JPS62145209A - Optical waveguide device - Google Patents

Optical waveguide device

Info

Publication number
JPS62145209A
JPS62145209A JP28605885A JP28605885A JPS62145209A JP S62145209 A JPS62145209 A JP S62145209A JP 28605885 A JP28605885 A JP 28605885A JP 28605885 A JP28605885 A JP 28605885A JP S62145209 A JPS62145209 A JP S62145209A
Authority
JP
Japan
Prior art keywords
optical waveguide
light
layer
waveguide
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28605885A
Other languages
Japanese (ja)
Inventor
Keisuke Koga
啓介 古賀
Yasushi Matsui
松井 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28605885A priority Critical patent/JPS62145209A/en
Publication of JPS62145209A publication Critical patent/JPS62145209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a high-performance waveguide device which has small crosstalk by providing an area where light is inhibited from being propagated on the surface of an optical waveguide except an optical waveguide. CONSTITUTION:A light absorbing layer 12, a clad layer 13, and an optical waveguide layer 14 are laminated on an InP substrate 11 by a crystal growth method such as LPE. The light absorbing layer 12 uses an InGaAsP mixed crystal material, but band gap wavelength lambdag is only >=1.3mum so as to obtain light absorption characteristics to waveguide light wavelength lambda=1.3mum. The clad layer 13 requires a material which has a lower refractive index than the optical waveguide layer 14 and is transparent to the waveguide light, so an InP material is used; and the optical waveguide layer 14 uses an InGaAsP layer with composition of lambdag=1.1mum. Then, an optical waveguide 14a and a propagation inhibiting area 20 are formed. In this case, the film thickness (t) needs to satisfy cutoff condition to single-mode propagated light so as to obtain the propagation inhibiting area 20.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信用伝送部品あるいは光集積回路素子と
して用いる光導波路装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical waveguide device used as a transmission component for optical communication or an optical integrated circuit element.

従来の技術 近年オプトエレクトロニクス技術の進展に伴い、大容量
通信デバイスとして半導体レーザ、受光素子、光スィッ
チ等の機能素子の開発が盛んに行われている。さらには
、ファイバー有効活用の手段として超波長多重伝送の研
究が光集積回路技術と歩調を合せて着々と進められてい
る。超波長多重伝送技術を確立する上でキーポイントと
なるのが、光集積化技術と9わけ導波路制御技術である
。これまで光集積化技術の流れは、ハイブリッド型及び
モノリシック型両方がそれぞれ特長を活かして精力的に
開発されてきたが、最近ではエビ技術・プロセス技術の
改良により、後者の方が主流となりつつある。光集積回
路を構成する種々の機能素子は、基板上に形成された光
導波路により相互に光学的に接続されている。光導波路
として、信号光を導波路内へ有効に閉じ込めるために構
造土工夫が施され、第3図に示すような装荷型光導波路
がよく用いられる。図中1は基板、2は光導波層、3は
装荷部、4は入射光である。装荷部の直下の光導波層は
他の領域に比べて実効的な屈折率がわずかに高くなって
いる。したがって、外部より装荷部領域へ入力された信
号光4は、3次元的にこの光導波層に閉じ込められ、効
率よく伝搬することになる。
2. Description of the Related Art In recent years, as optoelectronic technology has progressed, functional elements such as semiconductor lasers, light receiving elements, and optical switches have been actively developed as large-capacity communication devices. Furthermore, research on ultra-wavelength multiplexing transmission as a means of effectively utilizing fibers is progressing steadily in tandem with optical integrated circuit technology. The key points in establishing ultra-wavelength multiplexing transmission technology are optical integration technology and 9-way waveguide control technology. Up until now, both hybrid and monolithic types of optical integration technology have been actively developed by taking advantage of their respective features, but recently, due to improvements in technology and process technology, the latter is becoming more mainstream. . Various functional elements constituting an optical integrated circuit are optically connected to each other by optical waveguides formed on a substrate. In order to effectively confine signal light within the waveguide, the structure of the optical waveguide is modified, and a loaded optical waveguide as shown in FIG. 3 is often used. In the figure, 1 is a substrate, 2 is an optical waveguide layer, 3 is a loading section, and 4 is incident light. The optical waveguide layer directly under the loading section has a slightly higher effective refractive index than other regions. Therefore, the signal light 4 input from the outside into the loading region is three-dimensionally confined in this optical waveguide layer and propagated efficiently.

