JPS62145207A - Waveguide type optical demultiplexer - Google Patents

Waveguide type optical demultiplexer

Info

Publication number
JPS62145207A
JPS62145207A JP28602985A JP28602985A JPS62145207A JP S62145207 A JPS62145207 A JP S62145207A JP 28602985 A JP28602985 A JP 28602985A JP 28602985 A JP28602985 A JP 28602985A JP S62145207 A JPS62145207 A JP S62145207A
Authority
JP
Japan
Prior art keywords
waveguide
diffraction grating
optical
demultiplexer
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28602985A
Other languages
Japanese (ja)
Inventor
Keisuke Koga
啓介 古賀
Yasushi Matsui
松井 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28602985A priority Critical patent/JPS62145207A/en
Publication of JPS62145207A publication Critical patent/JPS62145207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an integrated demultiplexer with good characteristics which is effective as a device for ultra wavelength multiplex transmission by employing a method in which variation in refractive index as a diffraction grating is caused by forming projections and recessed on the flank of a waveguide. CONSTITUTION:The diffraction grating 4 is formed on the side wall of the waveguide 3 by employing a two-layer masking method which utilizes sandwiching characteristics. An input signal 5 is made incident on one end surface of the waveguide 3 and propagated in the waveguide 3 and part of the input signal which has wavelength satisfying the Bragg condition is diffracted by the diffraction grating 4 and propagated in a waveguide 3'. A photodetecting element or external waveguide is connected to the tip of the waveguide 3' and the demultiplexed output signal 6 is detected, thus constituting the waveguide type optical demultiplexer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信用伝送部品あるいは光集積回路素子と
して用いる導波路型光分波器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a waveguide type optical demultiplexer used as a transmission component for optical communications or an optical integrated circuit element.

従来の技術 近年オプトエレクトロニクス技術の進展に伴い、大容量
通信用デバイスとして半導体レーザなどの発光素子・P
INフォトダイオードなどの受光素子そして元スイッチ
、光測調器などの機能素子の開発が盛んに行われている
。さらには、フッイノく一有効活用の手段として、超波
長多重通信の研究が光集積化技術と歩調を合せて、着々
と進められている。光集積回路を構成する様々な素子を
、個別に基板上に集積化を実現するノ・イブリッド型と
、同一基板上に同種の材料で集積化を実現するモノリシ
ック型が並向して開発が行われてきたが、最近ではエビ
技術・プロセス技術の改良てより後者の方でも実用的デ
バイスの可能性が立証され、モノリシック型に開発の主
流が移ってきている。
Conventional technology In recent years, with the progress of optoelectronics technology, light emitting elements such as semiconductor lasers and P
Light receiving elements such as IN photodiodes, and functional elements such as switches and optical metering devices are being actively developed. Furthermore, research on ultra-wavelength multiplexing communication is steadily progressing in tandem with optical integration technology as a means of effectively utilizing the optical system. The hybrid type, in which the various elements that make up an optical integrated circuit are individually integrated on a substrate, and the monolithic type, in which the various elements making up an optical integrated circuit are integrated on the same substrate using the same materials, are being developed in parallel. However, recently, improvements in shrimp technology and process technology have demonstrated the possibility of practical devices in the latter, and the mainstream of development has shifted to monolithic types.

このような光集積回路上の種々の素子は、基板上に作成
された光導波路により相互に接続されている。光導波路
に回折格子全形成することによって波長選択機能を持た
せることができ、分波器を構成できる。導波路型光分波
器も現在までに数多く提案され、一部試作されているが
、第2図にその代表的な分波回路の斜視構成図全示す(
特公昭54−38143号)。図中11は基板、12は
光導波層、13は光導波層上に形成され分波作用をもつ
回折格子である。光導波路12に入射された入力元14
は導波路中の回折格子によって回折作用を受け、ブラッ
ダ条件を満足する波長のみが分離され取り出される。
Various elements on such an optical integrated circuit are interconnected by optical waveguides formed on the substrate. By completely forming a diffraction grating on an optical waveguide, a wavelength selection function can be provided, and a demultiplexer can be constructed. Many waveguide-type optical demultiplexers have been proposed to date, and some have been prototyped. Figure 2 shows a complete perspective configuration diagram of a typical demultiplexer circuit (
Special Publication No. 54-38143). In the figure, 11 is a substrate, 12 is an optical waveguide layer, and 13 is a diffraction grating formed on the optical waveguide layer and having a splitting function. Input source 14 incident on optical waveguide 12
is subjected to a diffraction effect by a diffraction grating in the waveguide, and only wavelengths that satisfy the bladder condition are separated and extracted.

