JPS62156270A - Deposited film forming device - Google Patents

Deposited film forming device

Info

Publication number
JPS62156270A
JPS62156270A JP60297212A JP29721285A JPS62156270A JP S62156270 A JPS62156270 A JP S62156270A JP 60297212 A JP60297212 A JP 60297212A JP 29721285 A JP29721285 A JP 29721285A JP S62156270 A JPS62156270 A JP S62156270A
Authority
JP
Japan
Prior art keywords
film
deposited film
gas
precursors
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60297212A
Other languages
Japanese (ja)
Inventor
Shunichi Ishihara
俊一 石原
Masaaki Hirooka
広岡 政昭
Junichi Hanna
純一 半那
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60297212A priority Critical patent/JPS62156270A/en
Publication of JPS62156270A publication Critical patent/JPS62156270A/en
Priority to US07/837,601 priority patent/US5160543A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make film forming speed higher and film quality better by blowing the precursors formed by blowing raw materials and halogen oxidizing agents out of a prescribed gas blow port onto a base body. CONSTITUTION:The gaseous raw materials 101, 102 for forming a deposited film and the gaseous halogen oxidizing agents 103-105 for oxidizing said materials are blown out of the blow pipe 111 having a space where both gases 101-105 meet. Such gases 101-105 are introduced into a reaction space where the gases are brought into chemical contact with each other and the precursors including the precursors in the excited state are formed. >=1 kinds of the precursors among such precursors are then blown onto the base body 118 existing in a vacuum vessel 120 from the pipe 111 by which the deposited film is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、機能性膜、殊に半導体デバイス、電子写真用
の感光デバイス、光学的画像入力装置用の光入力センサ
ーデバイス等の電子デバイスの用途に有用な機能性堆積
膜の形成に使用する堆積膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to functional films, particularly for electronic devices such as semiconductor devices, photosensitive devices for electrophotography, and optical input sensor devices for optical image input devices. The present invention relates to a deposited film forming apparatus used for forming a functional deposited film useful for various applications.

〔従来の技術〕[Conventional technology]

従来、半導体膜、絶縁膜、光導電膜、磁性膜或いは金属
膜等の非晶質乃至多結晶質の機能性膜は、所望される物
理的特性や用途等の観点から個々に適した成膜方法が採
用されている。
Conventionally, amorphous or polycrystalline functional films such as semiconductor films, insulating films, photoconductive films, magnetic films, or metal films have been formed by forming films that are individually suited from the viewpoint of desired physical properties and applications. method has been adopted.

例えば、必要に応じて、水素原子nやハロゲン原子N等
の補償剤で不対電子が補償された非晶質や多結晶質の非
単結晶シリコン(以後[N ON −8i(H,X)J
と略記し、その中でも殊に非晶質シリコンを示す場合に
は「A−8i  (H,X) J、多結晶シリコンを示
ず場合には[poly −8i  (H。
For example, if necessary, amorphous or polycrystalline non-single crystal silicon (hereinafter [N ON -8i(H, J
In particular, it is abbreviated as "A-8i (H,X) J" when it refers to amorphous silicon, and [poly -8i (H.

X)」と記載)膜等のシリコン堆積成(尚、俗に言う微
結晶シリフンは、A−8i  (H,X)の範躊にはい
ることは断るまでもない)の形成には、真空愈着法、プ
ラズマCVD法、熱CVD法、反応スパッタリング法、
イオンブレーティング法、光CVD法などが試みられて
おり、一般的には、プラズマCVD法が広く用いられ、
企業化されている。
Vacuum is used to form silicon deposits such as `` Deposition method, plasma CVD method, thermal CVD method, reactive sputtering method,
Ion blating method, photo-CVD method, etc. have been tried, but in general, plasma CVD method is widely used.
It has been corporatized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

百年ら、従来から一般化されているプラズマCVD法に
よるシリコン堆積膜の形成に於ての反応プロセスは、従
来のCVD法に比較してがなり複雑であり、その反応機
構も不明な点が少なくない。又、その堆積膜の形成パラ
メーターも多く、(例えば、基体湿度、導入ガスの流量
と比、形成時の圧力、高周波電力、電極構造、反応容器
の構造、排気の速度、プラズマ発生方式など)これらの
多くのパラメータの組み合わせによるため、時にはプラ
ズマが不安定な状態になり、形成された堆積膜に著しい
悪影響を与えることが少なくなかった。そのうえ、装置
特有のパラメータを装置ごとに選定しなければならず、
したがって製造条件を一般化することがむずかしいとい
うのが実状であった。
Hyakunen et al. said that the reaction process in forming silicon deposited films by the conventionally popular plasma CVD method is more complex than that of the conventional CVD method, and there are still many unknowns about the reaction mechanism. do not have. In addition, there are many formation parameters for the deposited film (e.g. substrate humidity, flow rate and ratio of introduced gas, pressure during formation, high frequency power, electrode structure, reaction vessel structure, pumping speed, plasma generation method, etc.). Due to the combination of many parameters, the plasma sometimes becomes unstable, which often has a significant adverse effect on the deposited film formed. Moreover, device-specific parameters must be selected for each device.
Therefore, the reality is that it is difficult to generalize the manufacturing conditions.

他方、シリコン堆積膜として、電気的、光学的特性を各
用途毎に十分に満足させ得るものを発現だせるためには
、現状ではプラズマCVD法によって形成することが最
良とされている。
On the other hand, in order to develop a silicon deposited film that satisfies the electrical and optical characteristics for each application, it is currently considered best to form it by plasma CVD.

