JPS62150788A - Optical information processor - Google Patents

Optical information processor

Info

Publication number
JPS62150788A
JPS62150788A JP60291653A JP29165385A JPS62150788A JP S62150788 A JPS62150788 A JP S62150788A JP 60291653 A JP60291653 A JP 60291653A JP 29165385 A JP29165385 A JP 29165385A JP S62150788 A JPS62150788 A JP S62150788A
Authority
JP
Japan
Prior art keywords
semiconductor laser
peak power
laser
pulse train
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291653A
Other languages
Japanese (ja)
Inventor
Toshihiro Fujita
俊弘 藤田
Tetsuo Taniuchi
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60291653A priority Critical patent/JPS62150788A/en
Publication of JPS62150788A publication Critical patent/JPS62150788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To permit the densification by providing a semiconductor laser which generates a high-output short pulse train as the peak power and a secondary high-frequency generator which uses a beam of light emitted from this semiconductor laser as the primary light beam. CONSTITUTION:A laser beam 6 emitted from one end surface (resonance interface) 4 of a semiconductor laser 2 is photo-feed back to the semiconductor laser 2 by an external reflector 8. At this time, when a semiconductor laser (modulator) 10 is current- modulated in a frequency equivalent to the roundtrip frequency during the time the beam 6 emitted from the laser comes returning, a laser beam 12 generates a pulse train which has a very large peak power and is secularly short. When the laser beam 12 having this large peak power is incident on a nonlinear optical crystal 14, which is used as the secondary high-frequency generator, as a primary beam of light, a secondary beam 16 obtained is very large as peak power and the secondary beam 16 passes through an optical system 18 composed of a lens and so on and is led to an optical system 18 composed of a lens and so on and is led to an optical disc 20. That is, this device has a high-output short pulse train generating semiconductor laser 22, which generates a high-output short pulse train as the peak power, and a secondary high-frequency generator 24.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高出力な短波長光源を用いた光情報肌理装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical information texturing device using a high-output short wavelength light source.

従来の技術 半導体レーザは小型で消費電力が小さく、信頼性にも優
れているという特長を有し、現在光ディスクやプリンタ
ー等の光情報処理装置に広く用いられており、特に光デ
ィスクは情報の高密度記録が可能なため広く研究が行な
われている。光ディスクをより高密度化するためには半
導体レーザの発振波長をより短かくしてビームスポット
サイズを小さくする必要があり、そのため現在量産化の
行なわれているAdGaAs/GaAs系のみならず新
しい材料としてGa As基板上のA77GalnP系
あるいはG&ムsP基板上のInGaAsP  系が研
究対象となってきている。しかしながらこのような新し
い半導体材料を用いても発振可能な波長は約0.6μm
程度までであり、それ以下は達成することはできず、従
ってよりビームスポットサイズを小さくし高密度化を達
成するには更に波長の短い半導体レーザが必要となる。
Conventional technology Semiconductor lasers are small, consume little power, and have excellent reliability, and are currently widely used in optical information processing devices such as optical disks and printers. Because it can be recorded, it is widely studied. In order to increase the density of optical disks, it is necessary to shorten the oscillation wavelength of the semiconductor laser and reduce the beam spot size. Therefore, in addition to the AdGaAs/GaAs system, which is currently being mass-produced, GaAs is a new material. The A77GalnP system on a substrate or the InGaAsP system on a G&MsP substrate has become the subject of research. However, even with this new semiconductor material, the wavelength that can be oscillated is approximately 0.6 μm.
However, it is not possible to achieve anything smaller than that, and therefore, in order to further reduce the beam spot size and achieve higher density, a semiconductor laser with a shorter wavelength is required.

一方、従来より非線形光学定数の大きい結晶を用いると
第2次高調波発生(SHG)により、波長変換が原理的
に可能であることが知られている。
On the other hand, it is known that wavelength conversion is theoretically possible by second harmonic generation (SHG) when a crystal with a larger nonlinear optical constant than the conventional one is used.

