JPS62150258A - Apparatus for producing electrophotographic selenium photosensitive body - Google Patents

Apparatus for producing electrophotographic selenium photosensitive body

Info

Publication number
JPS62150258A
JPS62150258A JP29138785A JP29138785A JPS62150258A JP S62150258 A JPS62150258 A JP S62150258A JP 29138785 A JP29138785 A JP 29138785A JP 29138785 A JP29138785 A JP 29138785A JP S62150258 A JPS62150258 A JP S62150258A
Authority
JP
Japan
Prior art keywords
substrate
spacer
selenium
temperature
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29138785A
Other languages
Japanese (ja)
Inventor
Teruo Yamamoto
輝男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29138785A priority Critical patent/JPS62150258A/en
Publication of JPS62150258A publication Critical patent/JPS62150258A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08207Selenium-based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce the generation of a problem about quality of a crystalline of the photosensitive layer by inserting a spacer between a supporting body and a substrate, thereby rapidly controlling the temperature of the substrate with a narrow controlling range while depositing the photosensitive layer on the substrate. CONSTITUTION:The depositing material 2 for example the pure selenium is filled in an evaporating source 1 which is provided with the vacuum vessel. The photosensitive layer is vacuum- deposited on the surface of the cylindrical aluminium substrate 5 interposing the spacer 6 between the supporting axis 4 and the substrate 5 by heating the depositing material with a heater 3. The spacer 6 is a hollow body which is sealed tightly. The heating medium 7 is sealed in the hollow body. The heat transmission to the supporting axis 4 from the substrate 5 while depositing is effected between the substrate 5 and the spacer 6, and between the supporting axis 4 and the spacer 6 by conduction respectively, and is effected in the hollow of the spacer by convection. As the contact surfaces among the supporting axis 4, the spacer 6 and the substrate 5 are pressed from the spacer side by a pressure of about 1atm, thereby sticking them with each other, the heat conduction among them is very good, whereby the heat transfer is rapidly effected between the supporting axis 4 and the substrate 5, and enable to the good temperature control which has a good heat responsibility.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電子写真用セレン感光体の製造装置に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to an apparatus for manufacturing a selenium photoreceptor for electrophotography.

〔従来技術とその問題点〕[Prior art and its problems]

電子写真用セレン感光体は一般的にはアルミニウム合金
の円筒状導電性基体上に光導電性物質である非晶質のセ
レン、セレン・テルル合金、セレン・ひ素合金などの膜
を真空蒸着で形成して感光層としてなる。セレン系物質
は非晶質状態では暗所で非常に高抵抗なので帯電能が高
くかつ優れた光導電性を有するが、結晶化すると抵抗が
低くなり光導電性もほとんどなくなる。従って、電子写
真用感光体の感光層を形成するセレン系物質は非晶質状
態であることが必須の要件であって、結晶化するとその
感光層としての機能を失うことになる。
Selenium photoreceptors for electrophotography are generally formed by vacuum deposition of a photoconductive material such as amorphous selenium, selenium-tellurium alloy, selenium-arsenic alloy, etc. on a cylindrical conductive substrate made of aluminum alloy. This forms a photosensitive layer. In an amorphous state, a selenium-based substance has a very high resistance in the dark, so it has high charging ability and excellent photoconductivity, but when crystallized, the resistance becomes low and there is almost no photoconductivity. Therefore, it is essential that the selenium-based material forming the photosensitive layer of an electrophotographic photoreceptor be in an amorphous state, and if it crystallizes, it will lose its function as a photosensitive layer.

