JPS62150597A - Boosting circuit - Google Patents
Boosting circuitInfo
- Publication number
- JPS62150597A JPS62150597A JP60290437A JP29043785A JPS62150597A JP S62150597 A JPS62150597 A JP S62150597A JP 60290437 A JP60290437 A JP 60290437A JP 29043785 A JP29043785 A JP 29043785A JP S62150597 A JPS62150597 A JP S62150597A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- semiconductor substrate
- boosted
- diode
- diodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 239000010703 silicon Substances 0.000 abstract description 4
- 230000015654 memory Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 2
- 101000617728 Homo sapiens Pregnancy-specific beta-1-glycoprotein 9 Proteins 0.000 description 1
- 102100021983 Pregnancy-specific beta-1-glycoprotein 9 Human genes 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/06—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
- H02M3/07—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
- H02M3/073—Charge pumps of the Schenkel-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0214—Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
- H01L27/0218—Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of field effect structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/07—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
- H01L27/0744—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
- H01L27/0788—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type comprising combinations of diodes or capacitors or resistors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Read Only Memory (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
この発明は、例えばE2 ROM (電気的書き換え可
能不揮発性メモリ)の占き込み用電圧等を発生ずる昇圧
回路に関し、特に1デツプ化が容易で背圧効率を向上さ
けたものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a booster circuit that generates a voltage for reading, for example, an E2 ROM (electrically rewritable non-volatile memory), and particularly relates to a booster circuit that can be easily reduced to one depth. This is to improve back pressure efficiency.
[発明の技術的前mとその問題点]
背圧回路は、E2 ROMf7)l込み電圧、または時
計等の液晶表示パネル駆動用電圧等の発生用回路として
、一般的にこれらを構成するICとともに一体的に作製
される。[Technical Preface of the Invention and its Problems] The back pressure circuit is used as a circuit for generating E2 ROM f7) l-included voltage or voltage for driving liquid crystal display panels of watches, etc., and is generally used together with the ICs that constitute these circuits. Manufactured in one piece.
このような従来の昇圧回路としては、例えば第3図およ
び第4図に示すようなコツククロフト・ウオルトン回路
を基本としたチャージポンプ式のものが知られている(
IEEE JOURNALOF 5OLID−8T
ATE CIRcUITS、VOL、5C−11,N
o、3.JUNEl 976、P374 Fon −
C1o Hi(7h−Voltaoe Gener
ation in MNOS I nteara
ted C1rcuits Ll 5inq a
n I mprovedVoltage MuDi
plier Tcchniquej )。As such conventional booster circuits, there are known charge pump type booster circuits based on a Kotscroft-Walton circuit as shown in FIGS. 3 and 4, for example.
IEEE JOURNAL OF 5OLID-8T
ATE CIRcUITS, VOL, 5C-11, N
o, 3. JUNEl 976, P374 Fon -
C1o Hi (7h-Voltaoe Gener
ation in MNOS I nteara
ted C1rcuits Ll 5inq a
n I improved Voltage MuDi
plier Tcchniquej).
第3図中、符号1は電源電圧Vinの入力端子、2は昇
圧電圧Voutの出力端子で、これら入力端子1および
出力端子2の間に、所要の昇圧電圧に応じた5個の昇圧
用のコンデンサ21a〜21eが並設されている。コン
デン’)21a〜21eは、MNOS IC等が組込
まれる図示省略の半導体基板の主面部の一部にMOSキ
ャパシタとして形成される。In Fig. 3, reference numeral 1 is an input terminal for the power supply voltage Vin, and 2 is an output terminal for the boosted voltage Vout. Capacitors 21a to 21e are arranged in parallel. The capacitors 21a to 21e are formed as MOS capacitors on a part of the main surface of a semiconductor substrate (not shown) in which an MNOS IC or the like is incorporated.
各コンデンサ21a〜21eの一端間、ならびに入力段
および出力段の部分には、ダイオード22a〜22fが
、入力端子1側から出力端子2側に向けて順方向となる
ようにそれぞれ接続されている。Diodes 22a to 22f are connected between one end of each of the capacitors 21a to 21e, and to the input and output stages, respectively, in a forward direction from the input terminal 1 side to the output terminal 2 side.