発明が解決しようとする問題点 しかしながら、上述の方法では以下の様な欠点を有して
いた。導波路を伝搬するモードは互い偏波面が直交する
TEモードとTMモードが存在する。基板面に垂直な偏
波面を持つTMモードは、導波路表面の金属膜あ影響に
よるロスが大きいことや、他の発光素子・例えば半導体
レーザの偏波面が通常TEモードであることによる整合
性の面で不利な点が多く、TEモードの方が導波路モー
ドとしてよく使われている。
Problems to be Solved by the Invention However, the above-mentioned method had the following drawbacks. The modes propagating through the waveguide include a TE mode and a TM mode whose polarization planes are orthogonal to each other. The TM mode, which has a plane of polarization perpendicular to the substrate surface, has a large loss due to the influence of the metal film on the waveguide surface, and there are problems with consistency due to the fact that the plane of polarization of other light emitting elements, such as semiconductor lasers, is usually the TE mode. The TE mode is more commonly used as a waveguide mode because it has many disadvantages in terms of the waveguide mode.

ところで、第3図に示すように入射角:θ、媒質中にお
ける波長:λの光に対して、Δ=λ/2sinθで与え
られる格子定数をもつ回折格子13はBragg条件を
満足することから、入射光16は格子面に対して反射角
θの方向へ回折を起こしフィルターとして作用する。I
C化された光フィルターには、導波路に回折格子を持つ
分波器部と受光素子部とが一体化された構成が考えられ
るが、超波長多重伝送用としては、複数の分波器と受光
素子が基板上に集積化されねばならない。
By the way, as shown in FIG. 3, for light having an incident angle of θ and a wavelength of λ in the medium, the diffraction grating 13 having a grating constant given by Δ=λ/2 sin θ satisfies the Bragg condition. The incident light 16 is diffracted against the grating surface in the direction of the reflection angle θ, and acts as a filter. I
A C-type optical filter may have a configuration in which a demultiplexer section with a diffraction grating in the waveguide and a light receiving element are integrated, but for ultra-wavelength multiplex transmission, it is possible to combine multiple demultiplexers and a light receiving element section. A light receiving element must be integrated on the substrate.

この時の回折格子に対する入射角θは、多重度・低クロ
ストーク特性という観点から46°が理想的となる。と
ころが、上述の構成による分波器の場合には、Brag
g  回折の効率に著しい影響が出ることが知られてい
る。つ1す、TEモードの入射光が回折格子に45°で
入射すると回折を全く引き起こさない。この現象につい
ては、(ベルシステム テクニカル ジャーナル) B
e1l 5yst。
At this time, the ideal angle of incidence θ with respect to the diffraction grating is 46° from the viewpoint of multiplicity and low crosstalk characteristics. However, in the case of the duplexer with the above configuration, Brag
It is known that g diffraction efficiency is significantly affected. First, when the incident light in TE mode enters the diffraction grating at 45°, no diffraction occurs. Regarding this phenomenon, see (Bell System Technical Journal) B
e1l 5yst.

Tech、Journal Vol、41  No+9
. H,Kogelnik氏の論文”Coupled 
Wave Theory for ThickHolo
gram Grat ings”に説明がされティる。
Tech, Journal Vol, 41 No+9
.. H. Kogelnik's paper “Coupled
Wave Theory for ThickHolo
gram gratings”.

以上のような理由により、従来の方法では超波長多重伝
送に用いられる分波機能を有する元ICデバイスとして
必要とされる条件に対して満足される特性を得ることが
困難であった。
For the above-mentioned reasons, it has been difficult with conventional methods to obtain characteristics that satisfy the conditions required for an original IC device having a demultiplexing function used in ultra-wavelength multiplexing transmission.

