JPS6214515B2 - - Google Patents

Info

Publication number
JPS6214515B2
JPS6214515B2 JP13235882A JP13235882A JPS6214515B2 JP S6214515 B2 JPS6214515 B2 JP S6214515B2 JP 13235882 A JP13235882 A JP 13235882A JP 13235882 A JP13235882 A JP 13235882A JP S6214515 B2 JPS6214515 B2 JP S6214515B2
Authority
JP
Japan
Prior art keywords
weight
cement
value
mixed
plastering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13235882A
Other languages
Japanese (ja)
Other versions
JPS5921564A (en
Inventor
Hasutaro Nanba
Hideho Tokuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP57132358A priority Critical patent/JPS5921564A/en
Priority to ZA835458A priority patent/ZA835458B/en
Priority to FR8312428A priority patent/FR2531065B1/en
Priority to CA000433301A priority patent/CA1218679A/en
Priority to GB8320404A priority patent/GB2124610B/en
Priority to DE19833327167 priority patent/DE3327167A1/en
Priority to KR1019830003519A priority patent/KR900002297B1/en
Publication of JPS5921564A publication Critical patent/JPS5921564A/en
Publication of JPS6214515B2 publication Critical patent/JPS6214515B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、左官材料中に骨材としてスラグお
よび軽量球状体を加えることによつて、こて塗り
による左官材料の厚付け性能を改善することを目
的とした厚塗り用左官材料に関するものである。 従来使用されている左官材料のこて塗り1回の
標準塗厚は左官材料の種類によつて1mm〜6mm程
度であるから、厚い仕上厚(例えば6mm〜20mm)
を得る為には通常2〜4回程度のこて塗りを行わ
なければならず、しかも左官材料の性質上、連続
して追かけ重ね塗りは困難なので、1回目の塗層
(下塗)が十分養生期間をおいて乾燥した後、2
回目(中塗)、3回目(上塗)を塗り重ねること
になり、工期が遅延する。また剥離防止の為に下
塗では無機質結合材料を富調合にし、亀裂防止の
為に上塗では無機質結合材料を貧調合にするなど
の配慮を要し欠陥発生の要因は複雑であつた。新
規の左官塗りでもこのような問題点があり、更に
左官下地および左官仕上層の浮き部又は剥落部の
補修に際しても、部分的に2回又は3回の塗り重
ねを必要とする関係上、工期・工費共に多大とな
り、しかも補修を要しない健全部分との整合性を
損い易いなどの問題点があつた。 従来知られている左官材料で1回にこて塗りに
より厚塗り(例えば6mm〜20mm)しようとして
も、左官下地面に対するこてによる圧締不足、左
官材料のだれやずり易さ、こて塗り作業のしにく
さなどの諸要因によつて、事実上1回の塗厚を標
準塗厚以上とするのは不可能とされていた。然し
乍ら左官材料の作業性能は第1図に示すF値(こ
て押え力に相当)、ψ値(こてすべりにくさに相
当)およびM値(こてのにぎりにかけるモーメン
ト)で表わせることができるので、左官材料に加
える骨材について種々研究した結果、厚塗り時に
所望の作業性能を保有する厚塗り用左官材料を得
たのである。 即ち骨材は従来知られている硅砂およびこれに
準ずる砂の他に、スラグおよび軽量球状体を所定
の割合に混入することにより、前記従来の左官材
料の問題点を改善し、左官下地面へのこてによる
適正な圧力を容易に加え得ると共に、塗付け時お