ダイオード22a〜22fは、前記コンデンサ21a〜
21eと同様に半導体基板に作り込むと、後述のクロッ
ク信号(駆動信号)による昇圧制御時に、コンデンサに
チャージされた電荷が半導体基板側に漏れるという理由
から、外付けとされる。The diodes 22a to 22f are connected to the capacitors 21a to 22f.
If it is built into a semiconductor substrate like 21e, the electric charge charged in the capacitor will leak to the semiconductor substrate side during boost control using a clock signal (drive signal) described later, so it is externally attached.
また偶数段の各コンデンサ21b121dの他端は、逆
位相の2相クロツクφ、φにおけるφクロック信号の入
力端子3aに共通に接続され、奇数段の各コンデンサ2
1a、21c、21eの他端は、φクロック信号の入力
端子3bに共通に接続されている。Further, the other end of each capacitor 21b121d in an even stage is commonly connected to the input terminal 3a of the φ clock signal in the two-phase clock φ, φ with opposite phases, and the other end of each capacitor 21b121d in an odd stage
The other ends of 1a, 21c, and 21e are commonly connected to the φ clock signal input terminal 3b.
そしてまずコンデンサ21aが電源電圧VinにJ:す
Vin−Vbin(Vbinはダイオード22aのビル
トイン電圧)まで充電される。クロック信号Tが立上る
(φは立下る)と、コンデンサ21aで結合されている
ノード4aの電圧が昇圧され、これと同時にダイオード
22bが導通制御されて昇圧された電圧は、次のコンデ
ンサ21bに充電される。次いでクロック信号φの立上
り(φは立下る)でノード4bの電圧が昇圧され、これ
と同時にダイオード22 Ch<導通制御されて昇圧さ
れた電圧は、次のコンデンサ21cに充電される。First, the capacitor 21a is charged to the power supply voltage Vin to J:Vin-Vbin (Vbin is the built-in voltage of the diode 22a). When the clock signal T rises (φ falls), the voltage at the node 4a connected by the capacitor 21a is boosted, and at the same time, the diode 22b is controlled to be conductive, and the boosted voltage is transferred to the next capacitor 21b. It will be charged. Next, the voltage at the node 4b is boosted at the rise of the clock signal φ (φ falls), and at the same time, the diode 22 Ch is controlled to be conductive, and the boosted voltage is charged to the next capacitor 21c.
このようにして各コンデンサ21a〜21eには、前段
の昇圧された電圧が、順次重畳的に充電されて各ノード
4a〜4eの電位が上り、出力端子2から所要電圧値に
昇圧された昇圧電圧Voutが出力される。In this way, each of the capacitors 21a to 21e is charged with the boosted voltage of the previous stage in a superimposed manner, and the potential of each node 4a to 4e rises, and the boosted voltage from the output terminal 2 is raised to a required voltage value. Vout is output.
しかしながら上述の昇圧回路にあっては、ダイオード2
2a〜22fが外付けとされているので、各ノード4a
〜4eの部分には奇生容量23a〜23eが生じて、こ
れが昇圧用の各コンデンサ21a〜21eにそれぞれ並
列に入る。このため各コンデンサ21a〜218の容量
をC1各寄生容団23a〜238をCsとすると、各ノ
ード4a〜4eにおける昇圧電圧ΔVは、
Δ V=V i nXC/ (C+Cs)となっ
て寄生容量C8の影響を受けて低下する。However, in the booster circuit described above, the diode 2
2a to 22f are externally connected, so each node 4a
Parallel capacitances 23a to 23e are generated in the portions 4e to 4e, and are connected in parallel to the boosting capacitors 21a to 21e, respectively. Therefore, if the capacitance of each capacitor 21a to 218 is C1 and each parasitic capacitance 23a to 238 is Cs, the boosted voltage ΔV at each node 4a to 4e becomes ΔV=V inXC/(C+Cs), and the parasitic capacitance C8 decreases due to the influence of
したがってこの影響を補って所要電圧値まで昇圧するた
めには、昇圧用コンデンサを大容量化するか、またはコ
ンデンサ等の段数を増やさなければならないので、チッ
プ面積の増大や、ダイオード取付けのためのアセンブリ
工数が増えてコストアップを招き、さらには昇圧速度が
低下するという問題点があった。Therefore, in order to compensate for this effect and boost the voltage to the required value, it is necessary to increase the capacity of the boost capacitor or increase the number of stages of capacitors, etc., which increases the chip area and requires assembly for mounting the diode. There were problems in that the number of man-hours increased, leading to an increase in cost, and furthermore, the rate of boosting the pressure decreased.