感光層を形成するセレン系物質の状態は感光層を形成す
る真空蒸着のときの基体の温度により現実的には決まる
。すなわち、純セレンやセレン・テルル合金の場合には
、このような結晶化は蒸着時の基体温度が80℃程度以
上になると問題となってくる。また反面、これらの物質
は基体温度が60℃程度以下となると感光体として光感
度特性が悪くなり実用上問題となる。従って、純セレン
やセレン・テルル合金を感光体に用いる場合には、これ
らの物質を感光層として真空蒸着するに際して、その基
体温度を60℃〜80℃と蒸着源温度に比べてかなり低
い温度で、かつ、狭い温度範囲に制御しなければならな
いが、これは感光体の量産を行うときに大きな問題点と
なる。従って蒸着時の基体温度の制御が感光体の製造上
非常に重要となる。
The state of the selenium-based substance forming the photosensitive layer is practically determined by the temperature of the substrate during vacuum deposition to form the photosensitive layer. That is, in the case of pure selenium or a selenium-tellurium alloy, such crystallization becomes a problem when the substrate temperature during vapor deposition is about 80° C. or higher. On the other hand, when the substrate temperature of these substances falls below about 60° C., the photosensitivity of these materials deteriorates as a photoreceptor, which poses a practical problem. Therefore, when pure selenium or a selenium-tellurium alloy is used for a photoreceptor, when vacuum-depositing these materials as a photosensitive layer, the substrate temperature must be kept at 60°C to 80°C, which is considerably lower than the deposition source temperature. , and must be controlled within a narrow temperature range, which poses a major problem when mass producing photoreceptors. Therefore, controlling the substrate temperature during vapor deposition is very important in the production of photoreceptors.

従来の電子写真用セレン感光体の製造装置においては、
基体の温度制御は基体の装着される支持軸を介して行わ
れていた。真空蒸着時系体には蒸着源より蒸着物質を介
して大量の熱が伝達されるが、その伝達により蓄積され
た熱は真空中であるため、対流にはよらず基体より支持
軸への伝達によって外部へ放出される。ところが、円筒
状の基体の内面と支持軸の外面は全面接触するように装
着されてはいるものの完全な面接触は難しく部分的な面
あるいは点接触である。そのため基体に投入されてくる
熱を充分放出することができず熱が基体に蓄積されて基
体温度が上昇し、形成された感光層のセレン系物質が結
晶化する場合が生じてくる欠点があった。しかも蒸着が
激しく基体に最大量の熱が投入されてくるときにも基体
温度が結晶化のおそれのある温度に達しない程支持軸温
度を下げることは、今度は基体温度が低下しすぎる場合
が生じてくるので問題である。
In conventional electrophotographic selenium photoreceptor manufacturing equipment,
Temperature control of the substrate was performed via a support shaft to which the substrate was attached. During vacuum evaporation, a large amount of heat is transferred from the evaporation source to the evaporation material through the evaporation material, but since the heat accumulated through this transfer is in a vacuum, it is transferred from the substrate to the support shaft without relying on convection. released to the outside by However, although the inner surface of the cylindrical base body and the outer surface of the support shaft are mounted so that they are in full contact with each other, it is difficult to achieve complete surface contact, and only partial surface or point contact occurs. As a result, the heat input to the substrate cannot be sufficiently released, and the heat is accumulated in the substrate, raising the substrate temperature and causing crystallization of the selenium-based material in the formed photosensitive layer. Ta. Furthermore, even when the maximum amount of heat is input to the substrate during intense evaporation, lowering the support shaft temperature to such an extent that the substrate temperature does not reach a temperature that may cause crystallization may result in the substrate temperature becoming too low. This is a problem because it occurs.

〔発明の目的〕[Purpose of the invention]

本発明は、以上に述べてきた問題点に鑑みてなされたも
ので、真空蒸着中の基体の温度を狭い制御幅で迅速に制
御可能な電子写真用セレン感光体の製造装置を提供する
ことを目的とする。
The present invention has been made in view of the problems described above, and an object of the present invention is to provide an apparatus for manufacturing a selenium photoreceptor for electrophotography that can quickly control the temperature of a substrate during vacuum deposition in a narrow control range. purpose.

