JPS6214533Y2 - - Google Patents

Info

Publication number
JPS6214533Y2
JPS6214533Y2 JP13942780U JP13942780U JPS6214533Y2 JP S6214533 Y2 JPS6214533 Y2 JP S6214533Y2 JP 13942780 U JP13942780 U JP 13942780U JP 13942780 U JP13942780 U JP 13942780U JP S6214533 Y2 JPS6214533 Y2 JP S6214533Y2
Authority
JP
Japan
Prior art keywords
heat
water
heat exchanger
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13942780U
Other languages
Japanese (ja)
Other versions
JPS5761460U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13942780U priority Critical patent/JPS6214533Y2/ja
Publication of JPS5761460U publication Critical patent/JPS5761460U/ja
Application granted granted Critical
Publication of JPS6214533Y2 publication Critical patent/JPS6214533Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 本考案は太陽熱などを熱源とするヒートポンプ
式冷暖房機の改良に関するものであり、特に太陽
熱などにより加熱された水と冷媒とを熱交換させ
る熱交換器(以下水と冷媒とを熱交換させる熱交
換器を水−冷媒熱交換器と略称する)の凍結を防
ぎ、水−冷媒熱交換器の信頼性と利用率を向上
し、太陽熱などを冷暖房により有効に利用しよう
とするものである。
[Detailed description of the invention] This invention relates to the improvement of heat pump type air conditioners that use solar heat as a heat source. We aim to prevent the freezing of the water-refrigerant heat exchanger (a heat exchanger that exchanges heat between It is something to do.

従来の太陽熱利用ヒートポンプ式冷暖房機は第
1図に示すように暖房運転時蒸発器となる水−冷
媒熱交換器1を有し、暖房運転時この水−冷媒熱
交換器1に太陽熱により直接又は間接に加熱され
る水を通し、この水から熱をヒートポンプサイク
ル内に吸収して運転していた。
As shown in Fig. 1, a conventional heat pump type air conditioner using solar heat has a water-refrigerant heat exchanger 1 that serves as an evaporator during heating operation. The heat pump operated by passing indirectly heated water through it and absorbing heat from this water into the heat pump cycle.

一方、この水−冷媒熱交換器1はヒートポンプ
式冷暖房機の室外ユニツト2内に設けられてい
た。この為冬季、外気温度が0℃以下に下がると
室外ユニツト2は0℃以下の空気雰囲気中にある
事になりこの水−冷媒熱交換器1内の水が凍結し
易く、凍結すると、水−冷媒熱交換器1が破壊し
たり、水が通過できなくなつて、運転が不可能に
なつたりする欠点があつた。
On the other hand, this water-refrigerant heat exchanger 1 was installed in an outdoor unit 2 of a heat pump air conditioner. For this reason, in winter, when the outside air temperature drops to 0°C or lower, the outdoor unit 2 is in an air atmosphere of 0°C or lower, and the water in the water-refrigerant heat exchanger 1 is likely to freeze. There were disadvantages in that the refrigerant heat exchanger 1 could be destroyed or water could no longer pass through it, making operation impossible.

3,4,5,6,7,8,9,10はそれぞれ
蓄熱槽、蓄熱ユニツト、ポンプ、水温調節弁、コ
レクタ、圧縮機、室内ユニツト、室外空気−冷媒
熱交換器である。
3, 4, 5, 6, 7, 8, 9, and 10 are a heat storage tank, a heat storage unit, a pump, a water temperature control valve, a collector, a compressor, an indoor unit, and an outdoor air-refrigerant heat exchanger, respectively.

本考案は以上述べてきたような従来の太陽熱利
用ヒートポンプ式冷暖房機の欠点を解消するもの
である。
The present invention eliminates the drawbacks of conventional solar heat pump type air conditioners as described above.

以下、本考案の一実施例における太陽熱利用ヒ
ートポンプ式冷暖房機(以下ソーラヒートポンプ
と略称する)の構成について説明する。
Hereinafter, the configuration of a solar heat pump type air conditioner (hereinafter abbreviated as solar heat pump) according to an embodiment of the present invention will be described.

第2図は本考案になるソーラヒートポンプの構
成を示す図である。
FIG. 2 is a diagram showing the configuration of the solar heat pump according to the present invention.

11は太陽エネルギにより熱媒を加熱するコレ
クタ、12は熱媒を循環させる為のポンプ、13
は熱媒により蓄熱槽14の中の水を加熱する為の
熱媒−水熱交換器である。
11 is a collector that heats the heat medium using solar energy; 12 is a pump that circulates the heat medium; 13
is a heat medium-water heat exchanger for heating water in the heat storage tank 14 with a heat medium.

