over a large area.

本発明の更に別の目的は、生産性、量産性に優れ、高品
質で電気的、光学的、半導体的等の物理特性に優れた膜
が簡便に得られる堆積膜形成装置を提供することでもめ
る。
Still another object of the present invention is to provide a deposited film forming apparatus that is excellent in productivity and mass production, and can easily produce films of high quality and excellent physical properties such as electrical, optical, and semiconductor properties. quarrel.

〔問題点を解決するための手段〕[Means for solving problems]

と記目的を達成する本発明の堆積膜形成装置は、堆積膜
形成用の気体状原料物質と、該原料物質に酸化作用をす
る性質を有する気体状ハロゲン系酸化剤と、を反応空間
内に導入して化学的に接触させることで励起状態の前駆
体を生成し、該前駆体を堆積膜構成要素の供給源として
成膜空間内にある基体上に堆積膜を形成する装置におい
て前記堆積膜形成用の気体状原料物質放出管と前記原料
物質に酸化作用をする性質を有する気体状ハロゲン系酸
化剤放出管とが同軸円筒状構造をなし、内管の壁面に孔
が設けられているガス放出手段を有することを特徴とす
る。
The deposited film forming apparatus of the present invention that achieves the above objects includes a gaseous raw material for deposited film formation and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material in a reaction space. In an apparatus that generates a precursor in an excited state by introducing and chemically contacting the precursor, and forms a deposited film on a substrate in a deposition space by using the precursor as a source of deposited film constituent elements, the deposited film is A gas forming gaseous raw material material discharge tube and a gaseous halogen-based oxidizer discharge tube having the property of oxidizing the raw material material have a coaxial cylindrical structure, and a hole is provided in the wall of the inner tube. It is characterized by having a discharge means.

〔作用〕[Effect]

L記の本発明の堆積膜形成装置によれば、省エネルギー
化と同時に大面積化、膜厚均一性、膜品質の均一性を上
方満足させて管理の簡素化と州産化を図り、着岸装置に
多大な設備投資も必要とせず、またそのは産の為の管理
項目も明確になり、管理許容幅も広く、装置の調整も簡
単になる。
According to the deposited film forming apparatus of the present invention as described in L, it is possible to save energy, increase the surface area, achieve uniformity of film thickness, and uniformity of film quality, simplify management, and achieve local production. It does not require a large investment in equipment, the management items for the production become clear, the management tolerance is wide, and the adjustment of the equipment becomes easy.

本発明の堆積膜形成装置に於いて、使用される堆積膜形
成用の気体状原料物質は、気体状ハロゲン系酸化剤との
化学的接触により酸化作用をうけるものであり、目的と
する堆積膜の種類、特性、用途等によって所望に従って
適宜選択される。本発明に於いては、玉記の気体状原料
物質及び気体状ハロゲン系酸化剤は、化学的接触をする
際に気体状とされるものであれば良く、通常の場合は、
気体でも液体でも固体であっても差支えない。
In the deposited film forming apparatus of the present invention, the gaseous raw material for forming the deposited film used is oxidized by chemical contact with the gaseous halogen-based oxidizing agent, and the target deposited film is The material is appropriately selected depending on the type, characteristics, usage, etc. of the material. In the present invention, the gaseous raw material and the gaseous halogen-based oxidizing agent may be those that are made into a gaseous state during chemical contact, and in the normal case,
It can be a gas, liquid, or solid.

堆積膜形成用の原料物質あるいはハロゲン系酸化剤が液
体又は固体である場合には、Ar。
When the raw material for forming the deposited film or the halogen-based oxidizing agent is liquid or solid, Ar.

He、N2.I2等のキャリアーガスを使用し、必要に
応じては熱も加えながらバブリングを行なって反応空間
に堆積膜形成用の原料物質及びハロゲン系酸化剤を気体
状として導入する。
He, N2. A carrier gas such as I2 is used, and bubbling is performed while adding heat if necessary, to introduce a raw material for forming a deposited film and a halogen-based oxidizing agent into the reaction space in gaseous form.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キャリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidizing agent can be adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidizing agent. Set.

本発明に於いて使用される堆積膜形成用の原料物質とし
ては、例えば、半導体性或いは電気。
The raw materials for forming the deposited film used in the present invention include, for example, semiconducting or electrical materials.

的絶縁性のシリコン堆vX膜やゲルマニウム141 M
llI2等のテトラヘドラル系の堆積膜を得るのであれ
ば、直鎖状、及び分岐状の鎖状シラフ化舎物、環状シラ
ン化合物、鎖状ゲルマニウム化合物等が有効なものとし
て挙げることが出来る。
Insulating silicon VX film and germanium 141M
In order to obtain a deposited film of tetrahedral type such as llI2, linear and branched chain silaf compounds, cyclic silane compounds, chain germanium compounds, etc. can be cited as effective.

具体的には、直鎖状シラン化合物としては5inH2n
+2 (n=1.2,3,4,5゜6.7.8)、 分
山υ欣釦」kシランイに春&)l−では、5fH3Si
H(SiH3)SiH2SiH3,鎖状ゲルマン化合物
としては、GemI2m+2 (m=1.2,3,4.
5)等が挙げられる。この他、例えばスズの堆積膜を作
成するのであれば5nHa等の水素化スズを有効な原料
物質として挙げることが出来る。
Specifically, as a linear silane compound, 5inH2n
+2 (n=1.2,3,4,5゜6.7.8), 5fH3Si
H(SiH3)SiH2SiH3, as a chain germane compound, GemI2m+2 (m=1.2, 3, 4.
5) etc. In addition, for example, if a deposited film of tin is to be created, tin hydride such as 5nHa can be used as an effective raw material.