而乍ら、シリコン堆積膜の応用用途によっては、大面積
化、膜厚均一性、膜品質の均一性を十分満足させて再現
性のある量産化を図らねばならないため、プラズマCV
D法によるシリコン堆積膜の形成においては、量産装置
に多大な設備投資が必要となり、またその量産の為の管
理項目も複雑になり、管理許容幅も狭く、装置の調整も
微妙であることから、これらのことが、今後改善すべき
問題点として指摘されている。
However, depending on the application of silicon deposited films, plasma CV
Forming a silicon deposited film using the D method requires a large amount of equipment investment for mass production equipment, and the management items for mass production are also complicated, the tolerance range for management is narrow, and the adjustment of the equipment is delicate. , these have been pointed out as problems that should be improved in the future.

又、プラズマCVD法の場合には、成膜される基体の配
されている成膜空間に於いて高周波或いはマイクロ波等
によって直接プラズマを生成している為に、発生する電
子や多数のイオン種が成膜過程に於いて膜にダメージを
与え膜品質の低下、膜品質の不均一化の要因となってい
る。
In addition, in the case of plasma CVD method, since plasma is directly generated by high frequency waves or microwaves in the film forming space where the substrate to be film is placed, the generated electrons and many ion species are This causes damage to the film during the film formation process, causing deterioration of film quality and non-uniformity of film quality.

この点の改良として提案されている方法ロ私間接プラズ
マCVD法がある。
An indirect plasma CVD method has been proposed as an improvement on this point.

該間接プラズマCVD法は、成膜空間から離れた上流位
置にてマイクロ波等によってプラズマを生成し、該プラ
ズマを成膜空間まで輸送することで、成膜に有効な化学
種を選択的に使用出来る様に計ったものである。
The indirect plasma CVD method generates plasma using microwaves or the like at an upstream location away from the film-forming space, and transports the plasma to the film-forming space to selectively use chemical species that are effective for film-forming. It was planned to be possible.

而乍ら、斯かるプラズマCVD法でも、プラズマの輸送
が必須であることから、成膜に有効な化学種の寿命が長
くなればならず、自ずと、使用するガス種が制限され、
種々の堆積膜が得られないこと、及びプラズマを発生す
る為に多大なエネルギーを要すること、成膜に有効な化
学種の生成及び量が簡便な管理下に本質的に置かれない
こと等の問題点は桟積している。
However, since the plasma CVD method also requires plasma transport, the lifetime of the chemical species effective for film formation must be long, which naturally limits the types of gases that can be used.
These problems include the inability to obtain various deposited films, the large amount of energy required to generate plasma, and the fact that the generation and amount of chemical species effective for film formation cannot be easily controlled. The problems are stacked.

プラズマCVD法に対して、光CVD法は、成膜時と膜
品質にダメージを与えるイオン種や電子が発生しないと
いう点で有利ではあるが、光源にそれ程多くの種類がな
いこと、光源の波長も紫外に片寄っていること、工業化
する場合には大型の光源とその電源を要すること、光源
からの光を成膜空間に導入する窓が成膜時に被膜されて
仕舞う為に成膜中に光量の低下、強いては、光源からの
光が成膜空間に入射されなくなるという問題点がある。
Compared to the plasma CVD method, the photo-CVD method is advantageous in that it does not generate ion species or electrons that damage film formation and film quality, but it does not have as many types of light sources, and the light source wavelength For industrial use, a large light source and its power source are required; and because the window that introduces the light from the light source into the deposition space is covered with a film during deposition, the amount of light decreases during deposition. There is a problem in that the light from the light source is no longer incident on the film forming space.

上述の如く、シリコン堆積膜の形成に於ては、解決され
るべき点は、まだまだ残っており、その実用可能な特性
、均一性を維持させながら低コストな装置で省エネルギ
ー化を計って量産化できる形成方法を開発することが切
望だれている。これ等のことは、他の機能性膜、例えば
窒化シリコン膜、炭化シリコン膜、酸化シリコン膜に於
ても各々同様の解決されるべき問題として挙げることが
出来る。
As mentioned above, there are still many issues to be solved regarding the formation of silicon deposited films, and it is important to mass-produce them using low-cost equipment that saves energy while maintaining its practical properties and uniformity. There is a great desire to develop a method of forming the material. These problems can be cited as similar problems to be solved in other functional films, such as silicon nitride films, silicon carbide films, and silicon oxide films.

〔目的〕 本発明の目的は、上述した堆積膜形成法の欠点を除去す
ると同時に、従来の形成方法によらない新規な堆積膜形
成装置を提供Tるものである。
[Object] The object of the present invention is to eliminate the drawbacks of the above-mentioned deposited film forming method and at the same time provide a novel deposited film forming apparatus that does not rely on conventional forming methods.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に亘って均一特性の堆積膜が
得られる堆積膜形成装置を提供するものである。
Another object of the present invention is to provide a deposited film forming apparatus that saves energy, allows easy control of film quality, and provides a deposited film with uniform characteristics over a large area.

本発明の更に別の目的は、生産性、量産性に優れ、高品
質で電気的、光学的、半導体的等の物理特性に優れた膜
が簡便に得られる堆積膜形成装置を提供することでもあ
る。
Still another object of the present invention is to provide a deposited film forming apparatus that is highly productive and mass-producible, and that can easily produce films of high quality and excellent physical properties such as electrical, optical, and semiconductor properties. be.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する本発明の堆積膜形成装置は、堆積膜
形成用の気体状原料物質と、該原料物質に酸化作用をす
る性質を有する気体状ハロゲン系酸化剤と、を反応空間
内に導入して化学的に接触させることで励起状態の前駆
体を生成し、該前駆体を堆積膜構成要素の供給源として
成膜空間内にある基体上に堆積膜を形成Tる装置に於い
て、両ガスの介合空間を有するガス吹き出し口より吹き
出す機購を有することを特徴とする。
A deposited film forming apparatus of the present invention that achieves the above object introduces into a reaction space a gaseous raw material for deposited film formation and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material. In an apparatus for generating a precursor in an excited state by chemically contacting the precursor, and forming a deposited film on a substrate in a deposition space using the precursor as a source of deposited film components, It is characterized by having a mechanism for blowing out gas from a gas outlet having an intervening space for both gases.