16,18は蓄熱ユニツト17の外側を囲む外
板と断熱材、19は太陽光線、20はヒートポン
プサイクルの冷媒と蓄熱槽14内の水とを熱交換
する水−冷媒熱交換器、21は蓄熱槽14内の水
を水−冷媒熱交換器20に送るためのポンプ、2
2は水−冷媒熱交換器の出口水温を0℃以上の一
定温度に保つ為の水温調整弁である。
Reference numerals 16 and 18 denote an outer plate and a heat insulating material surrounding the outside of the heat storage unit 17, 19 a solar ray, 20 a water-refrigerant heat exchanger that exchanges heat between the refrigerant of the heat pump cycle and the water in the heat storage tank 14, and 21 a heat storage unit. a pump for sending water in the tank 14 to the water-refrigerant heat exchanger 20;
2 is a water temperature regulating valve for maintaining the outlet water temperature of the water-refrigerant heat exchanger at a constant temperature of 0° C. or higher.

また、23は圧縮機、24は4方弁、25は室
内熱交換器、26,27は膨張弁、28,29は
逆止弁、30,31は三方弁、32は室外空気−
冷媒熱交換器である。
Further, 23 is a compressor, 24 is a four-way valve, 25 is an indoor heat exchanger, 26 and 27 are expansion valves, 28 and 29 are check valves, 30 and 31 are three-way valves, and 32 is an outdoor air-
It is a refrigerant heat exchanger.

次に本考案の作用について説明する。太陽光線
19がコレクタ11に入ると、コレクタ11内の
熱媒は加熱されて温度が上昇する。温度が上昇し
た熱媒はポンプ12により流動して熱媒−水熱交
換器13に達し、ここで熱媒はタンク14内の水
と熱交換し、熱媒温度は低下し、水の温度は上昇
する。このようにして水と熱交換した熱媒は再び
コレクタ11に戻る。
Next, the operation of the present invention will be explained. When sunlight 19 enters the collector 11, the heat medium inside the collector 11 is heated and its temperature increases. The heating medium whose temperature has increased flows through the pump 12 and reaches the heating medium-water heat exchanger 13, where the heating medium exchanges heat with the water in the tank 14, the heating medium temperature decreases, and the temperature of the water decreases. Rise. The heat medium that has thus exchanged heat with water returns to the collector 11 again.

一方ヒートポンプサイクルについて説明すると
水熱源を使つた暖房時は圧縮機23によつて圧縮
された冷媒は高圧高温となり4方弁24を通つて
室内熱交換器25に流入する。ここで室内空気と
熱交換した冷媒は凝縮して高圧の液相となり、次
に暖房用膨張弁26に流入する。ここで冷媒は膨
張して低圧低温となり、逆止弁29、三方弁30
を通つて水−冷媒熱交換器20に流入する。ここ
で蓄熱槽14から送られてくる水によつて加熱さ
れた冷媒は蒸発して低圧低温の気相となり、3方
弁31、四方弁24を通つて圧縮機23に入り、
ここで圧縮されて高圧高温の冷媒となり、以上述
べたサイクルを繰返す。これによつて水を熱源と
して暖房を行うことになる。
On the other hand, regarding the heat pump cycle, during heating using a water heat source, the refrigerant compressed by the compressor 23 becomes high pressure and high temperature and flows into the indoor heat exchanger 25 through the four-way valve 24. The refrigerant that has exchanged heat with the indoor air is condensed into a high-pressure liquid phase, and then flows into the heating expansion valve 26. Here, the refrigerant expands and becomes low pressure and low temperature, and the check valve 29 and the three-way valve 30
into the water-refrigerant heat exchanger 20 through. Here, the refrigerant heated by the water sent from the heat storage tank 14 evaporates into a low-pressure, low-temperature gas phase, enters the compressor 23 through the three-way valve 31 and the four-way valve 24,
Here, it is compressed to become a high-pressure, high-temperature refrigerant, and the cycle described above is repeated. This allows heating to be performed using water as a heat source.

また、水−冷媒熱交換器20に冷媒を流して水
熱源で暖房している時は蓄熱槽4内の水はポンプ
21を通つて水−冷媒熱交換器20に入り冷媒に
より冷却されて温度が下がり水温調整弁22を通
つて蓄熱槽14に水が戻るようになつている。こ
の水温調整弁22は弁の出口温度が常に0℃以上
の一定温度(例えば5℃)以上になるように流量
を調整して水が凍結しないようにしている。
Furthermore, when heating is performed using a water heat source by flowing a refrigerant through the water-refrigerant heat exchanger 20, the water in the heat storage tank 4 passes through the pump 21 and enters the water-refrigerant heat exchanger 20, where it is cooled by the refrigerant and the temperature increases. As the temperature decreases, water returns to the heat storage tank 14 through the water temperature adjustment valve 22. The water temperature regulating valve 22 adjusts the flow rate so that the outlet temperature of the valve is always at a constant temperature of 0° C. or higher (for example, 5° C.) or higher to prevent the water from freezing.