〔発明の要点〕[Key points of the invention]

本発明の目的は、真空槽内に設けられ温度制御可能な支
持軸に円筒状導電性基体を装着し、その支持軸を介して
所定温度に制御される前記基体上にセレンまたはセレン
合金を真空蒸着して感光層を形成せしめる電子写真用セ
レン感光体の製造装置にふいて、基体と支持軸との間に
、大気中で気密封止され周囲を真空排気されたとき圧力
差で膨脹して両者間の隙間をうめるように変形可能な構
造の中空のスペーサを介在せしめた製造装置とすること
によって達成される。
An object of the present invention is to attach a cylindrical conductive substrate to a temperature-controllable support shaft provided in a vacuum chamber, and apply selenium or a selenium alloy to the substrate, which is controlled at a predetermined temperature via the support shaft, under vacuum. In the production equipment for electrophotographic selenium photoreceptors that use vapor deposition to form a photosensitive layer, the selenium is hermetically sealed in the atmosphere between the base and the support shaft, and expands due to the pressure difference when the surrounding area is evacuated. This is achieved by using a manufacturing device in which a hollow spacer having a deformable structure is interposed so as to fill the gap between the two.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例の装置の真空槽内の概念的断
面図で、真空槽内に配設されている蒸発源lの中に蒸着
材料2例えば純セレンを充填し、ヒータ3によって加熱
して、支持軸4にスペーサ6を介在させて蒸着されてい
る円筒状アルミニウム基体5の表面上に真空蒸着で感光
層を形成させる。スペーサ6は中空で気密封止されてお
り中空内には熱媒体7が封入されている。真空槽内が真
空排気された状態ではスペーサ6はスペーサの内外の圧
力差で膨脹して内側の支持軸4と外側の基体5との接触
面では相手の面の形状に合うように変形して相手の面と
完全に密着している。蒸着中の基体から支持軸への熱伝
達は基体5とスペーサ6との間および支持軸4とスペー
サ6との間では伝導により、スペーサ空間では対流にて
行われるが、上述のように支持軸4とスペーサ6と基体
5の接触面が約1気圧の圧力でスペーサ側から圧されて
密着しているためこれらの間の熱伝導が非常に良好で支
持軸4と基体5の間の熱伝達が迅速に行われることにな
り熱応答性の良い温度制御が可能となる。第2図は基体
上にキャリア輸送層、キャリア発生層、表面被覆層を順
次真空蒸着にて形成したときの蒸着中の各時点とそのと
きの基体温度を示したものであり、実線が本実施例の装
置による場合であり、点線は従来の装置による場合であ
る。どちらの場合も蒸発源のヒータをオンした時点Aで
基体温度が上昇を始め、キャリア輸送層蒸発開始時点B
より蒸着材料の蒸発熱も加わり温度上昇は急激となる。
FIG. 1 is a conceptual cross-sectional view of the inside of a vacuum chamber of an apparatus according to an embodiment of the present invention, in which an evaporation source L disposed in the vacuum chamber is filled with evaporation material 2, such as pure selenium, and a heater 3 A photosensitive layer is formed by vacuum deposition on the surface of the cylindrical aluminum substrate 5, which is deposited on the support shaft 4 with a spacer 6 interposed therebetween. The spacer 6 is hollow and hermetically sealed, and a heat medium 7 is sealed in the hollow space. When the inside of the vacuum chamber is evacuated, the spacer 6 expands due to the pressure difference between the inside and outside of the spacer, and the contact surface between the inner support shaft 4 and the outer base 5 deforms to match the shape of the other surface. Completely in contact with the other person's face. Heat transfer from the substrate to the support shaft during vapor deposition is carried out by conduction between the substrate 5 and the spacer 6 and between the support shaft 4 and the spacer 6, and by convection in the spacer space. 4, the spacer 6, and the base 5 are pressed from the spacer side with a pressure of about 1 atm and are in close contact with each other, so the heat conduction between them is very good, and the heat transfer between the support shaft 4 and the base 5 is very good. is carried out quickly, making it possible to control temperature with good thermal responsiveness. Figure 2 shows the substrate temperature at each point in time during vapor deposition when a carrier transport layer, a carrier generation layer, and a surface coating layer were sequentially formed on a substrate by vacuum vapor deposition, and the solid line indicates the temperature of the substrate at that time. This is the case using the example device, and the dotted line is the case using the conventional device. In either case, the substrate temperature begins to rise at time A when the heater of the evaporation source is turned on, and at time B when carrier transport layer evaporation begins.
The heat of evaporation of the vapor deposition material is also added, and the temperature rises rapidly.