よって、本発明の目的は上述の欠点を除去することので
きる、すなわち集積化された分波器として必要とされる
特性を有する回折格子の製造方法全提供することにある
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a complete method for manufacturing a diffraction grating that can eliminate the above-mentioned drawbacks, ie, has the characteristics required for an integrated duplexer.

問題点を解決するための手段 上記の問題点を解決するために本発明によれば、まず基
板表面に形成された第1の光導波路と前記導波路に対し
ほぼ90’の交差角で配置され結合した少くとも1つ以
上の第2の光導波路を有し、@1及び第2の光導波路の
結合部に波長選択反射機能を有する回折格子を形成する
。この時回折格子は、第1及び第2の光導波路の結合部
の第1光導波路側壁に形成することによって導波路型光
分波器全構成することができる。
Means for Solving the Problems In order to solve the above problems, according to the present invention, first, a first optical waveguide formed on a substrate surface is arranged at an intersection angle of approximately 90' with respect to the waveguide. It has at least one coupled second optical waveguide, and a diffraction grating having a wavelength selective reflection function is formed at the coupling portion of @1 and the second optical waveguide. At this time, the entire waveguide type optical demultiplexer can be constructed by forming the diffraction grating on the side wall of the first optical waveguide at the coupling portion of the first and second optical waveguides.

作   用 導波路構造として、スラブ型導波路または3次元的に元
の閉じ込め金行うリプ型導波路等が作製の容易さあるい
は伝搬特性の良さからよく用いられる。本発明は、その
うちの後者を用いるのかあり、導波層を3次元的に加工
して光導波路を形成している。従来例では、導波路の表
面に周期的凹凸を形成した回折格子を用いてい友が、本
発明では望ましくはリプ型導波路の側壁の一部に周期的
凹凸を持つ回折格子を用いている。つまり、回折格子と
して作用するためには、形状あるいは屈折率等のわずか
な摂動変化が必要とされるが、従来例では基板面に対し
て垂直な方向の屈折率変化を有する回折格子、本発明で
は基板面に対して平行な方向の屈折率変化を利用してい
ることになる。
As the working waveguide structure, a slab type waveguide or a lip type waveguide which performs the original confinement three-dimensionally is often used because of ease of fabrication or good propagation characteristics. The present invention uses the latter method, and forms an optical waveguide by three-dimensionally processing the waveguide layer. In the conventional example, a diffraction grating with periodic irregularities formed on the surface of the waveguide is used, but in the present invention, a diffraction grating with periodic irregularities formed on a part of the side wall of the lip type waveguide is preferably used. In other words, in order to function as a diffraction grating, a slight perturbation change in the shape or refractive index is required, but in the conventional example, the diffraction grating has a refractive index change in the direction perpendicular to the substrate surface. In this case, the change in refractive index in the direction parallel to the substrate surface is utilized.

TEモードの進行波に対しては、前述した様に46°の
入射条件に対し、回折効率が著しく低下するという問題
があるが、一方同じ条件でもTMモードの進行波に対し
ては問題ないことが知られている。
As mentioned above, for traveling waves in TE mode, there is a problem that the diffraction efficiency decreases significantly under the 46° incident condition, but on the other hand, there is no problem for traveling waves in TM mode even under the same conditions. It has been known.

本発明では、回折格子としての屈折率変化を導波路の側
面に凹凸を作成して与える方法を取ることにより、TE
モードに対する前述の影響を除去することができる。よ
って、IC化を計る上で必要とされる構造を取ることが
容易となり、高性能な光分波器を構成することが可能と
なる。
In the present invention, by creating unevenness on the side surface of the waveguide to provide a change in the refractive index as a diffraction grating, the TE
The aforementioned effects on the mode can be removed. Therefore, it becomes easy to adopt the structure required for IC implementation, and it becomes possible to construct a high-performance optical demultiplexer.