勿論、これ他の原料物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, other raw materials can be used not only alone, but also in combination of two or more.

本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内に導入される際気体状とされ、同時に反応空間内に
導入される堆積膜形成用の気体状原料物質に化学的接触
だけで効果的に酸化作用をする性質を有するもので、F
2゜Cu2 、Br2 、I2等のハロゲンガス、発生
期状態の弗素、塩素、臭素等が有効なものとして挙げる
ことが出来る。
The halogen-based oxidizing agent used in the present invention is in a gaseous state when introduced into the reaction space, and is simultaneously introduced into the reaction space through chemical contact with the gaseous raw material for forming a deposited film. It has the property of effectively oxidizing, and F
Effective examples include halogen gases such as 2°Cu2, Br2, and I2, as well as nascent fluorine, chlorine, and bromine.

これ等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望の流j、Xと供給圧を
与えられて反応空間内に導入されて前記原料物質と混合
衝突することで化学的接触をし、前記原料物質に酸化作
用をして励起状態の前駆体を含む複数種の前駆体を効率
的に生成する。生成される励起状態の前駆体及び他の前
駆体は、少なくともそのいずれか1つが形成される堆積
膜の構成要素の供給源として(動く。
These halogen-based oxidants are gaseous, and are introduced into the reaction space together with the gas of the raw material for forming the deposited film, given the desired flows J and X and supply pressure, and mixed and collided with the raw material. By doing so, chemical contact is made and the raw material is oxidized to efficiently generate a plurality of types of precursors including excited state precursors. The excited state precursors and other precursors produced serve as a source of components of the deposited film in which at least one of them is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体になって、或い
は必要に応じてエネルギーを放出はするがそのままの形
態で成膜空間に配設された気体表面に触れることで三次
元ネットワーク構造の堆積膜が作成される。
The generated precursor decomposes or reacts to become a precursor in another excited state or a precursor in another excited state, or is deposited in that form, although it releases energy as necessary. By touching the gas surface placed in the space, a deposited film with a three-dimensional network structure is created.

励起されるエネルギーレベルとしては、前記励起状態の
前駆体がより低いエネルギーレベルにエネルギー遷移す
る。又は別の化学種に変化する過程に於いて発光を伴う
エネルギーレベルであることが好ましい、斯かるエネル
ギーの遷移に発光を伴なう励起状態の前駆体を含め活性
化された前駆体が形成されることで本発明の堆積膜形成
プロセスは、より効率良く、より省エネルギーで進行し
、膜全面に亘って均一でより良好な物理特性を有する堆
積膜が形成される。
As the energy level is excited, the excited state precursor undergoes an energy transition to a lower energy level. or an activated precursor is formed, preferably at an energy level that accompanies luminescence in the process of changing into another chemical species, including an excited state precursor that accompanies luminescence during such energy transition. As a result, the deposited film forming process of the present invention proceeds more efficiently and with lower energy consumption, and a deposited film that is uniform over the entire surface of the film and has better physical properties is formed.

未発明に於いては、堆積膜形成プロセスが円滑に進行し
、高品質で所望の物理特性を有する膜が形成される5丁
〈、成膜因子としての、原料物質及びハロゲン系酸化剤
の種類と組み合せ、これ等の混合比、混合時の圧力、流
に、成膜空間内圧、ガスの流型、成膜温度(基体温度及
び雰囲気温度)が所望に応じて適宜選択される。
In the uninvention, the deposited film formation process proceeds smoothly and a film having high quality and desired physical properties is formed. In combination, the mixing ratio, the pressure and flow during mixing, the internal pressure of the film forming space, the gas flow type, and the film forming temperature (substrate temperature and ambient temperature) are appropriately selected as desired.

これ等の成膜因子は有機的に関連し、単独で決定される
ものではなく相互関連の下に夫々に応じて決定される。
These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other.

本発明に於いて、反応空間に導入される堆積膜形成用の
気体状原料物質と気体状ハロゲン系酸化剤との賃の割合
は、上記成膜因子の中間視する成膜因子との関係に於い
て適宜所望に従って決められるが、導入流漬比で、好ま
しくは、l/100−100/1が適昌であり、より好
ましくは1150〜50/1とされるのが望ましい。
In the present invention, the ratio of the gaseous raw material for forming the deposited film introduced into the reaction space and the gaseous halogen-based oxidizing agent is determined depending on the relationship with the film-forming factors considered as intermediate among the film-forming factors mentioned above. Although it can be determined as desired, the introduction dipping ratio is preferably 1/100 to 100/1, more preferably 1150 to 50/1.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ハロゲン系酸化剤との化学的
接触を確率的により高める為には、より高い方が良いが
1反応性を考慮して適宜所9に応じて最適値を決定する
のが良い。
The pressure at the time of mixing when introduced into the reaction space is preferably higher, but in order to increase the probability of chemical contact between the gaseous raw material and the gaseous halogen-based oxidant, it is better to keep the pressure at least 1 reactivity. It is preferable to determine the optimum value in accordance with 9 as appropriate, taking into account the following.