キャリア輸送層の蒸発が終了しキャリア発生層の蒸発が
開始した時点Cで基体温度は最高に達したが、このとき
従来の装置の場合には90℃以上になり問題が多かった
。これに対し、本実施例の装置の場合には蒸着作業開始
の初期の温度を従来より10℃高くしたにもかかわらず
80℃以下に保つことができた。蒸着初期の基体温度を
高くすることは基体とセレン層との密着強度を強くする
ことが可能となり好ましいことである。
The substrate temperature reached its maximum at time C, when the carrier transport layer had finished evaporating and the carrier generation layer had begun to evaporate, but in the case of conventional devices, the temperature at this point reached 90° C. or higher, which caused many problems. On the other hand, in the case of the apparatus of the present example, although the initial temperature at the start of the vapor deposition operation was 10° C. higher than the conventional temperature, it was able to be maintained at 80° C. or lower. Increasing the temperature of the substrate at the initial stage of vapor deposition is preferable because it makes it possible to strengthen the adhesion between the substrate and the selenium layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、真空蒸着により電子写真用セレン感光
体の製造装置において、支持体と基体との間にスペーサ
を介在させることにより真空蒸着中層体温度を狭い制御
幅で迅速に制御できるようになり感光層の結晶など品質
上の問題の発生を低減させることができた。また、熱容
量の小さい小径、薄肉のアルミニウム素管の感光体への
適用が可能となりコストダウンに寄与できた。さらに、
スペーサの厚みを変えることにより、支持軸の交換を行
うことなく多種類の径の感光体の製造が可能となるなど
得られる効果は大きい。
According to the present invention, in an apparatus for manufacturing a selenium photoreceptor for electrophotography using vacuum evaporation, the temperature of the layer during vacuum evaporation can be quickly controlled within a narrow control range by interposing a spacer between the support and the substrate. This made it possible to reduce the occurrence of quality problems such as crystals in the photosensitive layer. Additionally, it has become possible to use small-diameter, thin-walled aluminum tubes with low heat capacity in the photoreceptor, contributing to cost reduction. moreover,
By changing the thickness of the spacer, great effects can be obtained, such as making it possible to manufacture photoreceptors of various diameters without replacing the support shaft.

4、発明の詳細な説明 第1図は本発明の一実施例の装置の真空槽内の概念的断
面図、第2図は本発明の一実施例および従来例の装置に
おける真空蒸着中の各時点と基体温度との関係を示す線
図である。
4. Detailed Description of the Invention Fig. 1 is a conceptual cross-sectional view of the inside of a vacuum chamber of an apparatus according to an embodiment of the present invention, and Fig. 2 shows various views during vacuum evaporation in an apparatus according to an embodiment of the present invention and a conventional example. FIG. 3 is a diagram showing the relationship between time and substrate temperature.