〔作用〕[Effect]

上記の本発明の堆積膜形成装置によれば、省エネルギー
化と同時に膜厚均一性、膜品質の均一性を十分満足だせ
て管理の簡素化と量産化を図り、量産装置に多大な設備
Y資も必要とせず、またその量産の為の管理項目も明確
になり、管理許容幅も広く、装置の調整も簡単になる。
According to the above-described deposited film forming apparatus of the present invention, it is possible to achieve sufficient uniformity of film thickness and film quality at the same time as saving energy, simplifying management and mass production, and requiring a large amount of equipment and resources for mass production equipment. In addition, the control items for mass production become clear, the control tolerance is wide, and equipment adjustment becomes easy.

本発明の堆積膜形成装置に於いて、使用される堆積膜形
成用の気体状原料物質は、気体状ハロゲン系酸化剤との
化学的接触により酸化作用をうけるものであり、目的と
する堆積膜の種類、特性、用途等によって所望に従って
適宜選択されるう本発明に於いては、上記の気体状原料
物質及び気体状ハロゲン系酸化剤は、化学的接触をする
際に気体状とぎれるものであれば良く、通常の場合は、
気体でも液体でも固体であっても差支えない。
In the deposited film forming apparatus of the present invention, the gaseous raw material for forming the deposited film used is oxidized by chemical contact with the gaseous halogen-based oxidizing agent, and the target deposited film is In the present invention, the above-mentioned gaseous raw material and gaseous halogen-based oxidizing agent may be selected as desired depending on the type, characteristics, use, etc. In normal cases,
It can be a gas, liquid, or solid.

堆積膜形成用の原料物質あるいはハロゲン系酸化剤が液
体又は固体である場合には、A「、He1N2、I2等
のキャリアーガスを使用し、必要に応じては熱も加えな
が・らバブリングを行なって反応空間に堆積膜形成用の
原料物質及びハロゲン系酸化剤を気体状として導入する
When the raw material for forming the deposited film or the halogen-based oxidizing agent is liquid or solid, use a carrier gas such as A, He1N2, I2, etc., and perform bubbling while adding heat if necessary. Then, a raw material for forming a deposited film and a halogen-based oxidizing agent are introduced in gaseous form into the reaction space.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キャリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidizing agent can be adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidizing agent. Set.

本発明に於いて使用される堆積膜形成用の原料物質とし
ては、例えば、半導体性或いは電気的絶縁性のシリコン
堆積膜やゲルマニウム堆積膜等のテトラヘドラル系の堆
積膜を得るのであれば、直鎖状、及び分岐状の鎖状シラ
ン化合物、環状シラン化合物、鎖状ゲルマニウム化合物
等が有効なものとして挙げることが出来る。
As the raw material for forming the deposited film used in the present invention, for example, if a tetrahedral deposited film such as a semiconductor or electrically insulating silicon deposited film or germanium deposited film is to be obtained, linear Effective examples include linear and branched chain silane compounds, cyclic silane compounds, and chain germanium compounds.

具体的には、直鎖状シラン化合物としてはS 1 nH
2n+2 (m=t 12131415161718)
 、分岐状鎖状シラン化合物としては、5iHaSiH
(S 1Ha) S 1H2s iH3、鎖状ゲルマン
化合物としては、GemI2m+2 (m=1.2.3
.4.5)等が挙げられる。この他、例えばスズの堆積
膜を作成TるのであればSnH4等の水素化スズを有効
な原料物質として挙げることが出来る。
Specifically, as a linear silane compound, S 1 nH
2n+2 (m=t 12131415161718)
, as the branched chain silane compound, 5iHaSiH
(S 1Ha) S 1H2s iH3, as a chain germane compound, GemI2m+2 (m=1.2.3
.. 4.5) etc. In addition, for example, if a deposited film of tin is to be produced, tin hydride such as SnH4 can be used as an effective raw material.

勿論、これ等の原料物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, these raw materials can be used not only alone, but also as a mixture of two or more.

本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内に導入される際気体状とされ、同時に反応空間内に
導入される堆積膜形成用の気体状原料物質に化学的接触
だけで効果的に酸化作用をする性質を有するもので、F
2、(:’j2、Br2、I2等のハロゲンガス、発生
期状蕩の弗素、塩素、臭素等が有効なものとして挙げる
ことが出来る。
The halogen-based oxidizing agent used in the present invention is in a gaseous state when introduced into the reaction space, and is simultaneously introduced into the reaction space through chemical contact with the gaseous raw material for forming a deposited film. It has the property of effectively oxidizing, and F
Effective examples include halogen gases such as 2, (:'j2, Br2, and I2), nascent fluorine, chlorine, and bromine.

これ等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望の流量と供給圧を与え
られて反応空間内に導入されて前記原料物質と混合衝突
することで化学的接触をし、前記原料物質に酸化作用を
して励起状態の前駆体を含む複数種の前駆体を効率的に
生成する。生成される励起状運の前駆体及び他の前駆体
は、少なくともそのいずれか1つが形成される堆積膜の
構成要素の供給源として働く。
These halogen-based oxidants are in gaseous form, and are introduced into the reaction space together with the gaseous raw material for forming the deposited film at a desired flow rate and supply pressure, and mixed and collided with the raw material. The raw material is brought into chemical contact and oxidized to efficiently generate a plurality of types of precursors including excited state precursors. The excited precursors and other precursors produced serve as a source of components of the deposited film in which at least one of them is formed.