実施例 次に図面全参照して本発明′ff:説明する。第1図は
本発明の実施例全示し、図中1はInP基板、2はI 
nGaAs P  よりなる光導波層、3及び3′はリ
ブ型に形成された光導波路、4は光導波路3の側壁に形
成された回折格子、5は入力信号、θは出力信号である
。導波路3及び3′の幅は、シングルモード条件全満足
するように設定すればよ−。光導波路3及び3′以外の
光導波層2の領域は、迷光成分の表面伝搬を除くために
、導波光に対するカットオフ膜厚以下にエツチングして
薄くすればSハ比を向上させることができる。また、回
折格子4ば、サイドエツチング特性を利用した二層マス
ク法を使用することにより、導波路3の側壁に形成する
ことができる。この構成において、導波路3の片端面か
ら入射され導波路3内を伝搬する入力信号Sのうち、回
折格子4にょクプラッグ条件を満足する波長のみが回折
され導波路3′ヲ伝搬する1導波路3′の先端には受光
素子あるbは、外部導収路が接続され1分離された出力
信号らを検出することによって導波路型光分波器全構成
する。以上のような構成の回折格子構造の導波路型光分
波器は、基板面に対して平行な屈折率周期変化金持つた
めに、TEモードの光信号に対してもその入射角依存性
がなくなり、集積化する上で有利な構造をとることがで
きることになる。
EXAMPLES Next, the present invention will be described with reference to the drawings. FIG. 1 shows all the embodiments of the present invention, in which 1 is an InP substrate, 2 is an I
An optical waveguide layer made of nGaAs P, 3 and 3' are optical waveguides formed in a rib shape, 4 is a diffraction grating formed on the side wall of the optical waveguide 3, 5 is an input signal, and θ is an output signal. The widths of the waveguides 3 and 3' may be set so as to satisfy all single mode conditions. The S/R ratio can be improved by etching the regions of the optical waveguide layer 2 other than the optical waveguides 3 and 3' to be thinner than the cutoff film thickness for the guided light in order to eliminate surface propagation of stray light components. . Further, the diffraction grating 4 can be formed on the side wall of the waveguide 3 by using a two-layer mask method utilizing side etching characteristics. In this configuration, of the input signal S that is incident from one end surface of the waveguide 3 and propagates inside the waveguide 3, only the wavelength that satisfies the plug condition in the diffraction grating 4 is diffracted and propagated through the waveguide 3'. At the tip of 3' is a light receiving element b, which is connected to an external guide path and detects the separated output signals to form the entire waveguide type optical demultiplexer. Since the waveguide type optical demultiplexer with the diffraction grating structure configured as described above has a periodic change in refractive index parallel to the substrate surface, its incidence angle dependence is also low for TE mode optical signals. This means that a structure that is advantageous for integration can be adopted.

なお、本実施例ではInP  基板上のInClaAs
P層を光導波層として用いた導波路型光分波器の説明を
行なったが、他の材料、例えばG a A s系の半導
体材料、あるいはL I N b 03等の強誘電体材
料にも応用できることは言うまでもない。
Note that in this example, InClaAs on an InP substrate
Although we have described a waveguide type optical demultiplexer using a P layer as an optical waveguide layer, other materials such as GaAs-based semiconductor materials or ferroelectric materials such as L I N b 03 may also be used. Needless to say, it can also be applied.

発明の効果 以上述べたように本発明によれば、超波長多重伝送用デ
\バイスとして有効な集積化分波器を非常に特性よく実
現できるものであり、その実用上の効果は大である。
Effects of the Invention As described above, according to the present invention, it is possible to realize an integrated demultiplexer with very good characteristics that is effective as a device for ultra-wavelength multiplexing transmission, and its practical effects are great. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の導波路型光分波器の構造を示
す斜視図、第2図は従来例の分波回路の構造斜視図、第
3図はブラッグ回折条件の説明図である。 1・・・・・・基板、2・・・・・・光導波層、3及び
3′・・・0.・光導波路、4 =−−回折格子、5・
・・・・・入力信号、6・・・・・出力信号。 代理人の氏名 弁理士 中 尾 敏 男 はが1多筒 
2 図 /、Jl!l14/+格丁
Fig. 1 is a perspective view showing the structure of a waveguide type optical demultiplexer according to an embodiment of the present invention, Fig. 2 is a perspective view of the structure of a conventional demultiplexer circuit, and Fig. 3 is an explanatory diagram of Bragg diffraction conditions. be. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Optical waveguide layer, 3 and 3'...0.・Optical waveguide, 4 =--diffraction grating, 5・
...Input signal, 6...Output signal. Name of agent: Patent attorney Toshi Nakao
2 Figure/, Jl! l14/+ Kakucho