また前記文献には、前記第3図に示した昇圧回路ととも
に、第5図に示すような他の昇圧回路が開示されている
。Further, in addition to the booster circuit shown in FIG. 3, the literature also discloses another booster circuit as shown in FIG. 5.
この昇圧回路は、前記第3図の昇圧回路における各ダイ
オードに代えてMOSFET 24a〜24fが用い
られ、これが半導体基板の主面に作り込まれて、前記の
奇生容■に対する問題解決が図られている。In this booster circuit, MOSFETs 24a to 24f are used in place of the diodes in the booster circuit shown in FIG. ing.
各MO3FET24a 〜24fは、ゲートとドレイン
が接続されてダイオードとして動作する。Each MO3FET 24a to 24f has its gate and drain connected and operates as a diode.
ところで半導体基板に作り込まれたMOSFETと、基
板との間には逆バイアスが加えられ、この基板バイアス
効果によりMO8F’ETがスイッチングされるための
しきい値電圧が上昇する。このしきい値電圧は、昇圧回
路の動作上は損失として働くので昇圧効率が低下する。By the way, a reverse bias is applied between the MOSFET fabricated in the semiconductor substrate and the substrate, and the threshold voltage for switching the MO8F'ET increases due to this substrate bias effect. This threshold voltage acts as a loss in the operation of the booster circuit, resulting in a decrease in boosting efficiency.
このためダイオード接続のMOSFETを使用した昇圧
回路にあっても、所要電圧値まで昇圧するためには、上
記の損失を補なう必要から背圧段数を増やさなければな
らないので、チップ面積が増大してコストアップを招き
、ざらには昇圧速度が低下するという前記と同様の問題
点があった。Therefore, even in a booster circuit that uses diode-connected MOSFETs, in order to boost the voltage to the required voltage value, the number of backpressure stages must be increased to compensate for the above losses, resulting in an increase in chip area. However, the same problems as mentioned above arise, such as an increase in cost and a decrease in the rate of pressure increase.
[発明の目的]
この発明は、上記事情に基づいてなされたもので、昇圧
効率の損失が少なく、少ない昇圧段数で所要の昇圧電圧
出力を得ることができて、チップコストの低減を図るこ
とができ、さらには昇圧速度を速めることのできる昇圧
回路を提供することを目的とする。[Purpose of the Invention] The present invention has been made based on the above-mentioned circumstances, and it is possible to reduce the loss of boost efficiency, obtain the required boost voltage output with a small number of boost stages, and reduce chip cost. It is an object of the present invention to provide a booster circuit that can increase the boosting speed.
[発明の概要1
この発明は、上記目的を達成するために、昇圧制御用の
ダイオードを、半導体基板の主面上に堆積した多結晶シ
リコンのρ影領域とn影領域との接合で形成することに
より、ダイオードを半導体基板に作り込んだ場合のチャ
ージ電荷の漏れを避け、またダイオード接続のMOSF
ETを使用したときの基板バイアス効果によるしきい値
の上昇に起因する損失増大を避けて昇圧効率を向上させ
、さらには所要電圧値まで昇圧させるための背圧段数を
少な(して昇圧速度が高められるようにしたものである
。[Summary of the Invention 1] In order to achieve the above object, the present invention forms a diode for voltage boost control by a junction between a ρ shadow region and an n shadow region of polycrystalline silicon deposited on the main surface of a semiconductor substrate. This avoids charge leakage when a diode is built into a semiconductor substrate, and also prevents leakage of charge when a diode is built into a semiconductor substrate.
This improves the boost efficiency by avoiding the increase in loss caused by the rise in threshold value due to the substrate bias effect when using ET, and also reduces the number of back pressure stages to boost the voltage to the required voltage value (by reducing the boost speed). It is designed to be enhanced.