前記混合時の圧力としては、と記の様にして決められる
が、夫々の導入時の圧力として、好ましくはl X 1
0−7気圧〜10気圧、より好ましくはlXl0−6気
圧〜3気圧とされるのが望ましい。
The pressure at the time of mixing is determined as shown below, but the pressure at the time of each introduction is preferably l x 1
It is desirable that the pressure be 0-7 atm to 10 atm, more preferably 1X10-6 atm to 3 atm.

成膜空間内の圧力、即ち、その表面に成膜される気体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(D)が成膜に効果
的に寄ダーする様に適宜所望に応じて設定される。
The pressure in the film forming space, that is, the pressure in the space where the gas to be formed into a film is placed on the surface, is the pressure of the excited state precursor (E) generated in the reaction space and, if necessary, the precursor. The precursor (D) derived from the precursor (E) is appropriately set as desired so as to effectively contribute to film formation.

成膜空間の内圧力は、r&膜空間が反応空間と開放的に
連続している場合には、堆積膜形成用のJx体状状原料
物質気体状ハロゲン系酸化剤との反応空間での導入圧及
び流にとの関連に於いて 仔11λばる動雄仁譚い1士
 す型のt止価奨署め使用等の工夫を加えて調整するこ
とが出来る。
The internal pressure of the film forming space is determined by the introduction of the Jx body-shaped raw material gaseous halogen-based oxidant into the reaction space when the film space is open and continuous with the reaction space. In relation to pressure and flow, adjustments can be made by adding devices such as using a t price recommendation sign of the type t.

或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合には、成膜空間に適当な排気装置を設け、
該装置の排気量を制御することで成膜空間の圧力を調整
することが出来る。
Alternatively, if the conductance of the connection between the reaction space and the film-forming space is small, an appropriate exhaust system may be provided in the film-forming space.
By controlling the exhaust volume of the device, the pressure in the film forming space can be adjusted.

又、反応空間と成膜空間が一体的になっていて、反応位
置と成膜位置が空間的に異なるだけの場合には、前述の
様に差動排気するか或いは、排気能力の充分ある大型の
排気装置を設けてやれば良い。
In addition, if the reaction space and film-forming space are integrated and the reaction position and film-forming position are only spatially different, use differential pumping as described above or use a large-scale pump with sufficient exhaust capacity. It is best to install an exhaust system.

上記のようにして成膜空間内の圧力は、反応空間に導入
される気体状原料物質と気体状ハロゲン酸化剤の導入圧
力との関係に於いて決められるが、好ましくはO,0O
ITorr 〜100Torr、より好ましくは0.0
1Torr〜30To r r 、最適には0.05〜
1OTorrとされるのが望ましい。
As described above, the pressure in the film forming space is determined based on the relationship between the gaseous raw material introduced into the reaction space and the introduction pressure of the gaseous halogen oxidizing agent, but preferably O, 0O
ITorr ~100Torr, more preferably 0.0
1Torr~30Torr, optimally 0.05~
It is desirable to set it to 1OTorr.

ガスの流型に就いては、反応空間への前記堆積膜形成用
の原料物質及びノ・ロゲン系酸化剤の導入の際にこれ等
が均一に効率良く混合され、前記前駆体(E)が効率的
に生成され且つ成膜が支障なく適切になされる様に、ガ
ス導入口と基体とガス排気口との幾何学的配置を考慮し
て設計される必要がある。この幾何学的な配置の好適な
例が第2図から第4図に示される。
Regarding the flow type of the gas, when introducing the raw material for forming the deposited film and the nitrogen-based oxidizing agent into the reaction space, these are uniformly and efficiently mixed, and the precursor (E) is It is necessary to design the gas inlet, the substrate, and the gas outlet in consideration of the geometrical arrangement so that the film can be efficiently generated and properly formed without any trouble. Preferred examples of this geometry are shown in FIGS. 2-4.

成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種数と要求される特性に応じて
、個々に適宜所望に従って設定されるが、非晶質の膜を
得る場合には好ましくは室温から450℃、より好まし
くは50〜400″Cとされるのが望ましい、殊に半導
体性や光導電性°等の特性がより良好なシリコン堆積膜
を形成する場合には、基体温度(Ts)は70〜350
℃とされるのが望ましい、また、多結晶の膜を得る場合
には、好ましくは200〜650℃、より好ましくは3
00〜600℃とされるのが望ましい。
The substrate temperature (Ts) during film formation is set as desired depending on the type of gas used, the number of types of deposited film to be formed, and the required characteristics. The temperature is preferably from room temperature to 450°C, more preferably from 50 to 400"C, especially when forming a silicon deposited film with better properties such as semiconductivity and photoconductivity. The substrate temperature (Ts) is 70 to 350.
The temperature is preferably 200-650°C, more preferably 3°C when obtaining a polycrystalline film.
It is desirable that the temperature be 00 to 600°C.

成膜空間の雰囲気温度(Tat)としては、生成される
前記前駆体(E)及び前記前駆体(D)が成■りに不適
当な化学種に変化せず、且つ効率良く前記+ij駆体(
E)が生成される様にノ、(体温度(Ts) との関連
で適宜所ψに応じて決められる。
The atmospheric temperature (Tat) in the film-forming space is set so that the precursor (E) and the precursor (D) to be produced do not change into unsuitable chemical species, and the +ij precursor is efficiently (
E) is determined as appropriate depending on ψ in relation to the body temperature (Ts).