生成される前駆体は分解して又は反応して別の励起状蕩
の前駆体又は別の励起状態にある前駆体になって、或い
は必要に応じてエネルギーを放出はするがそのままの形
態で成膜空間に配設された基体表面に触れることで三次
元ネットワーク構造の堆積膜が作成だれる。
The precursors produced may decompose or react to become other excited precursors or precursors in another excited state, or may be formed in that form, though releasing energy if necessary. A deposited film with a three-dimensional network structure is created by touching the surface of the substrate disposed in the film space.

励起されるエネルギーレベルとしては、前記励起状態の
前駆体がより低いエネルギーレベルにエネルギー?移す
る、又は別の化学種に変化する過程に於いてう1°、光
を伴うエネルギーレベルであることが好ましい。斯かる
エネルギーの遷移に発光を伴なう励起状態の前駆体を含
め活性化された前駆体が形成されることで本発明の堆稍
腋形成プロセスは、より効率良く、より省エネルギーで
進行し、膜全体に亘って均一でより良好な物理特性を有
する堆積膜が形成される。
As the energy level to be excited, the excited state precursor is energy to a lower energy level? In the process of transferring or changing into another chemical species, it is preferable that the energy level is accompanied by light. By forming activated precursors including excited state precursors that are accompanied by light emission due to such energy transition, the axillary formation process of the present invention progresses more efficiently and with more energy savings, A deposited film is formed that is uniform throughout the film and has better physical properties.

本発明に於いては、堆積膜形成プロセスが円滑に進行し
、高品質で所望の物理特性を有する膜が形成される可く
、成膜因子としての、原料物質及びハロゲン系酸化剤の
種類と組み合せ、これ等の混合比、混合時の圧力、流量
、成膜空間内圧、ガスの原型、成膜温度(基体温度及び
雰囲気温度)が所望に応じて適宜選択される。これ等の
成膜因子は有機的に関連し、単独で決定されるものでは
なく相互関連の下に夫々に応じて決定だれる。本発明に
於いて、反応空間に導入される堆積膜形成用の気体状原
料物質と気体状ハロゲン系酸化剤との量の割合は、上記
成膜因子の中関連する成膜因子との関係に於いて適宜所
望に従って決められるが、導入流量比で、好ましくは、
1/20〜100/1が適当であり、よく好ましくは1
15〜50/1とされるのが望ましい。
In the present invention, the type and type of raw material and halogen-based oxidizing agent are selected as film-forming factors so that the deposited film forming process can proceed smoothly and a film with high quality and desired physical properties can be formed. The combination, the mixing ratio thereof, the pressure during mixing, the flow rate, the internal pressure of the film forming space, the original gas, and the film forming temperature (substrate temperature and ambient temperature) are appropriately selected as desired. These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other. In the present invention, the ratio of the amounts of the gaseous raw material for forming a deposited film and the gaseous halogen-based oxidizing agent introduced into the reaction space is determined depending on the relationship with the relevant film-forming factors among the above-mentioned film-forming factors. The introduction flow rate ratio can be determined as desired, but preferably,
1/20 to 100/1 is suitable, preferably 1/20 to 100/1.
It is desirable that the ratio be 15 to 50/1.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ハロゲン系酸化剤との化学的
接触を確率的により高める為には、より高い方が良いが
、成膜空間内の圧力が高すぎると、化学的接触で生じた
前駆体が、他の前駆体あるいは気体状原料物質と衝突を
おこし、気相中で二次反応をおこし、基板に到着する前
にポリメリゼーションをおこし、ポリマーとなってしま
い、膜堆積に寄与しなくなる。また部分的にポリメリゼ
ーションをおこした前駆体により形成した膜の品質は悪
いものである。したがって、成膜空間内の圧力は余り高
くすることもできず、そのため化学的接触で生じる前駆
体の生成量にも限界が生じる。そのため、本発明では、
ガスの吹き出し口を細く絞ることにより、ガスの吹き出
し管内の圧力を高く、かつ反応チャンバー内の圧力を低
くおさえることができ、高堆積、高品質の膜が形成でき
る。ガスの吹き出し管内の圧力は、ガスの吹き出し口の
大きざ及びガスの流気によって決まるが、気体状原料物
質と、気体状ハロゲン系酸化剤との化学的接触を増加さ
せ、前駆体の作成を効率よく行なうためには、通常I 
Q torr以上、より望ましくは100 torr以
上である。このように、ガスの吹き出し口を細く絞り、
吹き出し管内の圧力を高くすることにより、前記堆m膜
形成用の原料物質及びハロゲン系酸化剤が均一に効率良
く混合され、前記前駆体■が効率的に生成される。
The pressure at the time of mixing when introduced into the reaction space is preferably higher in order to increase the probability of chemical contact between the gaseous raw material and the gaseous halogen-based oxidant, but If the pressure in the space is too high, the precursors produced in the chemical contact will collide with other precursors or gaseous source materials, causing secondary reactions in the gas phase and causing the polypropylene to form before reaching the substrate. Melization occurs and becomes a polymer, which no longer contributes to film deposition. Furthermore, the quality of films formed using partially polymerized precursors is poor. Therefore, the pressure within the film forming space cannot be made too high, and therefore there is a limit to the amount of precursor produced through chemical contact. Therefore, in the present invention,
By narrowing the gas outlet, the pressure in the gas outlet tube can be kept high and the pressure in the reaction chamber can be kept low, making it possible to form a high-density, high-quality film. The pressure inside the gas outlet pipe is determined by the size of the gas outlet and the gas flow, but it increases the chemical contact between the gaseous source material and the gaseous halogen-based oxidant, and facilitates the creation of the precursor. In order to do it efficiently, it is usually necessary to
Q torr or more, more preferably 100 torr or more. In this way, narrow the gas outlet,
By increasing the pressure inside the blow-off tube, the raw material for forming the deposited film and the halogen-based oxidizing agent are mixed uniformly and efficiently, and the precursor (1) is efficiently produced.