4・・・支持軸、 5・・・円筒状導電性基体、  6
・・・ス第1図 第2図
4... Support shaft, 5... Cylindrical conductive base, 6
・・・S Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)真空槽内に設けられ温度制御可能な支持軸に円筒状
導電性基体を装着し、前記支持軸を介して所定温度に制
御される前記円筒状導電性基体上にセレンおよびセレン
合金の少なくともいずれか一方を真空蒸着して感光層を
形成せしめる電子写真用セレン感光体の製造装置におい
て、前記円筒状導電性基体と前記支持軸との間に、大気
圧中で気密封止され周囲を真空排気されたとき圧力差で
膨脹して両者間の隙間をうめるように変形可能な構造の
中空のスペーサを介在せしめてあることを特徴とする電
子写真用セレン感光体の製造装置。 2)特許請求の範囲第1項記載の製造装置において、中
空のスペーサの中に熱媒体が封入されていることを特徴
とする電子写真用セレン感光体の製造装置。
[Claims] 1) A cylindrical conductive substrate is mounted on a temperature-controllable support shaft provided in a vacuum chamber, and a cylindrical conductive substrate is placed on the cylindrical conductive substrate whose temperature is controlled to a predetermined temperature via the support shaft. In an apparatus for manufacturing a selenium photoreceptor for electrophotography in which a photosensitive layer is formed by vacuum-depositing at least one of selenium and a selenium alloy, an air is formed between the cylindrical conductive substrate and the support shaft at atmospheric pressure. Manufacture of a selenium photoreceptor for electrophotography characterized by interposing a hollow spacer with a deformable structure that expands due to a pressure difference when the surroundings are sealed and evacuated to fill the gap between the two. Device. 2) A manufacturing apparatus for a selenium photoreceptor for electrophotography according to claim 1, wherein a heating medium is enclosed in a hollow spacer.
JP29138785A 1985-12-24 1985-12-24 Apparatus for producing electrophotographic selenium photosensitive body Pending JPS62150258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29138785A JPS62150258A (en) 1985-12-24 1985-12-24 Apparatus for producing electrophotographic selenium photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29138785A JPS62150258A (en) 1985-12-24 1985-12-24 Apparatus for producing electrophotographic selenium photosensitive body

Publications (1)

Publication Number Publication Date
JPS62150258A true JPS62150258A (en) 1987-07-04

Family

ID=17768254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29138785A Pending JPS62150258A (en) 1985-12-24 1985-12-24 Apparatus for producing electrophotographic selenium photosensitive body

Country Status (1)

Country Link
JP (1) JPS62150258A (en)

Similar Documents

Publication Publication Date Title
US4471042A (en) Image-forming member for electrophotography comprising hydrogenated amorphous matrix of silicon and/or germanium
US5573884A (en) Image-forming member for electrophotography
US20070204798A1 (en) Apparatus for evaporating vapor-deposition material
US3607388A (en) Method of preparing photoconductive layers on substrates
JPH10195639A (en) Evaporation source for organic material and organic thin film forming apparatus using the same
JPS62150258A (en) Apparatus for producing electrophotographic selenium photosensitive body
US3524745A (en) Photoconductive alloy of arsenic,antimony and selenium
US4895784A (en) Photoconductive member
JPH0254426B2 (en)
JPS6316733B2 (en)
US2947651A (en) Method of making storage electrode for charge storage tube
JP3206760B2 (en) K cell for vacuum evaporation
JPS59113174A (en) Method and device for forming thin film
JPS63171866A (en) Apparatus for producing electrophotographic sensitive body
JPS59113180A (en) Vapor deposition device
JPS62254158A (en) Production of electrophotographic sensitive body
JPS61110759A (en) Vapor-depositing device
JPS62160461A (en) Heating source for manufacturing electrophotographic sensitive body
JPS5943871A (en) Vessel for storing material to be evaporated
JPS6113551Y2 (en)
JPH07111585B2 (en) Vacuum evaporation source container for electrophotographic photoreceptor
JPS6299459A (en) Evaporating source for vacuum deposition
JPS6293373A (en) Production of photoconductor
JPS6327870B2 (en)
SU361228A1 (en) EVAPORATOR OF METAL RESPONSE WITH TUNGSTEN