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い。導電性基体
としては、例えば、NiCr、ステアL/ス、Ai、C
r、Mo。
The substrate used in the present invention may be electrically conductive or electrically insulating, as long as it is appropriately selected depending on the intended use of the deposited film to be formed. Examples of the conductive substrate include NiCr, steer L/S, Ai, C
r, Mo.

Au、Ir、Nb、Ta、V、Ti、Pt。Au, Ir, Nb, Ta, V, Ti, Pt.

Pd等の金属又はこれ等の合金が挙げられる。Examples include metals such as Pd and alloys thereof.

電気絶縁性基体としては、ポリエステル。Polyester is used as the electrically insulating substrate.

ポリエチレン、ポリカーボネート、セルローズアセテー
ト、ポリプロピレン、ポリ塩化ビニル。
Polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride.

ポリ塩化ビニリデン、ポリスチレン、ポリアミド等の合
成樹脂のフィルム又はシート、ガラス。
Films or sheets of synthetic resins such as polyvinylidene chloride, polystyrene, polyamide, etc., and glass.

セラミック、紙等が通常使用される。これらの電気絶縁
性基体は、好適には少なくともその一方の表面が導電処
理され、該導電処理された表面側に他の層が設けられる
のが望ましい。
Ceramic, paper, etc. are commonly used. Preferably, at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えば、ガラスであれば、その表面がNtCr、Ai、
Cr、Mo、Au、Ir、Nb。
For example, if it is glass, its surface may be NtCr, Al,
Cr, Mo, Au, Ir, Nb.

Ta、V、Ti、Pt、Pd、In2O3゜S no2
. ITO(I n203+5no2)等の薄膜を設け
ることによって導電処理され、或いはポリエステルフィ
ルム等の合成樹脂フィルムチあれば、NiCr、AIL
、Ag、Pb。
Ta, V, Ti, Pt, Pd, In2O3°S no2
.. If conductive treatment is performed by providing a thin film such as ITO (In203+5no2), or a synthetic resin film such as polyester film, NiCr, AIL etc.
, Ag, Pb.

Zn、Ni 、Au、Cr、Mo、Ir、Nb。Zn, Ni, Au, Cr, Mo, Ir, Nb.

Ta、V、Tt、Pt等の金属で真空蒸着、電子ビーム
基若、スパッタリング等で処理し、又は前記金属でラミ
ネート処理して、その表面が導電処理される。支持体の
形状としては1円筒状、ベルト状、板状等、任意の形状
とし得、所望によって、その形状が決定される 基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと■り中に多量の歪が生じ、良品質の膜が得られな
い場合があるので。
The surface is treated with a metal such as Ta, V, Tt, or Pt by vacuum evaporation, electron beam irradiation, sputtering, or the like, or laminated with the metal, so that the surface thereof is conductive. The shape of the support may be any shape, such as a cylinder, a belt, or a plate, and the shape of the base is determined as desired, taking into account the adhesion and reactivity between the base and the membrane. It is preferable to choose from among. Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur during cutting, and a good quality film may not be obtained.

両者の熱膨張の差が近接している基体を選択して使用す
るのが好ましい。
It is preferable to select and use substrates whose thermal expansion differences are close to each other.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
In addition, the surface condition of the substrate is directly related to the structure (orientation) of the film and the occurrence of cone-shaped structures, so it is important to treat the surface of the substrate so that it has a film structure and structure that provides the desired properties. is desirable.

第1図は本発明の堆積膜形成装置の1例を示すものであ
る。
FIG. 1 shows an example of the deposited film forming apparatus of the present invention.

第1図に示す堆積膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposited film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system, and a gas supply system.

装置本体には、反応空間及び成膜空間が設けられている
The apparatus main body is provided with a reaction space and a film forming space.

101〜105は夫々、成膜する際に使用されるガスが
充填されているボンベ、1ota〜105aは夫々ガス
供給パイプ、101b〜105bは夫々各ボンベからの
ガスの流量Jul整川ツ用スフローコントロー−y−,
101c〜105Cはそれぞれガス圧力計、101d〜
105d及び101e 〜105eは夫々バルブ、10
1f−105fは夫々対応するカスボンベ内の圧力を示
す圧力計である。
101 to 105 are cylinders filled with gas used in film formation, 1ota to 105a are gas supply pipes, and 101b to 105b are gas flow rates from each cylinder. control-y-,
101c~105C are gas pressure gauges, 101d~
105d and 101e to 105e are valves, respectively.
1f-105f are pressure gauges that indicate the pressure inside the corresponding gas cylinders.

120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体1
18が設置される様に基体ホルダー112が設けられた
成膜空間が形成される構造を有する。ガス導入用の配管
は、二重同心円配置構造となっており、中よりガスボン
ベ101,102よりのガスが導入される第1のガス導
入管109、ガスボンベ103〜105よりのガスが導
入される第2のガス導入管itoを有する。
Reference numeral 120 denotes a vacuum chamber, which has a structure in which a pipe for introducing gas is provided at the upper part and a reaction space is formed downstream of the pipe.
It has a structure in which a film forming space is formed in which a substrate holder 112 is provided such that a substrate holder 18 is installed therein. The gas introduction pipes have a double concentric arrangement structure, with a first gas introduction pipe 109 into which gas from the gas cylinders 101 and 102 is introduced, and a first gas introduction pipe into which gas from gas cylinders 103 to 105 is introduced. It has two gas introduction pipes.