Claims (1)

【特許請求の範囲】 基板表面に形成した第1の薄膜光導波路と、前記第1の
光導波路に結合しほぼ90°の交差角で配置された少な
くとも1つ以上の第2の光導波路と、前記第1の光導波
路と前記第2の光導波路の結合部に波長選択反射機能を
有する領域を設けた導波路型光分波器において、前記結
合部の前記第1の導波路の側壁に周期的凹凸を有する回
折格子路 が形成されていることを特徴とする導波路型光分波器。
[Scope of Claims] A first thin-film optical waveguide formed on a substrate surface; at least one or more second optical waveguides coupled to the first optical waveguide and arranged at an intersection angle of approximately 90°; In the waveguide type optical demultiplexer, in which a region having a wavelength selective reflection function is provided at a coupling portion between the first optical waveguide and the second optical waveguide, a side wall of the first waveguide in the coupling portion has a periodicity. 1. A waveguide type optical demultiplexer, characterized in that a diffraction grating path having irregularities is formed.
JP28602985A 1985-12-19 1985-12-19 Waveguide type optical demultiplexer Pending JPS62145207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28602985A JPS62145207A (en) 1985-12-19 1985-12-19 Waveguide type optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28602985A JPS62145207A (en) 1985-12-19 1985-12-19 Waveguide type optical demultiplexer

Publications (1)

Publication Number Publication Date
JPS62145207A true JPS62145207A (en) 1987-06-29

Family

ID=17699051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28602985A Pending JPS62145207A (en) 1985-12-19 1985-12-19 Waveguide type optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS62145207A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170103A (en) * 1988-12-23 1990-06-29 Fujitsu Ltd Optical demultiplexer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170103A (en) * 1988-12-23 1990-06-29 Fujitsu Ltd Optical demultiplexer

Similar Documents

Publication Publication Date Title
US6243516B1 (en) Merging optical waveguides having branch angle within a specific range
EP0763757B1 (en) Wavelength-selective devices using silicon-on-insulator
EP0632300B1 (en) Optical wavelength multiplexing and demultiplexing device for multiplexing or demultiplexing light having a plurality of modes and photodetector using the same
JP3349950B2 (en) Wavelength demultiplexing circuit
JP2765545B2 (en) Optical wavelength discriminating circuit and method of manufacturing the same
US20050254752A1 (en) Switchable optical components
US5940555A (en) Optical multiplexer/demultiplexer
JPH09105826A (en) Optical waveguide device
US6697552B2 (en) Dendritic taper for an integrated optical wavelength router
JP7477761B2 (en) Mode conversion element
JPH08304664A (en) Wavelength demultiplexing element
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
KR100289042B1 (en) Vertically coupled wavelength variable optical fiber having double lattice structure
JP3246710B2 (en) Optical device manufacturing method
US20230288636A1 (en) Super-compact arrayed waveguide grating (awg) wavelength division multiplexer based on sub-wavelength grating
US6532324B2 (en) Optical multiplexer/demultiplexer with three waveguides
JP2003207665A (en) Optical waveguide
JPS62145207A (en) Waveguide type optical demultiplexer
EP1436657B1 (en) Optical filter
JP2557966B2 (en) Optical multiplexer / demultiplexer
JPS6266208A (en) Waveguide type optical demultiplexer
US7224868B2 (en) Radiation-free optical cavity
JPH0196605A (en) Wavelength multiplex branching filter element
JP3960399B2 (en) Arrayed waveguide grating element
JP3070881B2 (en) Waveguide type optical multiplexer / demultiplexer