[発明の実施例]
以下この発明の実施例を、第1図および第2図に基づい
て説明する。[Embodiments of the Invention] Examples of the present invention will be described below based on FIGS. 1 and 2.
なお第1図および第2図において、前記第3図〜第5図
における部位等と同一ないし均等のものは、前記と同一
符号を以って示し重複した説明を省略する。In FIGS. 1 and 2, parts that are the same as or equivalent to those in FIGS. 3 to 5 are designated by the same reference numerals and redundant explanations will be omitted.
まず構成を説明すると、第1図中筒号5は例えばn形の
半導体基板で、半導体基板5の主面部には、pウェル6
a、6b、6cが適宜間隔をおいて形成されている。First, to explain the structure, tube number 5 in FIG.
a, 6b, and 6c are formed at appropriate intervals.
各ウェル6a、6b、6c上には、5IChの誘電体層
7a、7b、7Cを介して多結晶シリコンの電極(p+
領領域8b、8C18dが形成され、これらpウェル6
a、6b、6c、誘電体層7a、7b、7C1および多
結晶シリコンの電極8b、8c、8dからなるMOSキ
ャパシタ構造により、第2図に示すような背圧用のコン
デンサC+ 、C2、C3がそれぞれ形成されている。Polycrystalline silicon electrodes (p+
Territory regions 8b and 8C18d are formed, and these p wells 6
With the MOS capacitor structure consisting of dielectric layers 7a, 7b, 7C1 and polycrystalline silicon electrodes 8b, 8c, 8d, back pressure capacitors C+, C2, C3 as shown in FIG. It is formed.
9はLOCO8酸化膜からなるフィールド酸化膜で、こ
のフィールド酸化膜9上に、前記電極等を構成している
多結晶シリコンのp+領域8a、8b、8c、8dに対
してそれぞれ対となる多結晶シリコンのn+領域11a
111b、11c。Reference numeral 9 denotes a field oxide film made of a LOCO8 oxide film, and on this field oxide film 9, polycrystalline oxides are formed which are paired with the p+ regions 8a, 8b, 8c, and 8d of polycrystalline silicon that constitute the electrodes, etc. Silicon n+ region 11a
111b, 11c.
11dが形成されている。これら多結晶シリコンのp”
fJ域8a、8b、8C18dと、n1領域11a、1
1b、11c、11dとの各接合により昇圧制御用の各
ダイオードD1、D2、D3、D4が形成されている。11d is formed. These polycrystalline silicon p”
fJ regions 8a, 8b, 8C18d and n1 regions 11a, 1
The respective junctions with 1b, 11c, and 11d form respective diodes D1, D2, D3, and D4 for voltage boost control.
12はPSGII!で、PSG膜12の所要位置には、
フォトエツチング法によりコンタクトホールが開孔され
、上記のダイオードD1〜D4がAn配線層13により
直列接続されて、第2図のノード4a、4b、4Cに相
当する部分が形成されている。12 is PSGII! At the required positions of the PSG film 12,
Contact holes are formed by photoetching, and the diodes D1 to D4 are connected in series through an An wiring layer 13 to form portions corresponding to nodes 4a, 4b, and 4C in FIG. 2.
ダイオードD+”D4の構成要素で、その一部はコンデ
ンサC+”−C3の電極も兼ねる多結晶シリコンはCV
D法により堆積され、そのp+領域8a〜8d、および
n+領域11a〜11dは、半導体基板5上に形成され
ける他のMOS IC等の製造プロセスにおけるソー
ス、ドレイン領域等の不純物拡散時に、同時に不純物が
拡散されて形成される。CV
The p+ regions 8a to 8d and n+ regions 11a to 11d, which are deposited by the D method, are simultaneously exposed to impurities during impurity diffusion into source and drain regions in the manufacturing process of other MOS ICs formed on the semiconductor substrate 5. is diffused and formed.