よび塗付け後からの左官材料のだれ・ずりの発生
が皆無となり、しかも薄塗りしようとすればF値
が増大し、薄塗りのしにくい、厚塗りに好適の左
官材料を得たのである。 この発明の骨材としては硅砂、スラグおよび軽
量球状体の混合骨材が好適であり、各々の粒径は
塗付け後の塗層の厚さおよび用途によつて異なる
が、3mm以下が好ましい。またスラグは高炉水滓
スラグおよび/または風滓スラグなどを用い、軽
量球状体はガラス質微小中空球状体、合成高分子
物質球状体、ポゾラン物質球状体などを用いる
が、粒径、形状および比重など物理的性質が、前
記材料と近似した品質の骨材を使用することがで
きる。 次に厚塗りに好適な左官材料の特性を列挙す
る。 塗厚は標準塗厚を越えて20mmまでを2〜4回
で追かけ塗りが可能なこと。または50mmまで生
かわきの塗層に3〜6回程度で短時間に重ね塗
りできること。 塗付け時および塗付け後、硬化する迄自重に
よりだれやずり変形をしないこと。このことは
こて塗り作業終了後なるべく早い時期に適度に
締るか、チキソトロピーが大きいこと。 下地の拘束による収縮ひずみをできるだけ吸
収する変形能をもつこと。 こて押え力F値が適度に大きく、下地になじ
み、高い付着性をもつこと。 手首にかけるこてのにぎりにおけるモーメン
トM値が適度に大きく、締固められて、密実化
すること。 こてすべり(こてばなれ)がよいこと。即
ち、こて面に粘りつかず、こてがすべり易いこ
と。これはψ値(こてすべりにくさ)が小さい
こと。 薄塗りが困難なこと。即ち薄塗りした場合、
F値が大きくて、薄塗りより厚塗りの方が作業
者にとつてこて塗り作業性がよいこと。 前記〜には互に相反する特性を必要とす
る。例えばずり変形しないけれどもこて押えがよ
くきかなくて、付着性が低かつたり、適度のこて
押えで下地になじむけれどもこてすべりが悪かつ
たりなどである。 この発明においては、無機質結合材料に合成高
分子混和剤を加えたことによる効果の他に骨材と
して硅砂の他に、スラグおよび軽量球状体を混入
したので、これらの骨材の調合を適度の割合に定
めることにより、前記相反する性質を共有するよ
うになつたものと認められる。実験の結果によれ
ば、前記〜の性質を保有させる為の混合骨材
の比率は硅砂70%以下(重量)、スラグ25%〜75
%(重量)、軽量球状体5%〜50%(重量)であ
る。 前記軽量球状体中には、吸水率10%以下のもの
(例えばガラス質微小中空球状体)1%以上、吸
水率40%以下のもの(例えばシラスバルーン)と
を加えて5%以上になればよい。 またこの発明の左官材料には合成高分子混和剤
としてスチレン―ブタジエン共重合体、エチレン
―酢酸ビニル共重合体、アクリル酸エステル共重
合体、塩化ビニル共重合体、酢酸ビニル重合体の
ポリマーデイスパーシヨンおよび/または水溶性
セルロースエーテル他の高分子を用いることがで
き、その混入比率は適用材料によつて異なるが、
ポリマー・無機質結合材料比を固形分で0をこえ
て45%(重量)以下とする。また無機質結合材料
と混合骨材の比率は1:1.0〜4.0(容積)であ
る。 この発明においては、無機質結合材料(以下セ
メントと呼ぶ)は普通ポルトランドセメント、早
強ポルトランドセメント、アルミナセメント、混
合セメント、せつこう、石灰などを用いる。さら
に補強効果をあげるために、無機質および/また
は有機質の繊維状材料を加えることもできる。 この左官材料に使用する各原材料の厚塗り用左
官材料の特性に与える効果は表―1に示すとおり
である。
This invention relates to a plastering material for thick application, which aims to improve the thickening performance of the plastering material by troweling by adding slag and lightweight spherical bodies as aggregates to the plastering material. . The standard coating thickness of conventionally used plastering materials for one troweling is about 1 mm to 6 mm depending on the type of plastering material, so a thick finished thickness (for example, 6 mm to 20 mm) is required.