しかしながら、両ガスを混合した後、反応を十分におこ
させ、前駆体0を効率的に生成するには、吹き出し管内
の圧力の高いところで、ある時間(この時間は、原料物
質及びハロゲン系酸化剤の流量によって異なる)混合さ
れた状態におかれることが必要である。そのため、両ガ
スの導入管のあとに、介合空間をおいたのち、吹き出し
管の穴より、前駆体を吹き出丁ことが必要である。
However, after mixing both gases, in order to cause a sufficient reaction and to efficiently generate precursor 0, it is necessary to hold the gases at a high pressure place in the blow-off pipe for a certain period of time (this time is required for the raw material and the halogen-based oxidant (varies depending on the flow rate). Therefore, it is necessary to provide an intervening space after the introduction tubes for both gases, and then blow out the precursor through the hole in the blowout tube.

成膜空間内の圧力は、吹き出し管内で生成された前駆体
の気相中での反応を防ぐため、及び不純物の混入を防ぐ
ため低いほうがより望ましい。通常1 torr以下、
好ましくは0.1torr以下にする0 成膜時の基体温度(Ts)としては、使用されるガス種
及び形成される堆積膜の種数と要求される特性に応じて
、個々に適宜所望に従って設定されるが、非晶質の膜を
得る場合には好ましくは室温から450℃、より好まし
くは50〜400℃とぎれるのが望ましい。殊に半導体
性や光導電性等の特性がより良好なシリコン堆積膜を形
成する場合には、基体温度(Ts)は70〜350℃と
されるのが望ましい。士た、多結晶の膜を得る場合には
、好ましくは200〜650℃、より好ましくは300
〜a o o ”cとされるのが望ましい。
It is more desirable that the pressure in the film forming space be low in order to prevent reaction of the precursor produced in the blow-off tube in the gas phase and to prevent contamination with impurities. Usually less than 1 torr,
The substrate temperature (Ts) during film formation is preferably set to 0.1 torr or less as desired depending on the type of gas used, the number of types of deposited films to be formed, and the required characteristics. However, in order to obtain an amorphous film, it is desirable that the temperature is preferably between room temperature and 450°C, more preferably between 50 and 400°C. In particular, when forming a deposited silicon film with better properties such as semiconductor properties and photoconductivity, it is desirable that the substrate temperature (Ts) be 70 to 350°C. When obtaining a polycrystalline film, the temperature is preferably 200 to 650°C, more preferably 300°C.
~a o o ”c is preferable.

成膜空間の雰囲気温度(Tat)としては、生成される
前記前駆体■及び前記前駆体0が成膜に不適当な化学種
に変化せず、且つ効率良く前記前駆体■が生成される様
に基体温度(Ts)との関連で適宜所望に応じて決めら
れる。
The atmospheric temperature (Tat) in the film forming space is set so that the precursor (1) and the precursor (0) that are generated do not change into chemical species unsuitable for film formation, and the precursor (2) is efficiently generated. It can be determined as desired in relation to the substrate temperature (Ts).

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い。導電性基体
としては、例えば、NiCr。
The substrate used in the present invention may be electrically conductive or electrically insulating, as long as it is appropriately selected depending on the intended use of the deposited film to be formed. As the conductive substrate, for example, NiCr.

ステンレス、Ai、Cr、 MoXAuXI r、 N
b、 Ta。
Stainless steel, Ai, Cr, MoXAuXI r, N
b, Ta.

VXTi、Pt5Pd等の金属又はこれ等の合金が挙げ
られる。
Examples include metals such as VXTi and Pt5Pd, and alloys thereof.

電気絶縁性基体としては、ポリエステル、ポリエチレン
、ポリカーボネート、セルローズアセテート、ポリプロ
ピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリス
チレン、ポリアミド等の合成樹脂のフィルム又はシート
、ガラス、セラミック、紙等が通常使用される。これら
の電気絶縁性基体は、好適には少なくともその一方の表
面が導電処理され、該導電処理された表面側に他の層が
設けられるのが望ましい。
As the electrically insulating substrate, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. Preferably, at least one surface of these electrically insulating substrates is subjected to a conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えばガラスであれば、その表面がNiCr。For example, if it is glass, its surface is NiCr.

A1、Cr、 MO% Au、 I r、 Nb、 T
as V、 Tt、 Pt。
A1, Cr, MO% Au, Ir, Nb, T
as V, Tt, Pt.

Pd、InzOa、8n02、ITO(In203+5
nOz)等の薄膜を設ける事によって導電処理され、或
いはポリエステルフィルム等の合成樹脂フィルムであれ
ば、NiCr、Aj、Ag、PbXZnXNiXAu。
Pd, InzOa, 8n02, ITO (In203+5
NiCr, Aj, Ag, PbXZnXNiXAu if conductive treatment is performed by providing a thin film such as nOz) or a synthetic resin film such as polyester film.

cr、 Mo、 I r、 Nb、 Ta、 V、Ti
、Pt等の金属で真空蒸着、電子ビーム蒸着、スパッタ
リング等で処理し、又は前記金属でラミネート処理して
、その表面が導電処理される。支持体の形状としては、
円筒状、ベルト状、板状等、任意の形状とし得、所望に
よって、その形状が決定される。
cr, Mo, Ir, Nb, Ta, V, Ti
, Pt or the like by vacuum evaporation, electron beam evaporation, sputtering, or the like, or by laminating with the metal, and the surface thereof is subjected to conductive treatment. The shape of the support is
It can be of any shape, such as cylindrical, belt-like, plate-like, etc., and the shape is determined according to desire.

基体は、基体と膜との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合があるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
The substrate is preferably selected from the above in consideration of the adhesion and reactivity between the substrate and the membrane. Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the film, and a high-quality film may not be obtained, so select and use a substrate with a close difference in thermal expansion between the two. is preferable.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様な膜
構造と膜組織となる様に基体の表面を処理するのが望ま
しい。
In addition, the surface condition of the substrate is directly related to the structure (orientation) of the film and the occurrence of cone-shaped structures, so it is important to treat the surface of the substrate so that it has a film structure and structure that provides the desired characteristics. is desirable.