またポンプ21の入口温度はサーミスタ(図示
せず)で検知し、前記の一定温度(例えば5℃)
以下では水−冷媒熱交換器20を使つたヒートポ
ンプの運転を停止し、3方弁30,31を切換え
て室外空気−冷媒熱交換器32に冷媒を通して空
気熱源による運転をするようにしている。
In addition, the inlet temperature of the pump 21 is detected by a thermistor (not shown), and is kept at a constant temperature (for example, 5°C).
In the following, the operation of the heat pump using the water-refrigerant heat exchanger 20 is stopped, and the three-way valves 30 and 31 are switched to pass the refrigerant to the outdoor air-refrigerant heat exchanger 32 so that operation is performed using an air heat source.

このように水−冷媒熱交換器20を使つて暖房
運転している時は水が凍結しないようになつてい
る。
In this way, water does not freeze during heating operation using the water-refrigerant heat exchanger 20.

また第2図に示すように水−冷媒熱交換器20
は蓄熱槽14の上部に配置して蓄熱槽14と空気
層33を介して熱的に接触させ、これらを一体に
して断熱材18で外気と断熱しているため、水−
冷媒熱交換器20を使つた暖房運転が停止して
も、水−冷媒熱交換器20内の水は常に蓄熱槽1
4の余熱によつて凍結することがないようになつ
ている。さらにポンプ21、接続配管34,3
5,36,37、水温調整弁22も水−冷媒熱交
換器20と同様にタンク14と空気層33を介し
て熱的接触状態にし、外気と断熱することができ
るのでこれらの凍結を防ぐことができるだけでな
く、ポンプ21の入口温度の低下も少なくなり、
その分だけ空気熱源への切換えが少なくなつて水
−冷媒熱交換器の利用率も向上する。
In addition, as shown in FIG. 2, a water-refrigerant heat exchanger 20
is placed above the heat storage tank 14 and brought into thermal contact with the heat storage tank 14 via the air layer 33, and these are integrated and insulated from the outside air with the heat insulating material 18, so that water -
Even if the heating operation using the refrigerant heat exchanger 20 is stopped, the water in the water-refrigerant heat exchanger 20 is always kept in the heat storage tank 1.
The residual heat from Step 4 prevents it from freezing. Furthermore, the pump 21, connection piping 34, 3
5, 36, 37, like the water-refrigerant heat exchanger 20, the water temperature adjustment valve 22 is also brought into thermal contact with the tank 14 via the air layer 33, and can be insulated from the outside air to prevent these from freezing. Not only is this possible, but the drop in the inlet temperature of the pump 21 is also reduced.
The switching to the air heat source is accordingly reduced, and the utilization rate of the water-refrigerant heat exchanger is also improved.

冷房運転するとるときは、4方弁24を冷房側
に切換え圧縮機23で圧縮されて高圧高温となつ
た気相の冷媒は4方弁24を通り、さらに3方弁
31を通つて室外空気−冷媒熱交換器22に入
り、空気と熱交換して凝縮し、高圧の液相となり
膨張弁27を通つて低圧まで膨張し、逆止弁28
を通つて室内熱交換器25に入る。ここで室内空
気で加熱された冷媒は蒸発して低圧の気相となり
4方弁24を通つて圧縮機23に入り、ここで圧
縮されて高圧高温の冷媒となり、以上のサイクル
を繰返す。
When performing cooling operation, the four-way valve 24 is switched to the cooling side, and the gaseous refrigerant, which has been compressed by the compressor 23 and has become high-pressure and high-temperature, passes through the four-way valve 24 and then through the three-way valve 31 to the outdoor air. - The refrigerant enters the heat exchanger 22, exchanges heat with air, condenses, becomes a high-pressure liquid phase, expands to a low pressure through the expansion valve 27, and expands to a low pressure through the check valve 28.
and enters the indoor heat exchanger 25. Here, the refrigerant heated by the indoor air evaporates into a low-pressure gas phase and enters the compressor 23 through the four-way valve 24, where it is compressed to become a high-pressure, high-temperature refrigerant, and the above cycle is repeated.

また本考案によれば水の熱源は太陽であるが、
これが他の熱源、例えば排熱等であつても本考案
が適用できることは言うまでもない。
Also, according to this invention, the heat source of water is the sun,
It goes without saying that the present invention can be applied even if the heat source is another heat source, such as exhaust heat.