SHG材料としては例えばLi Nb O3の無機材料
やMNAなどの有機材料がある。
SHG materials include, for example, inorganic materials such as LiNbO3 and organic materials such as MNA.

第3図に示すように、半導体レーザ6oから出射された
波長λ0のレーザ光62は、SHG材料54により波長
λo/2の2次光66に変換される。
As shown in FIG. 3, laser light 62 with wavelength λ0 emitted from semiconductor laser 6o is converted by SHG material 54 into secondary light 66 with wavelength λo/2.

従って容易に短波長化は可能である。Therefore, the wavelength can be easily shortened.

発明が解決しようとする問題点 しかしながら、従来この波長変換された2次光のパワー
が極めて小さかった。例えば、60mW出力の半導体レ
ーザ光を光導波路化したLi Nb O5よりなるSH
G材料54に入射しても、その2次光のパワーは高々5
μW程度であり、光ディスク等の光情報処理装置用とし
て供することはできなかった。SHGは非線形光学効果
を利用しているため入射1次光パワーを大きくするほど
2次光パワーを犬きくできるが、半導体レーザをCWで
利用すると、信頼性等の観点からは高々100mW程度
が限界であり、従って十分な2次光パワーを得ることは
不可能であり、光情報処理装置に供することはできなか
った。
Problems to be Solved by the Invention However, in the past, the power of this wavelength-converted secondary light was extremely small. For example, an SH made of LiNbO5 in which a semiconductor laser beam with an output of 60 mW is made into an optical waveguide.
Even if it enters the G material 54, the power of the secondary light is at most 5
It was about μW, and could not be used for optical information processing devices such as optical disks. SHG uses nonlinear optical effects, so increasing the incident primary optical power can increase the secondary optical power, but when using a semiconductor laser in CW, the limit is about 100 mW at most from the viewpoint of reliability etc. Therefore, it was impossible to obtain sufficient secondary optical power, and it was not possible to provide it to an optical information processing device.

本発明は、このような問題点に鑑み、半導体レーザを1
次光として用い、第2次高調波の2次光パワーを十分大
きくし、短波長光源として光情報処理装置に応用しうる
ようにすることを目的とする0 問題点を解決するだめの手段 このような問題点を解決するだめの手段として、本発明
は、ピークパワーとして高出力の短パルス列を発生する
半導体レーザ装置と、前記半導体レーザ装置からの出射
光を1次光とする第2次高調波発生装置を有するもので
、前記半導体レーザ装置としてたとえばモード同期半導
体レーザ装置やあるいはQスイッチ半導体レーザ装置を
用いるものである。
In view of these problems, the present invention has developed a semiconductor laser that can be used as a single semiconductor laser.
The purpose is to sufficiently increase the power of the second order light of the second harmonic, so that it can be applied to optical information processing equipment as a short wavelength light source. As a means to solve these problems, the present invention provides a semiconductor laser device that generates a high output short pulse train as a peak power, and a second harmonic laser device that uses the light emitted from the semiconductor laser device as the primary light. It has a wave generating device, and uses, for example, a mode-locked semiconductor laser device or a Q-switch semiconductor laser device as the semiconductor laser device.

作用 上記手段を用いれば、第2次高調波発生装置からの出射
光は従来よりもはるかに大きい出力パワーを有し、従っ
てこの光源を用いた光情報処理装置により、高密度化が
可能となる作用をもつ。
Effect If the above means is used, the output light from the second harmonic generator will have a much larger output power than the conventional one, and therefore an optical information processing device using this light source will be able to achieve higher density. It has an effect.