各導入管へのガスボンベからのガスの供給は、ガス供給
パイプライン123〜125によって夫々なされる。1
11はガス導入管109及び110に接続するガス放出
部である。各ガス導入管、各ガス供給パイプライン及び
成膜空間120は、メイン真空バルブ119を介して不
図示の真空排気装置により真空排気される。
Gas is supplied from a gas cylinder to each introduction pipe through gas supply pipelines 123 to 125, respectively. 1
Reference numeral 11 denotes a gas discharge section connected to gas introduction pipes 109 and 110. Each gas introduction pipe, each gas supply pipeline, and the film forming space 120 are evacuated by a vacuum evacuation device (not shown) via the main vacuum valve 119.

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所♀の距離に設
置される。
The base body 118 is installed at an appropriate distance from the position of each gas introduction pipe by moving the base body holder 112 up and down.

113は、基体l18を成膜時に適当な温度に加熱した
り、或いは、成膜前に基体118を予備加熱したり、更
には、成膜後、膜をアニールする為に加熱する基体加熱
ヒータである。
Reference numeral 113 denotes a substrate heater that heats the substrate 118 to an appropriate temperature during film formation, preheats the substrate 118 before film formation, and further heats the substrate 118 to anneal the film after film formation. be.

基体加熱ヒータ113は導線114により電源115に
より電力が供給される。
The base heater 113 is supplied with power from a power source 115 through a conductive wire 114 .

116は、基体温度(T s)の温度を測定する為の熱
電対で温度表示装置117に電気的に接続されている。
116 is a thermocouple for measuring the substrate temperature (Ts), and is electrically connected to the temperature display device 117.

第2図は第1図におけるガス放出部111を更に詳しく
説明するものである。該ガス放出部111は、前記ガス
導入部109に接続せる。孔111aを有する内管11
1bと、外管111cとからなっている。
FIG. 2 illustrates the gas discharge section 111 in FIG. 1 in more detail. The gas discharge section 111 is connected to the gas introduction section 109. Inner tube 11 with hole 111a
1b and an outer tube 111c.

即ち、ガス導入管110を介してガス放出部txtの内
管111bと外管111cとに挟まれた空間に導入され
たガスは前記内管1llbに設けられた孔111aを通
して前記内管111bの中心に向ってその流れ方向を変
化されられ、ガス導入管110を介してガス放出部11
1の内管111bの内部に導入されたガスと主として前
記ガス放出部ittの内部において均一に効率良く混合
される。
That is, the gas introduced into the space between the inner tube 111b and the outer tube 111c of the gas discharge part txt through the gas introduction tube 110 passes through the hole 111a provided in the inner tube 1llb and reaches the center of the inner tube 111b. The flow direction is changed toward the gas discharge part 11 through the gas introduction pipe 110.
The gas introduced into the inner tube 111b of No. 1 is mixed uniformly and efficiently mainly within the gas discharge portion itt.

以下、実施例に従って、本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

〔実施例1〕 第1図に示す成膜装置を用いて1次の様にし本発明の方
法による堆積膜を作成した。
[Example 1] A deposited film according to the method of the present invention was produced in the following manner using the film forming apparatus shown in FIG.

ボンベ101に充填されているSiH4ガスを流% 2
0 s e c mでガス導入管109より、ボンベ1
03に充填されているHeガスで5%に稀釈したF2ガ
スを流量400secmでガス導入管110よりガス吹
き出し口111内に導入した。
The SiH4 gas filled in the cylinder 101 flows%2
From the gas introduction pipe 109 at 0 sec m, cylinder 1
F2 gas diluted to 5% with He gas filled in 03 was introduced into the gas outlet 111 from the gas introduction pipe 110 at a flow rate of 400 seconds.

このとき、真空チャンバー120内の圧力を真空バルブ
119の開閉度を調整して800mTorrにした。基
体に石英ガラス(15cmX15cm)を用いガス放出
部111と基体との距離は30cmに設定した。そうし
たところ、該放出部111の内部で青白い発光が強くみ
られた。基体温度(T s)は各試料に対して表1に示
す様に室温から400″Cまでの間に設定した。
At this time, the pressure inside the vacuum chamber 120 was adjusted to 800 mTorr by adjusting the opening/closing degree of the vacuum valve 119. A quartz glass (15 cm x 15 cm) was used as the base, and the distance between the gas discharge part 111 and the base was set to 30 cm. As a result, strong bluish-white light emission was observed inside the emission section 111. The substrate temperature (Ts) was set for each sample between room temperature and 400''C as shown in Table 1.

この状態で30分間ガスを流すと、表1に示す様な膜厚
のSi:H:F膜が基体上に堆積した。
When gas was allowed to flow in this state for 30 minutes, a Si:H:F film having the thickness shown in Table 1 was deposited on the substrate.

又膜厚の分布むらは±5%以内におさまった。成膜した
Si:H:FII2はいずれの試料も電子線回折によっ
て非晶質であることが確認された。
Furthermore, the unevenness in film thickness distribution was within ±5%. It was confirmed by electron beam diffraction that the Si:H:FII2 film formed was amorphous in all samples.