以上のように、本考案によれば、水−冷媒熱交
換器は蓄熱槽の上部にあつて、空気層を介して熱
的に接触し、これらが一体となつて断熱材によつ
て外気と断熱されているため、水−冷媒熱交換器
が凍結することがなく、この為に水−冷媒熱交換
器の信頼性が向上するだけでなく、ポンプの入口
温度も少なくなつて水−冷媒熱交換器の利用率が
向上し、もつてエネルギと資源をより有効に利用
し得るという効果を有するものである。
As described above, according to the present invention, the water-refrigerant heat exchanger is located above the heat storage tank, is in thermal contact with the air layer, and is integrated with the outside air through the insulation material. Because it is insulated, the water-refrigerant heat exchanger does not freeze, which not only improves the reliability of the water-refrigerant heat exchanger, but also reduces the pump inlet temperature and reduces the water-refrigerant heat exchanger. This has the effect of improving the utilization rate of the exchanger and making more effective use of energy and resources.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプ式冷暖房機の回路
構成図、第2図は本考案の一実施例におけるヒー
トポンプ式冷暖房機の回路構成図である。 11……コレクタ、14……タンク、17……
蓄熱ユニツト、18……断熱材、20……水−冷
媒熱交換器、23……圧縮機、25……室内熱交
換器、32……室外熱交換器。
FIG. 1 is a circuit configuration diagram of a conventional heat pump type air conditioner/heater, and FIG. 2 is a circuit configuration diagram of a heat pump type air conditioner/heater according to an embodiment of the present invention. 11... Collector, 14... Tank, 17...
Heat storage unit, 18...Insulating material, 20...Water-refrigerant heat exchanger, 23...Compressor, 25...Indoor heat exchanger, 32...Outdoor heat exchanger.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 暖房運転時に蒸発器となる水と冷媒とを熱交換
させる熱交換器を有し、前記熱交換器の水側配管
を、その中に太陽熱などにより直接または間接に
加熱される水が存在する蓄熱槽に接続すると共
に、前記熱交換器は前記蓄熱槽の上部に配置して
前記蓄熱槽と空気層を介して熱的接触状態に保
ち、これらを一体にして断熱材で囲んだヒートポ
ンプ式冷暖房機。
A heat storage device that has a heat exchanger that exchanges heat between water, which serves as an evaporator, and a refrigerant during heating operation, and connects the water side piping of the heat exchanger with water that is heated directly or indirectly by solar heat, etc. The heat exchanger is connected to the heat storage tank, and the heat exchanger is placed above the heat storage tank to maintain thermal contact with the heat storage tank via an air layer, and these are integrated and surrounded by a heat insulating material. .
JP13942780U 1980-09-29 1980-09-29 Expired JPS6214533Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13942780U JPS6214533Y2 (en) 1980-09-29 1980-09-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13942780U JPS6214533Y2 (en) 1980-09-29 1980-09-29

Publications (2)

Publication Number Publication Date
JPS5761460U JPS5761460U (en) 1982-04-12
JPS6214533Y2 true JPS6214533Y2 (en) 1987-04-14

Family

ID=29499409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13942780U Expired JPS6214533Y2 (en) 1980-09-29 1980-09-29

Country Status (1)

Country Link
JP (1) JPS6214533Y2 (en)

Also Published As

Publication number Publication date
JPS5761460U (en) 1982-04-12

Similar Documents

Publication Publication Date Title
WO2015014043A1 (en) Heat-source tower heat pump device implementing high efficiency use of regenerated heat based on air
JPS6155018B2 (en)
JPH0432669A (en) Heat pump system controlling method therefor
JPS6029861B2 (en) Solar heating/cooling/water heating equipment
JPS6214533Y2 (en)
JPS5986846A (en) Hot water supply device of heat pump type
JPH074777A (en) Engine waste heat recovery device
JP3289373B2 (en) Heat pump water heater
JPS5815701B2 (en) Solar heat absorption type air conditioning and water heater
JPS6255063B2 (en)
JPH061139B2 (en) Cold / hot water production facility
JPS6256426B2 (en)
JPH033902Y2 (en)
JPS6118374Y2 (en)
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
KR101123254B1 (en) Combined regeneration heating and cooling system
JP2844124B2 (en) Heat pump type heating equipment using antifreeze
JPH0471142B2 (en)
JPS6028933Y2 (en) Heat pump room air conditioner
KR20020068807A (en) Heat pump system
JPH045904B2 (en)
JPH04222360A (en) Heat pump type air conditioner
JPS6122752B2 (en)
JPS5878056A (en) Heater for air-conditioning
KR970008009B1 (en) Heating/cooling system by multi stage type heat pump