発明が解決しようとする問題点 しかしながら、上述の方法では以下のような欠点を有し
ていた。導波路装置と外部光伝送路例えば光7アイパと
を接続する場合、レンズ等を用い光ビームを最適に絞り
込んで導波路端面に直接結像する方法やプリズム・グレ
ーティングを用いた方法が用いられるが、いずれも結合
効率は1oOチとならず、散乱ロスや不用な伝搬モード
を引き起こしてしまう。大別すると以下の二つの問題が
発生する。
Problems to be Solved by the Invention However, the above-mentioned method had the following drawbacks. When connecting a waveguide device and an external optical transmission line, such as an optical 7-eyeper, methods are used, such as a method in which a lens or the like is used to optimally narrow down the light beam and image it directly on the end face of the waveguide, or a method using a prism grating. In either case, the coupling efficiency is not 100%, causing scattering loss and unnecessary propagation modes. Broadly speaking, the following two problems arise.

(1)装荷型導波路の場合、構造の最適化を行なっても
入出力時に外部光伝送路との結合部において、所望する
導波路のみならず、他の導波層表面付近の伝搬モードま
で生じやすい。
(1) In the case of a loaded waveguide, even if the structure is optimized, at the coupling part with the external optical transmission line during input/output, not only the desired waveguide but also propagation modes near the surface of other waveguide layers Easy to occur.

(2)また、導波層表面だけでなく伝搬光に対して透明
な基板へも放射モードが存在し、表面・裏面からの反射
の影響を受ける。
(2) Furthermore, a radiation mode exists not only on the surface of the waveguide layer but also on the substrate that is transparent to the propagating light, and is affected by reflection from the front and back surfaces.

以上のような理由より、光集積回路を構成する光検出器
のノイズ成分となりS/N比の低下を招いてしまうとい
う問題があった。波長多重通信の性能を左右する要素の
一つにクロストークがある。
For the reasons mentioned above, there has been a problem in that the noise becomes a noise component in the photodetector constituting the optical integrated circuit, resulting in a decrease in the S/N ratio. Crosstalk is one of the factors that affects the performance of wavelength division multiplexing communications.

通常、クロストークは低い程好ましいが、伝送系の信頼
性を確保するために2odB程度のものが要求される。
Normally, the lower the crosstalk, the better, but in order to ensure the reliability of the transmission system, a crosstalk of about 2 odB is required.

従来例では、光導波路装置内で所望する導波路以外の領
域を伝搬するモードあるいは基板内での乱反射による透
光によって引き起こされるノイズ成分により特性のよい
光導波路装置を構成することが困難であった。よって本
発明の目的は、上述の欠点を除去することのできる、す
なわちクロストークの低い高性能な導波路装置を提供す
ることにある。
In conventional examples, it has been difficult to construct an optical waveguide device with good characteristics due to noise components caused by modes propagating in areas other than the desired waveguide within the optical waveguide device or by light transmission due to diffuse reflection within the substrate. . Therefore, an object of the present invention is to provide a high-performance waveguide device that can eliminate the above-mentioned drawbacks, that is, has low crosstalk.

問題点を解決するための手段 上記の問題点を解決するために、本発明によればまず、
伝搬光に対して透明な特性を有する基板上に光吸収層、
クラッド層、光導波層を順次積層し最上層の光導波層に
少なくとも1つ以上の光導波路し、ついで前記光導波路
以外の光導波層表面に光の伝搬を阻止する領域を形成す
る。伝搬阻止領域として、光導波層の膜厚を伝搬光に対
して基本モードが伝搬できる最小膜厚以下に設定し、ま
た光吸収層として伝搬光に対して吸収特性を示す組成を
もつ材料を用いることによって、特性の優れた光導波路
装置を得ることができる。
Means for Solving the Problems In order to solve the above problems, according to the present invention, first,
A light absorption layer on a substrate that has the property of being transparent to propagating light,
A cladding layer and an optical waveguide layer are sequentially laminated, and at least one optical waveguide is formed in the uppermost optical waveguide layer, and then a region for blocking light propagation is formed on the surface of the optical waveguide layer other than the optical waveguide. As the propagation blocking region, the thickness of the optical waveguide layer is set to be less than the minimum thickness that allows the fundamental mode to propagate with respect to the propagating light, and as the light absorbing layer, a material with a composition that exhibits absorption characteristics for the propagating light is used. By this, an optical waveguide device with excellent characteristics can be obtained.