実施例 以下本発明を実施例を用いて説明する。第1図に本発明
の一実施例を示す。半導体レーザ2の片端面4から出射
しだレーザ光6は外部反射体8により半導体レーザ2へ
光帰還さ1れる。この時半導体レーザ10をレーザから
出だ光6が戻ってくるまでのラウンドトリップ周波数に
相当する周波数で電流変調するとレーザ光12はピーク
パワーの非常に大きなまた時間的に短いパルス列を発生
する。このピークパワーの大きいレーザ光12を1次光
として第2次高調波発生装置である非線形光学結晶14
へ入射すると得られた2次光16はピークパワーとして
非常に大きく、この2次光16はレンズ等により構成さ
れた光学系18を通過し、光ディスク20に導ひかれる
。すなわち本発明の一実施例の光情報処理装置において
、22がピークパワーとして高出力の短パルス列を発生
する半導体レーザ装置であり、24が第2次高調波発生
装置である。
EXAMPLES The present invention will be explained below using examples. FIG. 1 shows an embodiment of the present invention. A laser beam 6 emitted from one end surface 4 of the semiconductor laser 2 is optically returned to the semiconductor laser 2 by an external reflector 8. At this time, when the semiconductor laser 10 is current-modulated at a frequency corresponding to the round-trip frequency until the light 6 emitted from the laser returns, the laser light 12 generates a pulse train with a very high peak power and a short time. A nonlinear optical crystal 14 which is a second harmonic generator uses this laser beam 12 having a large peak power as primary light.
The secondary light 16 obtained when incident on the optical disk 16 has a very large peak power, and passes through an optical system 18 composed of lenses and the like, and is guided to the optical disk 20. That is, in the optical information processing apparatus according to one embodiment of the present invention, 22 is a semiconductor laser device that generates a high-output short pulse train as a peak power, and 24 is a second harmonic generator.

第2図に従来例と本実施例の出力パワーの対比を示す。FIG. 2 shows a comparison of the output powers of the conventional example and this embodiment.

第2図(a−1)のような通常50mW程度の出力パワ
ーの半導体レーザ光を第3図のような構成において第2
次高調波発生装置に入射するとその2次光の出力は第2
図(2L−2)のように高々5μW程度であるが、第1
図のような実施例のように半導体レーザにモード同期を
行なえば第2図(b−1)に示すようにそのピークパワ
ーとして1W程度あるいはそれ以上は比較的容易に得る
ことが出来、従って第2次高調波発生装置により半分の
波長に変換された2次光は第2図(b−2)に示すよう
にピークパワーとして60mW程度さらにそれ以上は十
分得ることができる。よって本発明における光情報処理
装置は通常の半導体レーザの半分の波長でしかも非常に
大きな出力パワーを光源とすることができる。
A semiconductor laser beam with an output power of usually about 50 mW as shown in Fig. 2 (a-1) is
When it enters the harmonic generator, the output of the secondary light is the second harmonic.
As shown in Figure (2L-2), it is about 5μW at most, but the first
If mode-locking is applied to a semiconductor laser as in the embodiment shown in the figure, a peak power of about 1 W or more can be obtained relatively easily as shown in Fig. 2 (b-1). As shown in FIG. 2 (b-2), the secondary light converted to half the wavelength by the secondary harmonic generator can sufficiently obtain a peak power of about 60 mW or even more. Therefore, the optical information processing device according to the present invention can be used as a light source with half the wavelength of a normal semiconductor laser and with extremely high output power.

第2図(IL−2)及び(b−2)を比較すると、本実
施例の光情報処理装置の2次光出力はCW光ではなく時
間的に短パルス列となっている。このパルス列の時間間
隔tは、第1図における半導体レーザ2から外部反射体
8までの距離をLとし、また光速をCとすると  L と表わせる。すなわちモード同期させるための半導体レ
ーザの変調周波数fは J’ = − L である。従ってL=15cmとすればf=IGH2゜t
 = 1 n5ec  とする。
Comparing FIG. 2 (IL-2) and FIG. 2 (b-2), the secondary light output of the optical information processing device of this embodiment is not CW light but a temporally short pulse train. The time interval t of this pulse train can be expressed as L, where L is the distance from the semiconductor laser 2 to the external reflector 8 in FIG. 1, and C is the speed of light. That is, the modulation frequency f of the semiconductor laser for mode-locking is J'=-L. Therefore, if L=15cm, f=IGH2゜t
= 1 n5ec.