In order to obtain this, it is usually necessary to trowel about 2 to 4 times, and due to the nature of the plastering material, it is difficult to apply multiple coats in succession, so the first coat (base coat) is sufficient. After curing and drying, 2
A second coat (intermediate coat) and a third coat (top coat) will be applied, which will delay the construction period. In addition, the causes of defects were complex, requiring consideration such as using a rich blend of inorganic binding materials in the undercoat to prevent peeling, and using a poor blend of inorganic binding materials in the top coat to prevent cracking. New plastering also has these problems, and even when repairing floating or peeling parts of the plastering base and plastering layer, the construction period may be shortened because parts need to be repainted two or three times.・There were problems such as high construction costs and the possibility of compromising consistency with healthy parts that do not require repair. Even if you try to apply a thick coat (e.g. 6mm to 20mm) using a conventional plastering material by troweling at one time, the trowel may not be enough to press the plastering material against the base surface, the plastering material may sag or slip easily, and the troweling may be difficult. Due to various factors such as the difficulty of the work, it has been virtually impossible to achieve a coating thickness greater than the standard coating thickness in one coat. However, the working performance of plastering materials can be expressed by the F value (equivalent to the force of holding the trowel), ψ value (equivalent to the resistance to slipping of the trowel), and M value (the moment applied to the grip of the trowel) shown in Figure 1. As a result of various studies on aggregates added to plastering materials, a plastering material for thick coating that has the desired work performance during thick coating was obtained. In other words, by mixing slag and lightweight spherical bodies in a predetermined proportion in addition to the conventionally known silica sand and similar sand, the aggregate improves the problems of the conventional plastering materials and is applied to the plastering base surface. Appropriate pressure with a sawing trowel can be easily applied, and there is no sagging or shearing of the plastering material during or after application, and if you try to apply thinly, the F value will increase, making it easier to apply thinly. This resulted in a plastering material that is difficult to apply and suitable for thick coating. A mixed aggregate of silica sand, slag and lightweight spherical bodies is suitable as the aggregate for this invention, and the particle size of each varies depending on the thickness of the coating layer after application and the application, but is preferably 3 mm or less. The slag used is blast furnace water slag slag and/or wind slag, and the lightweight spherules are vitreous microscopic hollow spheres, synthetic polymeric substance spheres, pozzolanic substance spheres, etc. Aggregates having physical properties similar to those of the above materials can be used. Next, the characteristics of plastering materials suitable for thick coating are listed. The coating thickness exceeds the standard coating thickness and can be applied up to 20mm in 2 to 4 coats. Or, it can be recoated in a short period of time in about 3 to 6 times on raw paint layers up to 50 mm. During and after application, the product should not sag or shear due to its own weight until it hardens. This means that the trowel must be properly tightened as soon as possible after the troweling process is completed, or that the thixotropy is large. It must have the deformability to absorb as much shrinkage strain as possible due to the restraint of the substrate. The trowel force F value is appropriately large, it blends well with the substrate, and it has high adhesion. The moment M value in the grip of the iron worn on the wrist is appropriately large, compacted, and solidified. Good trowel slippage. In other words, it does not stick to the iron surface and the iron easily slips. This means that the ψ value (resistance to iron slippage) is small. Difficult to apply thinly. In other words, when applied thinly,
The F value is large, and thick coating is easier for workers to apply with a trowel than thin coating. The above-mentioned ~ require mutually contradictory characteristics. For example, it may not shear and deform, but the trowel does not work well and the adhesion is poor, or the trowel may blend well with the substrate with a proper trowel, but the trowel does not slide well. In this invention, in addition to the effect of adding a synthetic polymer admixture to the inorganic binding material, slag and lightweight spherical bodies were mixed in addition to silica sand as aggregates, so the mixing of these aggregates was adjusted to an appropriate level. It is recognized that by determining the ratio, the above-mentioned contradictory characteristics have been shared. According to the results of the experiment, the ratio of the mixed aggregate to maintain the above properties is 70% or less (by weight) of silica sand and 25% to 75% slag.
% (by weight), lightweight spheres 5% to 50% (by weight). The lightweight spherical bodies include those with a water absorption rate of 10% or less (for example, vitreous micro hollow spheres) of 1% or more, and those with a water absorption rate of 40% or less (for example, glass balloons), and if the water absorption rate is 5% or more. good. In addition, the plastering material of this invention includes polymer dispersion of styrene-butadiene copolymer, ethylene-vinyl acetate copolymer, acrylic acid ester copolymer, vinyl chloride copolymer, and vinyl acetate polymer as synthetic polymer admixtures. and/or water-soluble cellulose ether and other polymers, the mixing ratio of which varies depending on the applied material.