作  用 導波路構造として、第2図(、)のようなスラブ型導波
路を考える。図中11は基板、12は光吸収層、13は
クラッド層、14は光導波層、15は導波光である。光
吸収層12として先導波光16よりバンドギャップ波長
の長い組成の材料を用い、導波路特性に影響を及ぼさな
い程度にクラッド層を厚くしておく。適当な条件に設定
すれば、導波光16は光導波層14内に閉じ込められて
伝搬する。この時の伝搬特性は、種々の導波路条件によ
って決定され、導波路の膜厚によって特性が大きく左右
される。今、基板11としてInP 、導波路組成:λ
、=1.1μm、導波光波長λ=1.3μmの場合、導
波路膜厚に対して導波路の実効屈折率が変化する様子を
第2図(b)に示す。この時伝搬する光は、導波路に対
して平行な偏波面を持ち(TEモード)かつ、最低次の
モードとした。
As a working waveguide structure, consider a slab waveguide as shown in Figure 2 (,). In the figure, 11 is a substrate, 12 is a light absorption layer, 13 is a cladding layer, 14 is an optical waveguide layer, and 15 is a guided light. A material with a composition having a longer bandgap wavelength than the leading wave light 16 is used as the light absorption layer 12, and the cladding layer is made thick to the extent that it does not affect the waveguide characteristics. If appropriate conditions are set, the guided light 16 will be confined within the optical waveguide layer 14 and propagate. The propagation characteristics at this time are determined by various waveguide conditions, and the characteristics are greatly influenced by the film thickness of the waveguide. Now, InP is used as the substrate 11, waveguide composition: λ
, = 1.1 μm, and the guided light wavelength λ = 1.3 μm, FIG. 2(b) shows how the effective refractive index of the waveguide changes with respect to the waveguide film thickness. The light propagating at this time had a plane of polarization parallel to the waveguide (TE mode) and was in the lowest order mode.

導波路膜厚が、0.75μm以下の場合、導波路はカッ
トオフ状態となり光はいかなるモードも導波路を伝搬す
ることはできず、基板への放射モードとなる。また、外
部伝送系より導波路への光の結合時に発生する所望の導
波路以外の領域への迷光成分、及び基板内部への導波路
よりの放射・散乱成分は、クラッド層3を介して導波路
4下に配置された光吸収層2によって全て吸収除去され
る。
When the waveguide film thickness is 0.75 μm or less, the waveguide is in a cut-off state, and no mode of light can propagate through the waveguide, but becomes a radiation mode toward the substrate. In addition, stray light components that are generated when coupling light from an external transmission system to a waveguide to a region other than the desired waveguide, and radiation and scattering components from the waveguide into the inside of the substrate are guided through the cladding layer 3. All of the light is absorbed and removed by the light absorption layer 2 placed below the wave path 4.

以上のことから、所望の導波踏部以外の導波層領域を適
当な手段を用いて薄くし、その膜厚が所定の条件に対し
てカットオフ条件に設定し、かつ導波層下にクラッド層
を介して光吸収層を配置することによって、信号光の入
力時に発生する不用な伝搬モードや導波路内での散乱・
迷光成分を全てカットできることになる。
From the above, it is possible to thin the waveguide layer area other than the desired waveguide tread using appropriate means, set the film thickness to a cutoff condition with respect to the predetermined conditions, and By arranging the light absorption layer through the cladding layer, unnecessary propagation modes that occur when signal light is input, and scattering and scattering within the waveguide can be avoided.
This means that all stray light components can be cut out.

実施例 次に図面を参照して本発明の詳細な説明する。Example Next, the present invention will be described in detail with reference to the drawings.

図中11は基板、12は光吸収層、13はクラッド層、
14は光導波層、14aは光導波路、21は伝搬阻止領
域である。まず作成プロセスであるが、InP基板11
上に光吸収層12.クラッド層13及び光導波層14を
順次LPE等の結晶成長法により積層する。光吸収層1
2としてI nGaA s P混晶材料を用いるが、導
波光波長λ=1.3μmに対して吸収特性を持たせるに
はバンドギャップ波長λ9が1.3μm以上のものであ
ればよく、ここでは1.6μmの組成を用いた。クラッ
ド層13としては、光導波層14よシ屈折率が低く、か
つ導波光に対して透明な材料が必要なためInP材料を
用いた。光導波層14としては、λg=1.1μmの組
成のI nGaAs P層を用いた。また膜厚は光吸収
層12、クラッド層13.光導波層14それぞれ1μ”
+  5 Jim、  1 prnとした。
In the figure, 11 is a substrate, 12 is a light absorption layer, 13 is a cladding layer,
14 is an optical waveguide layer, 14a is an optical waveguide, and 21 is a propagation blocking region. First, in the creation process, the InP substrate 11
A light absorption layer 12 on top. The cladding layer 13 and the optical waveguide layer 14 are sequentially laminated by a crystal growth method such as LPE. Light absorption layer 1
2, an InGaAs P mixed crystal material is used, but in order to have absorption characteristics for the guided light wavelength λ=1.3 μm, it is sufficient if the band gap wavelength λ9 is 1.3 μm or more, and here, 1 A composition of .6 μm was used. As the cladding layer 13, an InP material was used because a material that has a lower refractive index than the optical waveguide layer 14 and is transparent to the guided light is required. As the optical waveguide layer 14, an InGaAs P layer having a composition of λg=1.1 μm was used. Also, the film thicknesses are as follows: light absorption layer 12, cladding layer 13. Each optical waveguide layer 14 is 1μ"
+ 5 Jim, 1 prn.