現実の光情報処理装置、例えば光ディスクにおいてはそ
の書き込みの変調帯域は高々1oMHz程度である。す
なわち信号のピットの間隔は時間的には100n86C
程度であシ、本発明のようなモード同期半導体レーザを
用いると、信号に対しては十分モード同期が高周波数で
あるため包絡線はDCと見なすことができ全く問題はな
い。なおLは更に短かくてもかまわない。
In an actual optical information processing device, for example, an optical disk, the modulation band for writing is about 1 oMHz at most. In other words, the interval between signal pits is 100n86C in terms of time.
However, if a mode-locked semiconductor laser such as that of the present invention is used, the signal is mode-locked at a sufficiently high frequency, so the envelope can be regarded as DC, and there is no problem at all. Note that L may be even shorter.

以上のように本発明における光情報処理装置は、通常の
半導体レーザの半分の波長で非常に大きなパワーを有し
、しかも見かけ上CW光として使用可能であるため、光
ディスクの高密度化等が大幅に図れる。
As described above, the optical information processing device of the present invention has a very large power at half the wavelength of a normal semiconductor laser, and can be used as CW light in appearance, so it can significantly increase the density of optical disks, etc. can be achieved.

まだ第1図の一実施例にはモード同期半導体し一ザ装置
として能動モード同期の場合を示したが、可飽和吸収体
を含んだ受動モード同期であっても良いゲまだ構成は第
1図の実施例に限定されるものではない。また更に外部
変調器を挿入することによりDC光としてだけでなく書
き込み用としても利用することが可能である。また外部
変調器を用いず、Qスイッチ動作により書き込み用とし
ても良い。また用いる単体半導体レーザとしては、A4
GaAs系のみならず、いかなる材料により構成されて
いても良い。また第2次高調波発生装置として用いる非
線形光学結晶はLi Nb O5のような無機材料であ
ってもMN人のような有機材料であっても良く、効率を
上げるため光導波路化しであるのが望ましい。
Although the embodiment shown in FIG. 1 shows the case of active mode locking as a mode-locking semiconductor device, FIG. The present invention is not limited to this embodiment. Furthermore, by inserting an external modulator, it is possible to use it not only as DC light but also for writing. Alternatively, it may be used for writing by Q-switch operation without using an external modulator. In addition, the single semiconductor laser to be used is A4
It may be made of any material other than GaAs. In addition, the nonlinear optical crystal used as the second harmonic generator may be made of an inorganic material such as LiNbO5 or an organic material such as MN.In order to increase efficiency, it is preferable to form it into an optical waveguide. desirable.

発明の効果 以上のように本発明の光情報処理装置は、従来の半導体
レーザを用いた装置に比較して波長が半分であるためビ
ームスポットサイズを小さくでき極めて高密度化が図れ
、しかも高出力動作を行なうことにより、再生のみなら
ず、記録、消去の機能をもたせることができその効果は
大である。
Effects of the Invention As described above, the optical information processing device of the present invention has half the wavelength compared to devices using conventional semiconductor lasers, so the beam spot size can be reduced, extremely high density can be achieved, and high output power can be achieved. By performing this operation, it is possible to have not only playback but also recording and erasing functions, which has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光情報処理装置の概
略構成図、第2図は本実施例と従来例の出力パワー特性
の違いを示す特性図、第3図は従来の光情報処理装置の
第2次高調波発生を説明するだめの概略構成図である。 2・・・・・・半導体レーザ、4・・・・・・共振器面
、6・・・・・・レーザ光、8・・・・・・外部反射体
、1o・・・・・・変調器、12・・・・・・レーザ光
、14・・・・・・非線形光学結晶、16・・・・・・
2次光、18・・・・・・光学系、2o・・・・・・光
ディスク、22・・・・・・高出力短パルス列発生半導
体レーザ装置、24・・・・・・第2次高調波発生装置
Fig. 1 is a schematic configuration diagram of an optical information processing device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the difference in output power characteristics between this embodiment and a conventional example, and Fig. 3 is a diagram of a conventional optical information processing device. FIG. 2 is a schematic configuration diagram for explaining second harmonic generation of the device. 2...Semiconductor laser, 4...Cavity surface, 6...Laser light, 8...External reflector, 1o...Modulation instrument, 12... laser beam, 14... nonlinear optical crystal, 16...
Secondary light, 18... Optical system, 2o... Optical disk, 22... High output short pulse train generation semiconductor laser device, 24... Second harmonic wave generator.