而してこの実施例では、ダイオードD1〜D4が半導体
基板5の主面上に堆積された多結晶シリコン層により形
成され、また昇圧用のコンデンサC1〜C3が、この多
結晶シリコン層の一部と、半導体基板5に作り込まれた
pウェル6a〜6cとを用いて形成されて、昇圧回路が
他のMO8ICメモリ等とともに1チツプ化されている
。In this embodiment, the diodes D1 to D4 are formed from a polycrystalline silicon layer deposited on the main surface of the semiconductor substrate 5, and the boosting capacitors C1 to C3 are formed from a portion of this polycrystalline silicon layer. The booster circuit is formed using the p-wells 6a to 6c formed in the semiconductor substrate 5, and the booster circuit is integrated into one chip along with other MO8IC memories and the like.
次に作用を説明する。Next, the action will be explained.
まず1段目のコンデンサC1が電源電圧VinによりV
in−Vbinまで充電される。クロック信号φが立上
ると、コンデンサC+ の結合によリノード4aの電圧
が昇圧され、これと同時に2段目のダイオードD2が導
通制御されて背圧された電圧は2段目のコンデンナC2
に充電される。First, the first stage capacitor C1 is set to V due to the power supply voltage Vin.
Charged to in-Vbin. When the clock signal φ rises, the voltage of the linode 4a is boosted by the coupling of the capacitor C+, and at the same time, the conduction of the second stage diode D2 is controlled and the back voltage is transferred to the second stage capacitor C2.
is charged to.
次いでクロック信号φが立上るとノード4bの電圧が昇
圧され、これと同時に3段目のダイオードD3が導通制
御されて背圧された電圧は3段目のコンデンサC3に充
電される。Next, when the clock signal φ rises, the voltage at the node 4b is boosted, and at the same time, the third stage diode D3 is controlled to be conductive, and the back-pressure voltage is charged to the third stage capacitor C3.
このようにして各段のコンデンサC1〜C3には、ダイ
オード01〜04の導通制御により、前段の背圧された
電圧が、順次重畳的に充電されて各ノード4a、4b、
4Cの電位が上り、出力端子2から所要電圧値に昇圧さ
れた昇圧電圧Voutが出力される。In this way, the capacitors C1 to C3 in each stage are sequentially charged with the back-pressure voltage of the previous stage in a superimposed manner by the conduction control of the diodes 01 to 04, and the nodes 4a, 4b,
The potential of 4C rises, and the boosted voltage Vout boosted to a required voltage value is output from the output terminal 2.
背圧された各ノード4b、4cの電圧vbSvC1およ
び最終昇圧電圧Voutは、各ダイオードD1〜D4の
逆方向リーク電流を無視し、また各ダイオードD1〜D
4のビルトインポテンシャルをVbinとすると次式に
より与えられる。The voltage vbSvC1 and the final boosted voltage Vout of each back-voltage node 4b, 4c ignore the reverse leakage current of each diode D1 to D4, and
Letting the built-in potential of 4 be Vbin, it is given by the following equation.
Vb=2・Vin−3・Vbin
Vc=4・Vin−7・Vbin
Vout=8−Vin−15−Vbin而してこの実施
例にお【プる昇圧損失分はダイオードD1〜D4のビル
トインポテンシャルVbin分で、このビルトインポテ
ンシャルVbinは、従来のダイオード接続のMOSF
ETを使用したときの基板バイアス効果によるしきい値
の上昇というような現象は存在せずに、このしきい値電
圧よりも低い値に抑えられる。さらにダイオードを外付
けしたときの寄生古註に起因する損失も生じない。した
がって昇圧効率の向上が図られる。Vb=2・Vin-3・Vbin Vc=4・Vin-7・Vbin Vout=8-Vin-15-Vbin Therefore, in this embodiment, the boost loss is equal to the built-in potential Vbin of diodes D1 to D4. In minutes, this built-in potential Vbin is equal to that of a conventional diode-connected MOSF
A phenomenon such as an increase in the threshold voltage due to the substrate bias effect when ET is used does not exist, and the threshold voltage can be suppressed to a value lower than this threshold voltage. Furthermore, there is no loss caused by parasitic interference when a diode is externally attached. Therefore, boosting efficiency can be improved.