各試料の非晶質S t :H: F膜上にA立のくし形
電極(ギャップ長200ALm)を蒸着し、導電率測定
用の試料を作成した。各試料を真空タライオタット中に
いれ電圧100Vを印加し、微小電流計(YHP414
0B)で電流を411定し、暗導電率(σd)を求めた
。又600nm、0.3 m w / c m2の光を
照射し、光導電率(σp)を求めた。更に光の吸収より
光学的バンドギャップ(E g 0p’)を求めた。こ
れらの結果は表1に示した。
A vertical comb-shaped electrode (gap length 200 ALm) was deposited on the amorphous S t :H:F film of each sample to prepare a sample for conductivity measurement. Each sample was placed in a vacuum Taliotat, a voltage of 100 V was applied, and a microcurrent meter (YHP414
0B), the current was constant at 411, and the dark conductivity (σd) was determined. Further, 600 nm and 0.3 mw/cm2 light was irradiated to determine the photoconductivity (σp). Furthermore, the optical band gap (E g 0p') was determined from light absorption. These results are shown in Table 1.

表   1 〔実施例2〕 本発明の堆積膜形成装置の他の例を示す、第2図に示し
たガス放出部の代わりに、第3図に示すガス放出部31
1を用いる。前記ガス放出部311は、前記ガス導入管
109に接続せる内管311aと、前記ガス導入管11
0に接続せる外管311bと、前記外管311bの内壁
と前記内管311aの端部とに接するところのガス放出
方向制御部311Cとからなる。即ち、前記ガス導入管
110を介してガス放出部311の外管311bと内管
311aに挟まれた空間に導入されたガスは前記ガス放
出方向制御部311cにより、流れ方向を前記内管31
1aの周に沿うように変化させられ、ガス導入管109
を介してガス放出部311の内管311aの内部に導入
されたガスと均一に効率良く混合される。
Table 1 [Example 2] Another example of the deposited film forming apparatus of the present invention is shown in which a gas discharge section 31 shown in FIG. 3 is used instead of the gas discharge section shown in FIG. 2.
1 is used. The gas discharge section 311 includes an inner pipe 311a connected to the gas introduction pipe 109, and an inner pipe 311a connected to the gas introduction pipe 109.
0, and a gas discharge direction control section 311C that is in contact with the inner wall of the outer tube 311b and the end of the inner tube 311a. That is, the gas introduced into the space between the outer tube 311b and the inner tube 311a of the gas discharge section 311 through the gas introduction tube 110 is controlled by the gas discharge direction control section 311c to change the flow direction to the inner tube 31.
1a, the gas introduction pipe 109
The gas is uniformly and efficiently mixed with the gas introduced into the inner tube 311a of the gas discharge section 311 through the gas discharge section 311.

第3図に示すガス放出部311を用いて、実施例1に示
したと同じ条件で成膜を行なったところ、成膜したSi
:H:F膜はいずれの試料も電子線回折によって非晶質
であることが確認された。
When a film was formed using the gas discharge section 311 shown in FIG. 3 under the same conditions as shown in Example 1, the formed Si
:H:F films were confirmed to be amorphous by electron beam diffraction.

各試料の非晶質Sf:H:F膜上にAMのくし形電極(
ギャップ長200舊m)を蒸着し、導電率測定用の試料
を作成した。各試料を真空タライオスタット中にいれ電
圧100Vを印加し、微少電流計(YHP4140B)
で電流を測定し、暗導電率(σd)を求めた。又600
nm・ 0・3mw/cm2の光を照射し、光導電率(
σp)を求めた。更に光の吸収より光学的バンドギャッ
プ(E g’Pt)を求めた。これらの結果を第2表に
示した。
AM comb-shaped electrodes (
A gap length of 200 mm) was deposited to prepare a sample for conductivity measurement. Each sample was placed in a vacuum taliostat, a voltage of 100 V was applied, and a microcurrent meter (YHP4140B) was used.
The current was measured and the dark conductivity (σd) was determined. 600 again
The photoconductivity (
σp) was calculated. Furthermore, the optical band gap (E g'Pt) was determined from light absorption. These results are shown in Table 2.

表   2 〔実施例3〕 本発明の堆積膜形成装置の更に他の例を示す。Table 2 [Example 3] Still another example of the deposited film forming apparatus of the present invention is shown.

第1図に示す堆積膜形成装置において、第4図に模式的
に示すガス放出部411を用いる。前記ガス放出部jl
lは、ガス導入管109に接続し、孔411aを有する
内管411bと、ガス導入管110に接続せる外管41
1cとからなっている。即ち、前記ガス導入管110を
介してガス放出部411の外管411cと内管411b
とに挟まれた空間に導入されたガスは、前記内管411
bの端部に設けられた孔411aから放出されて、流れ
方向を前記内管411bの中心軸に向いガス放出部41
1の外側に流れる様に変化させられ、ガス導入管109
を介してガス放出部411の内管411bの内部に導入
されたガスと主として前記ガス放出部411の外側の空
間において均一に効率良く混合される。
In the deposited film forming apparatus shown in FIG. 1, a gas discharge section 411 schematically shown in FIG. 4 is used. The gas discharge part jl
l denotes an inner tube 411b connected to the gas introduction tube 109 and having a hole 411a, and an outer tube 41 connected to the gas introduction tube 110.
It consists of 1c. That is, the outer pipe 411c and the inner pipe 411b of the gas discharge section 411 are connected to each other through the gas introduction pipe 110.
The gas introduced into the space between the inner pipe 411 and
The gas is released from the hole 411a provided at the end of the inner tube 411b, and the flow direction is directed toward the central axis of the inner tube 411b.
1, the gas introduction pipe 109
The gas introduced into the inner tube 411b of the gas discharge section 411 through the gas discharge section 411 is mixed uniformly and efficiently mainly in the space outside the gas discharge section 411.