以下実施例により、本発明の堆積膜形成装置について述
べる。
The deposited film forming apparatus of the present invention will be described below with reference to Examples.

〔実施例〕〔Example〕

第1図は本発明の堆積膜形成装置の1例を示すものであ
る。
FIG. 1 shows an example of the deposited film forming apparatus of the present invention.

第1図に示す堆積膜形成装置は、装置本体、排気系及び
ガス供給系の3つに大別される。
The deposited film forming apparatus shown in FIG. 1 is roughly divided into three parts: an apparatus main body, an exhaust system, and a gas supply system.

装置本体には、反応空間及び成膜空間が設けられている
The apparatus main body is provided with a reaction space and a film forming space.

101〜105は夫々、成膜する際に使用されるガスが
充填されているボンベ、101a〜105aは夫々ガス
供給パイプ、101b〜105bは夫々各ポンベからの
ガスの流量調整用のマスフローコントローラー、101
c〜105cはそれぞれガス圧力計、101d〜105
d及び101e〜105eは夫々/< A/プ、101
f 〜105fは夫々対応するガスボンベ内の圧力を示
す圧力計である。
Reference numerals 101 to 105 are cylinders filled with gas used in film formation, 101a to 105a are gas supply pipes, and 101b to 105b are mass flow controllers for adjusting the flow rate of gas from each cylinder, respectively.
c to 105c are gas pressure gauges, 101d to 105, respectively.
d and 101e to 105e are respectively /<A/pu, 101
f to 105f are pressure gauges each indicating the pressure within the corresponding gas cylinder.

120は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体1
18が設置される様に基本ホールダー112が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、二重同心円配置構造となっており、中よりガスボ
ンベ101.102よりのガスが導入される第1のガス
導入管109、ガスボンベ103〜105よりのガスが
導入される第2のガス導入管110を有する。ガス導入
管109の先端は、ガス導入管110より導入されたガ
スが、逆拡散しないように、細< 約1 mmの径に絞
っである。111はガスの介合空間106を有するガス
吹き出し管で、その出口は約1 mmの径に絞っである
。ガス吹き出し管の内で、前記気体、状原料物質と前記
気体状ハロゲン酸化剤とが化学的接触を起こし、前駆体
を形成する。該前駆体がガス吹き出し管の出口より基体
上に吹きつけられ成膜がなされる。
Reference numeral 120 denotes a vacuum chamber, which has a structure in which a pipe for introducing gas is provided at the upper part and a reaction space is formed downstream of the pipe.
It has a structure in which a film forming space is formed in which a basic holder 112 is provided such that a basic holder 18 is installed therein. The gas introduction pipes have a double concentric arrangement structure, with a first gas introduction pipe 109 into which gas from gas cylinders 101 and 102 is introduced, and a first gas introduction pipe into which gas from gas cylinders 103 to 105 is introduced. It has two gas introduction pipes 110. The tip of the gas introduction pipe 109 is narrowed to a diameter of about 1 mm to prevent the gas introduced from the gas introduction pipe 110 from back diffusing. Reference numeral 111 denotes a gas blowing pipe having a gas intervening space 106, the outlet of which is narrowed to a diameter of about 1 mm. Within the gas blowing tube, the gaseous raw material and the gaseous halogen oxidizer come into chemical contact to form a precursor. The precursor is blown onto the substrate from the outlet of the gas blowing tube to form a film.

各導入管への管ボンベからのガスの供給は、ガス供給パ
イプライン123〜125によって夫々なされる。10
6はガスの介合空間で、本実施例の装置では、内側のガ
ス導入管109の先端より、ガス吹き出し管111まで
の約1 cmの空間である。
Gas is supplied from the tube cylinder to each introduction pipe through gas supply pipelines 123 to 125, respectively. 10
Reference numeral 6 denotes a gas interposition space, and in the apparatus of this embodiment, it is a space of about 1 cm from the tip of the inner gas introduction pipe 109 to the gas blowing pipe 111.

各ガス導入管、各ガス供給パイプライン及び成膜空間1
20は、メイン真空パルプ119を介して不図示の真空
排気装置により真空排気される。
Each gas introduction pipe, each gas supply pipeline and film forming space 1
20 is evacuated via the main vacuum pulp 119 by a vacuum evacuation device (not shown).

基体118は基体ホルダー112を上下に移動させるこ
とによって各ガス導入管の位置より適宜所望の距離に設
置される。
The base body 118 is installed at a desired distance from the position of each gas introduction pipe by moving the base body holder 112 up and down.

113は、基体118を成膜時に適当な温度に加熱した
り、或いは成膜前に基体118を予備加熱したり、更に
は、成膜後、膜をアニールする為に加熱する基体加熱ヒ
ータである。
Reference numeral 113 denotes a substrate heater that heats the substrate 118 to an appropriate temperature during film formation, preheats the substrate 118 before film formation, and further heats the substrate 118 to anneal the film after film formation. .

基体加熱ヒータ113は、導線114により電源115
により電力が供給ビれる。
The base heater 113 is connected to a power source 115 by a conductor 114.
The power will be supplied.

116は、基体温度(Ts)の温度を測定する為の熱雷
対で温度表示装置117に電気的に接続されている。
116 is a thermal lightning pair for measuring the temperature of the substrate (Ts), and is electrically connected to the temperature display device 117.

以下、本実施例の装置によるa−8i膜の成膜過程を説
明する。
The process of forming an a-8i film using the apparatus of this embodiment will be described below.