[発明の効果]
以上説明したように、この発明によれば昇圧制御用のダ
イオードを、半導体基板の主面上に堆積した多結晶シリ
コンのpn接合により形成したので、従来例のようにダ
イオードを半導体基板に作り込んだ場合の基板内へのチ
ャージ電荷の漏れが避けられ、またダイオード接続のM
OSFETを用いたとぎの基板バイアス効果によるしき
い値電圧の上昇に起因する損失増大が避けられて、昇圧
効率が増大し、少ない昇圧段数で所要の昇圧電圧出力を
得ることができる。したがってチップ面積を小さくでき
るのでチップコストの低減を図ることができるという利
点がある。また昇圧段数を少なくできることがら昇圧速
度が速くなるので、例えばパワーMOSトランジスタ等
のスイッチング回路駆動用の電圧源としても利用できる
など、応用範囲が広くなるという利点がある。[Effects of the Invention] As explained above, according to the present invention, the diode for voltage boost control is formed by the pn junction of polycrystalline silicon deposited on the main surface of the semiconductor substrate, so it is not necessary to use the diode as in the conventional example. When built into a semiconductor substrate, leakage of charge into the substrate can be avoided, and diode-connected M
An increase in loss due to an increase in threshold voltage due to the body bias effect when using an OSFET is avoided, boosting efficiency is increased, and a required boosted voltage output can be obtained with a small number of boosting stages. Therefore, since the chip area can be reduced, there is an advantage that the chip cost can be reduced. Furthermore, since the number of boosting stages can be reduced, the boosting speed can be increased, which has the advantage of widening the range of applications, such as being able to be used as a voltage source for driving switching circuits such as power MOS transistors.
第1図はこの発明に係る昇圧回路の実施例を示す縦断面
図、第2図は同上実施例の等何回路を示す回路図、第3
図は従来の昇圧回路を示す回路図、第4図は同上昇圧回
路に適用するクロック信号を示す信号波形図、第5図は
他の従来例を示す回路図である。
1:電源電圧の入力端子、
2:出力端子、
3a、3b:クロック信号(駆動信号)の入力端子、
5:半導体基板、
88〜8d:多結晶シリコンのp+領領域11a〜11
d:多結晶シリコンのn+領領域C1〜C3:コンデン
サ、
D1〜D4 :ダイオード。FIG. 1 is a vertical cross-sectional view showing an embodiment of a booster circuit according to the present invention, FIG. 2 is a circuit diagram showing a similar circuit of the same embodiment, and FIG.
FIG. 4 is a circuit diagram showing a conventional booster circuit, FIG. 4 is a signal waveform diagram showing a clock signal applied to the booster circuit, and FIG. 5 is a circuit diagram showing another conventional example. 1: Input terminal for power supply voltage, 2: Output terminal, 3a, 3b: Input terminal for clock signal (drive signal), 5: Semiconductor substrate, 88-8d: P+ regions 11a-11 of polycrystalline silicon
d: n+ region of polycrystalline silicon C1 to C3: capacitor, D1 to D4: diode.