第4図に示すガス放出部411を用いて、実施例1に示
したと同じ条件で成膜を行なったところ、成膜したSi
:H:Fll!2はいずれの試料も電子回折によって非
晶質であることが確認された。
When a film was formed using the gas discharge part 411 shown in FIG. 4 under the same conditions as shown in Example 1, the formed Si
:H:Fll! It was confirmed by electron diffraction that all samples of No. 2 were amorphous.

各試料の非晶質Si:H:F膜上にA文のくし形電極(
ギャップ長200 JLm)を蒸着し。
A comb-shaped electrode (
A gap length of 200 JLm) was deposited.

導電率+!III定用の試料を作成した。各試料を真空
タライオスタット中にいれ電圧toovを印加し、微少
電流計(YHP4140B)で電流を測定し、暗導電率
(σd)を求めた。又600nm、0.3mw/cm2
の光を照射し、光導電率(σp)を求めた。更に光の吸
収より光学的バンドギャップ(Eg’lを求めた。これ
らの結果は第3表に示した。
Conductivity +! A sample for regular use was prepared. Each sample was placed in a vacuum taliostat, a voltage toov was applied, the current was measured with a microcurrent meter (YHP4140B), and the dark conductivity (σd) was determined. Also 600nm, 0.3mw/cm2
was irradiated with light, and the photoconductivity (σp) was determined. Furthermore, the optical band gap (Eg'l) was determined from light absorption. These results are shown in Table 3.

表   3 比較例 次に第4図に示す装置を用いてA−3i膜を堆積した。Table 3 Comparative example Next, an A-3i film was deposited using the apparatus shown in FIG.

この装置は第1図に示す装置より、ガス放出部111を
とりのぞいたのと同じ構造になっており、同軸円筒状に
配置しである。
This device has the same structure as the device shown in FIG. 1 except that the gas discharge section 111 is removed, and is arranged in a coaxial cylindrical shape.

以下、第5図の各番号と第1図の各番号とは下2ケタは
同じものに対応している。
Hereinafter, each number in FIG. 5 and each number in FIG. 1 have the same lower two digits.

基体温度を200℃、SiH4ガス流量20secm、
Heガスで5%に稀釈したF2ガス流@1400sec
mとし、内圧を種々に変化させて作成した各試料の膜厚
、σd、σp、 E goptの値を表4に示す、なお
、成膜時間は30分間ではlit価できる膜厚の試料が
得られなかったため、各3時間で行なった。
The substrate temperature was 200°C, the SiH4 gas flow rate was 20 sec,
F2 gas flow diluted to 5% with He gas @1400sec
Table 4 shows the film thickness, σd, σp, and Egopt values of each sample prepared with various internal pressures.It should be noted that a film forming time of 30 minutes does not allow for a sample with a film thickness that can be considered as a lit value. Because I couldn't do it, I did it for 3 hours each.

表  4 〔効果〕 以トの詳細な説明及び各実施例より、本発明の堆積膜形
成装置を用いれば、高速成膜化を計ると同時に膜品質の
良い堆積膜が得られる。又、生産性、量産性に優れ、高
品質で電気的、光学的、半導体的等の物理特性に優れた
膜を簡便に得ることが出来る。
Table 4 [Effects] From the detailed explanations and examples below, if the deposited film forming apparatus of the present invention is used, high-speed film formation can be achieved and at the same time, a deposited film with good quality can be obtained. Furthermore, it is possible to easily obtain a film with excellent productivity and mass production, and with high quality and excellent physical properties such as electrical, optical, and semiconductor properties.

【図面の簡単な説明】[Brief explanation of drawings]