第1図に示す成膜装置を用いて、次の様にし本発明の方
法による堆積膜を作成した0 ボンベ101に充填されているSiH4ガスを流ffi
20secmでガス導入管109よりポンベ103に充
填されているHeガスで5%に希釈したF2ガスを流量
400 secmでガス導入管110よりガス吹き出し
管111内に導入した。
Using the film forming apparatus shown in FIG. 1, a deposited film according to the method of the present invention was created as follows.
F2 gas diluted to 5% with He gas filled in the pump 103 was introduced into the gas blow-off tube 111 through the gas introduction tube 110 at a flow rate of 400 seconds through the gas introduction tube 109 at a flow rate of 20 seconds.

このときガス吹き出し管内の圧力は、5otorrであ
った。また成膜空間120内の圧力を1×1O−5To
rrにした。基体に石英ガラス(15cmX15cm)
を用いガス吹き出し管111と基体との距離は30cm
に設定した。介合空間106で青白い発光が強くみられ
た。基体温度(Ts)は各試料に対して表1に示す様に
室温から400℃までの間に設定した。
At this time, the pressure inside the gas blowing pipe was 5 torr. In addition, the pressure in the film forming space 120 is set to 1×1O−5To.
I made it rr. Quartz glass base (15cm x 15cm)
The distance between the gas blowing pipe 111 and the base is 30 cm.
It was set to A strong bluish-white light emission was observed in the intervention space 106. The substrate temperature (Ts) for each sample was set between room temperature and 400°C as shown in Table 1.

この状態で30分間ガスを流すと、表1に示す様な膜厚
のSi:H:F膜が基体上に堆積した。
When gas was allowed to flow in this state for 30 minutes, a Si:H:F film having the thickness shown in Table 1 was deposited on the substrate.

又膜厚の分布むらは±5%以内におざまった。Moreover, the unevenness in film thickness distribution was within ±5%.

成膜したSi:H:F膜はいずれの試料も電子線回折に
よって非晶質であることが確認された。
It was confirmed by electron diffraction that all of the Si:H:F films formed were amorphous.

各試料の非晶質Si:HτF膜上にAJのくし形電極(
ギャップ長200μm)を蒸着し、導電率測定用の試料
を作成した。各試料を真空クライオスタット中にいれ電
圧100■を印加し、微少電流計(YHP4140B)
で電流を測定し、暗導電率(Od)を求めた。又600
 nm、 0.3mw/7の光を照射し、光導型率(σ
p)を求めた。更に光の吸収より光学的バンドギャップ
(F g ”t)を求めた。これらの結果は表1に示し
た。
AJ comb-shaped electrodes (
A gap length of 200 μm) was deposited to prepare a sample for conductivity measurement. Each sample was placed in a vacuum cryostat, a voltage of 100μ was applied, and a microcurrent meter (YHP4140B) was used.
The current was measured and the dark conductivity (Od) was determined. 600 again
irradiated with light of 0.3 mw/7 nm, and the light guide rate (σ
p) was calculated. Furthermore, the optical bandgap (F g "t) was determined from the light absorption. These results are shown in Table 1.

表1 比較例 次に第2図に示す装置を用いて −8i膜を堆積した。Table 1 Comparative example Next, a -8i film was deposited using the apparatus shown in FIG.

この装置は第1図に示す装置より、ガス介合部106及
びガス吹き出し管111をとりのぞいたのと同じ構造に
なっており、第1図と同じ番号は第1図と同じものに対
応している二重円心円上に配置しであるガス導入管10
9と110のうち内側のガス導入管109は外側のガス
導入管110より基体の表面位置より遠い位置に配され
た設計となっている。これはガスの混合を考慮した設計
である。
This device has the same structure as the device shown in FIG. 1, with the gas intervening part 106 and gas blowing pipe 111 removed, and the same numbers as in FIG. 1 correspond to the same components as in FIG. 1. The gas introduction pipe 10 is arranged on a double concentric circle.
The inner gas introduction pipe 109 of the gas introduction pipes 9 and 110 is designed to be disposed at a position farther from the surface of the base body than the outer gas introduction pipe 110. This design takes gas mixing into consideration.

以下、第2図の各番号と第1図の各番号とは下2ケタは
同じものに対応している。
Hereinafter, the lower two digits of each number in FIG. 2 and each number in FIG. 1 correspond to the same number.

基体温度を200℃、SiH4ガス流量20secm、
Heガスで5%に希釈したF2ガス流量400 sec
mとし、内圧を種々に変化させて作成した各試料の膜厚
、0610918g0ptの値を表2に示す。なお成膜
時間は30分間では評価できる膜厚の試料が得られなか
ったため、各3時間で行なった。
The substrate temperature was 200°C, the SiH4 gas flow rate was 20 sec,
F2 gas flow rate 400 sec diluted to 5% with He gas
Table 2 shows the film thickness, 0610918g0pt, of each sample prepared by varying the internal pressure. It should be noted that the film formation time was 3 hours each because it was not possible to obtain a sample with a film thickness that could be evaluated in 30 minutes.

表   2 〔効果〕 以上の詳細な説明及び各実施例より、本発明の堆積膜形
成装置を用いれば、高速成膜化を計ると同時に膜品質の
良い堆積膜が得られる。又、生産性、量産性に優れ、高
品質で電気的、光学的、半導体的等の物理特性に優れた
膜を簡便に得ることが出来る。
Table 2 [Effects] From the above detailed description and each example, if the deposited film forming apparatus of the present invention is used, high-speed film formation can be achieved and at the same time, a deposited film with good quality can be obtained. Furthermore, it is possible to easily obtain a film with excellent productivity and mass production, and with high quality and excellent physical properties such as electrical, optical, and semiconductor properties.