Claims (1)
面部に形成され、前記各コンデンサの一端間に、外部駆
動信号で昇圧制御される電圧を順次に次段のコンデンサ
に充電させるダイオードが接続された昇圧回路において
、 前記ダイオードを、前記半導体基板の主面上に堆積した
多結晶シリコンのpn接合により形成したことを特徴と
する昇圧回路。[Claims] A plurality of step-up capacitors arranged in parallel are formed on the main surface of a semiconductor substrate, and between one end of each capacitor, a voltage boost-controlled by an external drive signal is sequentially applied to the next stage capacitor. What is claimed is: 1. A booster circuit having a diode connected thereto, wherein the diode is formed by a pn junction of polycrystalline silicon deposited on the main surface of the semiconductor substrate.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60290437A JPS62150597A (en) | 1985-12-25 | 1985-12-25 | Boosting circuit |
DE19863643994 DE3643994A1 (en) | 1985-12-25 | 1986-12-22 | Voltage multiplier circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60290437A JPS62150597A (en) | 1985-12-25 | 1985-12-25 | Boosting circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62150597A true JPS62150597A (en) | 1987-07-04 |
Family
ID=17756019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60290437A Pending JPS62150597A (en) | 1985-12-25 | 1985-12-25 | Boosting circuit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS62150597A (en) |
DE (1) | DE3643994A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226060A (en) * | 1988-07-14 | 1990-01-29 | Nec Corp | Semiconductor device |
KR100263867B1 (en) * | 1996-05-30 | 2000-09-01 | 가네꼬 히사시 | Semiconductor memory device and method of fabricating the same |
JP2003520441A (en) * | 2000-01-11 | 2003-07-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Charge pump circuit |
RU205633U1 (en) * | 2021-03-15 | 2021-07-23 | Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" | SILICON CAPACITOR |
RU206227U1 (en) * | 2021-03-10 | 2021-09-01 | Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" | SILICONE 3D CAPACITOR |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07322606A (en) * | 1994-05-27 | 1995-12-08 | Sony Corp | Booster circuit and solid-state image pick-up device using the same |
KR0145615B1 (en) * | 1995-03-13 | 1998-12-01 | 김광호 | The driving device of the tft liquid crystal display |
FR2779292B1 (en) * | 1998-05-27 | 2000-09-29 | Sgs Thomson Microelectronics | ASSOCIATION OF DIODES IN SERIES |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7806989A (en) * | 1978-06-29 | 1980-01-03 | Philips Nv | INTEGRATED SHIFT. |
-
1985
- 1985-12-25 JP JP60290437A patent/JPS62150597A/en active Pending
-
1986
- 1986-12-22 DE DE19863643994 patent/DE3643994A1/en not_active Ceased
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226060A (en) * | 1988-07-14 | 1990-01-29 | Nec Corp | Semiconductor device |
KR100263867B1 (en) * | 1996-05-30 | 2000-09-01 | 가네꼬 히사시 | Semiconductor memory device and method of fabricating the same |
US6396098B2 (en) | 1996-05-30 | 2002-05-28 | Nec Corporation | Semiconductor memory device and method of fabricating the same |
JP2003520441A (en) * | 2000-01-11 | 2003-07-02 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Charge pump circuit |
JP4981227B2 (en) * | 2000-01-11 | 2012-07-18 | ティーピーオー ホンコン ホールディング リミテッド | Charge pump circuit |
RU206227U1 (en) * | 2021-03-10 | 2021-09-01 | Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" | SILICONE 3D CAPACITOR |
RU205633U1 (en) * | 2021-03-15 | 2021-07-23 | Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" | SILICON CAPACITOR |
Also Published As
Publication number | Publication date |
---|---|
DE3643994A1 (en) | 1987-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1134879B1 (en) | Semiconductor booster circuit | |
KR100270926B1 (en) | Voltage booster circuit | |
JP4643996B2 (en) | Charge pump circuit and boosting method thereof | |
JPH0632228B2 (en) | Integrated circuit voltage multiplier | |
JPH01164264A (en) | Voltage multplier circuit and rectifier circuit | |
JPH0462868A (en) | Substrate bias generation circuit | |
JPS62150597A (en) | Boosting circuit | |
JP3035188B2 (en) | Semiconductor device | |
US7382022B2 (en) | Semiconductor device and boost circuit | |
KR100403825B1 (en) | Circuit for generating negative voltages | |
JPH11511904A (en) | Improved charge pump using storage capacitors | |
JP3354709B2 (en) | Semiconductor booster circuit | |
JPH11308856A (en) | Charge pump circuit device | |
JP4730638B2 (en) | Semiconductor device | |
JPH09321232A (en) | Semiconductor memory device and manufacture thereof | |
JPH09266281A (en) | Step-up circuit | |
US20210203221A1 (en) | Charge pump circuit arrangement | |
US5815026A (en) | High efficiency, high voltage, low current charge pump | |
JPS5922471B2 (en) | DC boost circuit | |
JP3569354B2 (en) | Semiconductor booster circuit | |
JPS61251064A (en) | Semiconductor integrated circuit | |
JP2000057790A (en) | Voltage-generating circuit | |
JP2000011673A (en) | Negative boosting circuit | |
KR20030027662A (en) | Capacitance element and boosting circuit using the same | |
JP3831758B2 (en) | Multi-stage booster circuit with small area |