ff41図は本発明の実施例の成膜装置の模式的概略図
である。 第2図、第3図、第4図はガス放出部の模式的概略図で
ある。 第5図は比較例に用いて成膜装置の模式的概略図である
。 101〜105. 501〜505−−−−−−−−−
−−−−−ガスポンベ101a 〜105a、 501
a 〜505a−−−−−−−−ガス導入管101b−
105b、501b〜505b−−−マスフロメーター
101cm105c、501c 〜505cm−−−−
−−−ガス圧力計101d−105d  及び 101e 〜105e、501d 〜505d  及び
501 e 〜505 e−−−−−−−−−−−−−
−−−m−−−−−−−−−−−−−−−/< )Iy
ブ101f−105f、501f〜505 f−−−−
−−−−−−−一圧力計109 、110 、509 
、510−−−−−−−−−−一−−−−−−ガス導入
管111 、511−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−ガス放出部112
 、512−−−−−−−−−−−−−−−−−−−−
−−−−−−一−−−−基体ホルダー113 、513
−−一−−−−−−−−−−−−−−−−−−一基体加
熱用ヒーター+ 1 RFi I R−−−−−−一−
−−−−−−ル沫イ庁【庄手二々−田執・計錯118 
、518−−−−−−−−−−−−−一−−−−−−−
−−−−−−−−−−−−−−−−−−一基  体11
9 、519−−−−−−−−−−一−−−−−−−−
−−−−−−−真空排気へルブ111 a 、 411
 a−−−−−−−−−−−=−−−−−一−−−−−
−−−−−−−−−−−−−一−一孔l L l b 
、 3 L l a 、 41 l b−−−−−−−
−−−−−−−−−−−−−=−−−一内 管111 
c 、 31 l b 、 411 c−−−−−−−
−−−−−−−−−−−一−−−−−−−外 管311
 c−−−−−−−−−−−−−−−−−−−−−−−
−−−−−ガス放出方向制御部Jlb ど 躬6図
Figure ff41 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention. FIG. 2, FIG. 3, and FIG. 4 are schematic diagrams of the gas discharge section. FIG. 5 is a schematic diagram of a film forming apparatus used in a comparative example. 101-105. 501-505---------
----- Gas pump 101a ~ 105a, 501
a ~505a------Gas introduction pipe 101b-
105b, 501b ~ 505b --- Mass flow meter 101cm 105c, 501c ~ 505cm ---
--- Gas pressure gauges 101d-105d and 101e ~ 105e, 501d ~ 505d and 501 e ~ 505 e------------
−−−m−−−−−−−−−−−−−/< )Iy
Bu 101f-105f, 501f-505f----
---------One pressure gauge 109, 110, 509
, 510-------1------ Gas introduction pipe 111, 511---------------
-------------------- Gas discharge part 112
, 512---------------
---------1---- Substrate holder 113, 513
---1---------------1 substrate heating heater + 1 RFi I R-----1-
---------Rusui Agency [Shote Futada-Tatsuki/Scheme 118
, 518-----------1----------
----------------------One base body 11
9, 519----------1----------
--------Vacuum exhaust valve 111a, 411
a---------=-------1------
--------------- One hole l L l b
, 3 L l a , 41 l b------
−−−−−−−−−−−−−=−−−One inner tube 111
c, 31 l b, 411 c------
−−−−−−−−−−−−−−−−−−−Outer tube 311
c---------------
-----Gas release direction control part Jlb Doman 6 diagram

Claims (2)

【特許請求の範囲】[Claims] (1)堆積膜形成用の気体状原料物質と、該原料物質に
酸化作用をする性質を有する気体状ハロゲン系酸化剤と
を、反応空間内に導入して化学的に、堆積膜を形成する
装置において、堆積膜形成用の気体状原料物質放出管と
、前記原料物質に酸化作用をする性質を有する気体状ハ
ロゲン系酸化剤放出管とが、同軸円筒状構造で、内管の
壁面に孔が開いているガス放出手段を有することを特徴
とする堆積膜形成装置。
(1) Chemically forming a deposited film by introducing a gaseous raw material for forming a deposited film and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material into a reaction space. In the apparatus, a gaseous raw material material discharge tube for forming a deposited film and a gaseous halogen-based oxidant discharge tube having the property of oxidizing the raw material material have a coaxial cylindrical structure, and holes are formed on the wall surface of the inner tube. 1. A deposited film forming apparatus characterized by having a gas discharge means that is open.
(2)前記同軸円筒状構造のガス放出手段の内管の端部
の壁面に孔が開いている特許請求の範囲第1項に記載の
堆積膜形成装置。
(2) The deposited film forming apparatus according to claim 1, wherein a hole is opened in the wall surface of the end of the inner tube of the gas discharge means having a coaxial cylindrical structure.
JP60294451A 1985-12-26 1985-12-26 Deposited film forming equipment Expired - Lifetime JPH0645894B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60294451A JPH0645894B2 (en) 1985-12-26 1985-12-26 Deposited film forming equipment
US08/073,976 US5391232A (en) 1985-12-26 1993-06-08 Device for forming a deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294451A JPH0645894B2 (en) 1985-12-26 1985-12-26 Deposited film forming equipment

Publications (2)

Publication Number Publication Date
JPS62151569A true JPS62151569A (en) 1987-07-06
JPH0645894B2 JPH0645894B2 (en) 1994-06-15

Family

ID=17807949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294451A Expired - Lifetime JPH0645894B2 (en) 1985-12-26 1985-12-26 Deposited film forming equipment

Country Status (1)

Country Link
JP (1) JPH0645894B2 (en)

Also Published As

Publication number Publication date
JPH0645894B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US5160543A (en) Device for forming a deposited film
JPS62156813A (en) Thin film semiconductor element and forming method thereof
JPS62151572A (en) Deposited film forming device
JPS62151569A (en) Deposited film forming device
JPS62139875A (en) Formation of deposited film
JPH0645883B2 (en) Deposited film formation method
JPS62142780A (en) Formation of deposited film
JPH0645882B2 (en) Deposited film formation method
JPS62199771A (en) Formation of deposited film
JPS62158868A (en) Deposited film forming device
JPS6299464A (en) Deposited film formation
JPS6338581A (en) Functional deposited film forming device
JPS62151571A (en) Deposited film forming device
JPS6347363A (en) Formation of functional deposited film
JPS62228478A (en) Deposited film forming device
JPS6296674A (en) Formation of deposited film
JPS6299465A (en) Deposited film formation
JPS62229825A (en) Deposit film forming method
JPS62156270A (en) Deposited film forming device
JPS62228479A (en) Deposited film forming device
JPS6299466A (en) Deposited film formation
JPH0647737B2 (en) Deposited film forming equipment
JPS63166214A (en) Deposition film forming method
JPH0645892B2 (en) Deposited film formation method
JPS62228474A (en) Deposited film forming device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term