【図面の簡単な説明】 第1図は本発明の実施例の成膜装置の模式的概略図であ
る。 第2図は比較例に用いた成膜装置の模式的概略図である
。 101〜105・・・・・・・・・ガスボンベ、101
a〜105a・・・・・・ガスの導入管、101b〜1
05b・・・・・・マスフロメーター、101C〜10
5c・・・・・・ガス圧力計、101d〜105d及び 101e〜105e・・・・・・バルブ、101f〜1
05f・・・・・・圧力計、106・・・・・・・・・
・・・・・・・・・・・・・・・ガスの介合空間、10
9.110・・・・・・・・・・・・ガス導入管、11
1・・・・・・・・・・・・・・・・・・・・・・・・
ガス吹き出し管、112・・・・・・・・・・・・・シ
・・・・・・・・・・基体ホルダー、113・・・・・
・・・・・・・・・・・・・基体加熱用ヒーター、11
6・・・・・・・・・・・・・・・・・・基体温度モニ
ター用熱電対、118・・・・・・・・・・・・・・・
・・・・・・・・・基体、119・・・・・・・・・・
・・・・・・・・・・・・・・真空排気バルブ、を夫々
表わしている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a film forming apparatus according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a film forming apparatus used in a comparative example. 101-105... Gas cylinder, 101
a~105a...Gas introduction pipe, 101b~1
05b...Mass flow meter, 101C~10
5c... Gas pressure gauge, 101d to 105d and 101e to 105e... Valve, 101f to 1
05f・・・Pressure gauge, 106・・・・・・・・・
・・・・・・・・・・・・Gas intervention space, 10
9.110・・・・・・・・・Gas introduction pipe, 11
1・・・・・・・・・・・・・・・・・・・・・・・・
Gas blowoff pipe, 112......Base holder, 113...
・・・・・・・・・・・・Heater for heating the substrate, 11
6・・・・・・・・・・・・・・・Thermocouple for monitoring substrate temperature, 118・・・・・・・・・・・・・・・
・・・・・・・・・Base, 119・・・・・・・・・・
・・・・・・・・・・・・Represents a vacuum exhaust valve.

Claims (2)

【特許請求の範囲】[Claims] (1)堆積膜形成用の気体状原料物質と、該原料物質に
酸化作用をする性質を有する気体状ハロゲン系酸化剤と
、を反応空間内に導入して化学的に接触させることで励
起状態の前駆体を含む複数の前駆体を生成し、これらの
前駆体の内少なくとも1つの前駆体を堆積膜構成要素の
供給源として成膜空間内にある基体上に堆積膜を形成す
る堆積膜形成装置において、気体状原料物質と気体状ハ
ロゲン系酸化剤を両ガスの介合空間を有するガス吹き出
し口より吹き出す機構を有することを特徴とする堆積膜
形成装置。
(1) A gaseous raw material for forming a deposited film and a gaseous halogen-based oxidant having the property of oxidizing the raw material are introduced into a reaction space and brought into chemical contact to bring them into an excited state. A deposited film forming method in which a plurality of precursors including precursors are generated, and at least one of these precursors is used as a source of a deposited film component to form a deposited film on a substrate located in a deposition space. 1. A deposited film forming apparatus comprising a mechanism for blowing out a gaseous raw material and a gaseous halogen-based oxidizing agent from a gas blowing port having an intervening space for both gases.
(2)前記吹き出し口内の圧力が10torr以上であ
り、成膜空間内の圧力が1torr以下である特許請求
の範囲第1項に記載の堆積膜形成装置。
(2) The deposited film forming apparatus according to claim 1, wherein the pressure within the air outlet is 10 torr or more, and the pressure within the film forming space is 1 torr or less.
JP60297212A 1985-12-20 1985-12-27 Deposited film forming device Pending JPS62156270A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60297212A JPS62156270A (en) 1985-12-27 1985-12-27 Deposited film forming device
US07/837,601 US5160543A (en) 1985-12-20 1992-02-21 Device for forming a deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60297212A JPS62156270A (en) 1985-12-27 1985-12-27 Deposited film forming device

Publications (1)

Publication Number Publication Date
JPS62156270A true JPS62156270A (en) 1987-07-11

Family

ID=17843626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60297212A Pending JPS62156270A (en) 1985-12-20 1985-12-27 Deposited film forming device

Country Status (1)

Country Link
JP (1) JPS62156270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070551A (en) * 1996-05-13 2000-06-06 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070551A (en) * 1996-05-13 2000-06-06 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films
US6416823B2 (en) 1996-05-13 2002-07-09 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films
US6589610B2 (en) 1996-05-13 2003-07-08 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films
US6833052B2 (en) 1996-05-13 2004-12-21 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films
US7413627B2 (en) 1996-05-13 2008-08-19 Applied Materials, Inc. Deposition chamber and method for depositing low dielectric constant films

Similar Documents

Publication Publication Date Title
US5391232A (en) Device for forming a deposited film
US5160543A (en) Device for forming a deposited film
JPS62151572A (en) Deposited film forming device
JPS62156270A (en) Deposited film forming device
JPS62142778A (en) Formation of deposited film
JPH0645885B2 (en) Deposited film formation method
JPS62146266A (en) Deposited film forming device
JPS62158868A (en) Deposited film forming device
JPS62228479A (en) Deposited film forming device
JPH0645883B2 (en) Deposited film formation method
JPH0645891B2 (en) Deposited film formation method
JPS6338581A (en) Functional deposited film forming device
JPS62199771A (en) Formation of deposited film
JPS62151571A (en) Deposited film forming device
JPH0645882B2 (en) Deposited film formation method
JPS62196374A (en) Deposited film forming device
JP2637396B2 (en) Deposition film formation method
JPS62228474A (en) Deposited film forming device
JPS62229825A (en) Deposit film forming method
JPS62228478A (en) Deposited film forming device
JPS63166214A (en) Deposition film forming method
JPS6347363A (en) Formation of functional deposited film
JPS62151569A (en) Deposited film forming device
JPS62152121A (en) Deposited film forming device
JPH0647736B2 (en) Deposited film formation method