次に光導波路14a及び伝搬阻止領域2oを作成する。Next, an optical waveguide 14a and a propagation blocking region 2o are created.

これは、通常のフォトリソプロセスによりW=2〜3μ
m幅のパターン出しを行なった後、伝搬阻止領域20の
部分をエツチング処理を行なって薄くする。伝搬阻止領
域20として作用するためには、膜厚:tがシングルモ
ード伝搬光に対してカットオフ条件を満足しなければな
らない。
This is achieved by a normal photolithography process with W=2~3μ.
After forming a pattern with a width of m, the propagation blocking region 20 is etched to make it thinner. In order to act as the propagation blocking region 20, the film thickness: t must satisfy a cutoff condition for single mode propagation light.

ここではプロセス上の安定さからt =0.571mと
した。最後にエツチングマスクを除去すれば本装置が構
成できる。
Here, t was set to 0.571 m from the viewpoint of process stability. Finally, by removing the etching mask, the present device can be constructed.

この構成において、光導波路14aの片端面から結合さ
れた入力光2oは光導波路14aに有効に閉じ込められ
伝搬することになる。外部との光結合にはレンズ等光学
的直接結像法がよく用いられるが、この場合従来例では
所望する導波路以外にも伝搬モードを生じてしまい、正
規な信号光に混入しS/N比の低下を招くという問題が
あった。
In this configuration, the input light 2o coupled from one end surface of the optical waveguide 14a is effectively confined and propagated in the optical waveguide 14a. Optical direct imaging methods such as lenses are often used for optical coupling with the outside, but in this case, in conventional methods, propagation modes are generated in areas other than the desired waveguide, which mix with the regular signal light and reduce the S/N. There was a problem that this resulted in a decrease in the ratio.

本実施例の方法によれば、このような不用な伝搬モード
は伝搬阻止領域にて全てカットすることができるのでノ
イズの影響を大幅に低減することができる。また入出力
時の基板モードや導波路よりの散乱光も同様にノイズの
原因となっていたが、これらの迷光成分は光導波路下に
設置された光吸収層により全て吸収除去できるため、超
波長多重伝送用としても十分に特性のよいS/N比を実
現できるととになる。
According to the method of this embodiment, such unnecessary propagation modes can be completely cut off in the propagation blocking region, so that the influence of noise can be significantly reduced. In addition, the substrate mode during input/output and scattered light from the waveguide were also a cause of noise, but since these stray light components can be completely absorbed and removed by the light absorption layer installed under the optical waveguide, they can be removed at ultra-high wavelengths. This means that a sufficiently good S/N ratio can be achieved even for multiplex transmission.

なお、本実施例ではInP基板上のI nGaAs P
層という組合せを用いたが、基板として透明導波路とし
て低損失な材料、光吸収層として吸収特性に優れた材料
の組合せで実現できるため、他の[11−V族材料はも
とより、強誘電体との組合せによっても実現可能なこと
は言うまでもない。
In this example, InGaAsP on the InP substrate
Although we used a combination of layers, it can be realized by combining a material with low loss for the transparent waveguide as the substrate and a material with excellent absorption characteristics as the light absorption layer. Needless to say, this can also be achieved by combining the above.

発明の効果 以上述べたように本発明によれば、光集積回路の中の基
本構成要素となる光導波路装置を非常に低いクロストー
ク特性で実現でき、超波長多重伝送用デバイスとしても
十分に使用できるものを提供できるため、その実用上の
効果は犬である。
Effects of the Invention As described above, according to the present invention, an optical waveguide device, which is a basic component in an optical integrated circuit, can be realized with extremely low crosstalk characteristics, and can be used satisfactorily as a device for ultra-wavelength multiplexing transmission. Its practical effect is a dog because it can provide what it can.