Claims (3)

【特許請求の範囲】[Claims] (1)ピークパワーとして高出力の短パルス列を発生す
る半導体レーザ装置と、前記半導体レーザ装置からの出
射光を1次光とする第2次高調波発生装置を有してなる
光情報処理装置。
(1) An optical information processing device comprising a semiconductor laser device that generates a high-output short pulse train as peak power, and a second harmonic generator that uses the light emitted from the semiconductor laser device as primary light.
(2)半導体レーザ装置として、モード同期半導体レー
ザ装置を用いる特許請求の範囲第1項記載の光情報処理
装置。
(2) The optical information processing device according to claim 1, which uses a mode-locked semiconductor laser device as the semiconductor laser device.
(3)半導体レーザ装置として、Qスイッチ半導体レー
ザ装置を用いる特許請求の範囲第1項記載の光情報処理
装置。
(3) The optical information processing device according to claim 1, which uses a Q-switch semiconductor laser device as the semiconductor laser device.
JP60291653A 1985-12-24 1985-12-24 Optical information processor Pending JPS62150788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291653A JPS62150788A (en) 1985-12-24 1985-12-24 Optical information processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291653A JPS62150788A (en) 1985-12-24 1985-12-24 Optical information processor

Publications (1)

Publication Number Publication Date
JPS62150788A true JPS62150788A (en) 1987-07-04

Family

ID=17771727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291653A Pending JPS62150788A (en) 1985-12-24 1985-12-24 Optical information processor

Country Status (1)

Country Link
JP (1) JPS62150788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251944A (en) * 1987-04-08 1988-10-19 Pioneer Electronic Corp Optical pickup device
EP0550095A2 (en) * 1991-12-30 1993-07-07 Koninklijke Philips Electronics N.V. Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63251944A (en) * 1987-04-08 1988-10-19 Pioneer Electronic Corp Optical pickup device
EP0550095A2 (en) * 1991-12-30 1993-07-07 Koninklijke Philips Electronics N.V. Device in which electromagnetic radiation is raised in frequency and apparatus for optically scanning an information plane, comprising such a device

Similar Documents

Publication Publication Date Title
US5136598A (en) Modulated high-power optical source
US5111468A (en) Diode laser frequency doubling using nonlinear crystal resonator with electronic resonance locking
JPH07507901A (en) High power compact diode pump tunable laser
US5617435A (en) Lasing system with wavelength-conversion waveguide
Kitaoka et al. Stable and efficient green light generation by intracavity frequency doubling of Nd: YVO4 lasers
US5046802A (en) Light wavelength converter
JPS6290618A (en) Light modulator
US5610760A (en) Device for raising the frequency of electromagnetic radiation
JPS62150788A (en) Optical information processor
US5268912A (en) Harmonic light source capable of being optically modulated and optical information processing apparatus employing the same
US4862473A (en) Semiconductor laser apparatus having a high harmonic generating waveguide
US5757827A (en) Second harmonic generating apparatus and apparatus employing laser
JP2697640B2 (en) Optical clock generator
JPH03287140A (en) Laser beam wavelength converting device
JP2693842B2 (en) Optical wavelength converter
JP2790536B2 (en) Ultrashort light pulse generator
JP2661771B2 (en) Semiconductor laser device
JP2661772B2 (en) Semiconductor laser device
KR20020095724A (en) Harmonic wave generating apparatus
JPS60170041A (en) Optical pickup device
JPH0389574A (en) Second harmonic generator
JPH06196779A (en) Light generator
KR100287756B1 (en) 2 stage optical recorder
KR100355387B1 (en) Acousto-optic modulating system
JPH04277685A (en) Solid state laser device