【図面の簡単な説明】[Brief explanation of drawings]

11・・・・・・基板、12・・・・・・光吸収層、1
3・・・・・・クラッド層、14・・・・・・光導波層
、14a・・・・・・光導波路、20・・・・・・伝搬
阻止領域。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 (cL) 導り路屓、手  〔μm
11...Substrate, 12...Light absorption layer, 1
3... Cladding layer, 14... Optical waveguide layer, 14a... Optical waveguide, 20... Propagation blocking region. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (cL) Guideway depth, hand [μm

Claims (3)

【特許請求の範囲】[Claims] (1)伝搬光に対して透明な材料からなる基板上に光吸
収層とクラッド層と光導波層とが順次積層され、前記光
導波層上に少なくとも1つ以上の光導波路が形成され、
前記光導波路以外の前記光導波層表面に光の伝搬を阻止
する領域を設けたことを特徴とする光導波路装置。
(1) A light absorption layer, a cladding layer, and an optical waveguide layer are sequentially laminated on a substrate made of a material transparent to propagating light, and at least one optical waveguide is formed on the optical waveguide layer,
An optical waveguide device characterized in that a region for blocking propagation of light is provided on the surface of the optical waveguide layer other than the optical waveguide.
(2)伝搬阻止領域として、光導波路層の膜厚を伝搬光
に対してカットオフ以下の膜厚に設定することを特徴を
する特許請求の範囲第1項記載の光導波路装置。
(2) The optical waveguide device according to claim 1, wherein the thickness of the optical waveguide layer as the propagation blocking region is set to be less than a cutoff for propagating light.
(3)光吸収層として、伝搬光よりバンドギャップ波長
の大なる組成を有する材料を用いることを特徴とする特
許請求の範囲第1項記載の光導波路装置。
(3) The optical waveguide device according to claim 1, wherein a material having a composition with a bandgap wavelength larger than that of propagating light is used as the light absorption layer.
JP28605885A 1985-12-19 1985-12-19 Optical waveguide device Pending JPS62145209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28605885A JPS62145209A (en) 1985-12-19 1985-12-19 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28605885A JPS62145209A (en) 1985-12-19 1985-12-19 Optical waveguide device

Publications (1)

Publication Number Publication Date
JPS62145209A true JPS62145209A (en) 1987-06-29

Family

ID=17699409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28605885A Pending JPS62145209A (en) 1985-12-19 1985-12-19 Optical waveguide device

Country Status (1)

Country Link
JP (1) JPS62145209A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161204A (en) * 1987-12-18 1989-06-23 Hitachi Ltd Optical waveguide
US6160945A (en) * 1997-09-12 2000-12-12 Samsung Electronics Co., Ltd. Optical waveguide device for loss absorption and fabrication method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919907A (en) * 1982-07-26 1984-02-01 Toshiba Corp Optical waveguide device
JPS60162206A (en) * 1984-02-01 1985-08-24 Hitachi Ltd Ridge type optical waveguide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919907A (en) * 1982-07-26 1984-02-01 Toshiba Corp Optical waveguide device
JPS60162206A (en) * 1984-02-01 1985-08-24 Hitachi Ltd Ridge type optical waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161204A (en) * 1987-12-18 1989-06-23 Hitachi Ltd Optical waveguide
US6160945A (en) * 1997-09-12 2000-12-12 Samsung Electronics Co., Ltd. Optical waveguide device for loss absorption and fabrication method thereof

Similar Documents

Publication Publication Date Title
EP3317704B1 (en) Integrated on-chip polarizer
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
US5841929A (en) Light wavelength filtering circuit and manufacturing method thereof
JP3349950B2 (en) Wavelength demultiplexing circuit
JP2531634B2 (en) Optical multiplexer / demultiplexer
US10502895B2 (en) Integrated on-chip polarizer
JP2565099B2 (en) Optical non-reciprocal circuit
JP3434986B2 (en) Optical multiplexing / demultiplexing circuit
JPH08304664A (en) Wavelength demultiplexing element
JPH09105824A (en) Waveguide type optical element
JPS62145209A (en) Optical waveguide device
JP2004109412A (en) Variable optical attenuator
JP2003207665A (en) Optical waveguide
JPS6266208A (en) Waveguide type optical demultiplexer
JP2807355B2 (en) Semiconductor optical switch element
US5410623A (en) Optical device having two optical waveguides connected and a method of producing the same
JPS62145207A (en) Waveguide type optical demultiplexer
JPH04346301A (en) Optical multiplexer/demultiplexer
JP2807354B2 (en) Semiconductor optical switch element
JP3151785B2 (en) Optical coupling branch circuit
US20040252934A1 (en) Optical filter
JPH11174268A (en) Optical functional element
JP2600832B2 (en) Optical waveguide device
JPH1039163A (en) Optical waveguide type diffraction grating
JPH06120616A (en) Semiconductor light emitter