The polymer/inorganic binding material ratio should be more than 0 and less than 45% (by weight) in terms of solid content. Further, the ratio of the inorganic binding material to the mixed aggregate is 1:1.0 to 4.0 (by volume). In this invention, as the inorganic binding material (hereinafter referred to as cement), ordinary Portland cement, early-strength Portland cement, alumina cement, mixed cement, plaster, lime, etc. are used. In order to further enhance the reinforcing effect, inorganic and/or organic fibrous materials can also be added. Table 1 shows the effect of each raw material used in this plastering material on the properties of thick plastering material.

【表】 前記において、軽量球状体の混入割合を5%
(重量)未満にすると、左官材料のこてばなれが
悪くなり、作業性が悪化して実用的でなくなり、
50%(重量)をこえると、左官材料のこて押え力
が減少し、下地面へ必要な圧力を加えることが不
可能になり、付着性がなくなるなど実用的でなく
なる。またスラグが25%(重量)未満になると薄
塗りが可能となり、敢えて厚塗りをしなくなるの
で厚塗り用左官材料として不適当である。またス
ラグが75%(重量)を越えるとしまりが早まり、
可使時間が短かくなる。更に補強効果をあげる為
に無機および/又は有機質の繊維状材料を加える
こともできる。次にこの発明の実験例について説
明する。 実験例 1 先ず使用骨材は表―2のような品質である。
[Table] In the above, the mixing ratio of lightweight spherical bodies is 5%.
If the weight is less than (weight), the plastering material will not come easily with the trowel and workability will deteriorate, making it impractical.
If it exceeds 50% (weight), the force of pressing the plastering material with the trowel decreases, making it impossible to apply the necessary pressure to the underlying surface, and making it impractical due to lack of adhesion. Furthermore, if the slag content is less than 25% (by weight), thin coating is possible and thick coating is not necessary, making it unsuitable as a plastering material for thick coating. Also, if the slag exceeds 75% (weight), compaction will accelerate,
Pot life becomes shorter. Furthermore, inorganic and/or organic fibrous materials can be added to increase the reinforcing effect. Next, an experimental example of this invention will be explained. Experimental example 1 First, the quality of the aggregate used is as shown in Table 2.

【表】 次に実験に用いた混合骨材の構成比は表―3の
通りである。
[Table] Table 3 shows the composition ratio of the mixed aggregate used in the experiment.

【表】 上記3種の混合骨材A・B・Cを用い、夫々に
普通ポルトランドセメント、スチレン―ブタジエ
ンゴムのポリマーデイスパーシヨンおよび水を加
えてセメントモルタルを作り、これを第1図に示
す装置(特開昭57―7540号参照)にかけて、F
値、ψ値およびM値を測定した処、第2図乃至第
6図に示す結果を得た。この場合におけるポリマ
ー・セメント比は固形分で7%(重量)、セメン
トと混合骨材比は1:2(容積)、水・セメント
比は48%(重量)とした。また室温は20±2℃、
湿度は60±5%RHとし、使用水温は18℃であつ
た。 上記実験の結果について考察するに、こてによ
り厚塗り特性は混練5分後において先ず第2図乃
至第4図によれば、混合骨材Aを用いたモルタル
は厚塗り(20mm)のときはF値が異常に小さく、
ψ値が異常に大きくて塗りにくい。一方薄塗り
(5mm)の場合は、ψ値が小さく、F値、M値が
適当の大きさで、薄塗り用モルタルとして適して
おり、厚塗り用としては不適当であつた。これは
混合骨材中にガラス質微小中空球状体を欠く為と
推定された。 また混合骨材Bでは、厚塗りと薄塗りの間にF
値、M値およびψ値の差異が余り大きくないの
で、薄塗りにも使用できる。そのため厚塗りを支
持しても作業者は必然的に薄塗りしてしまう可能
性がある。従つて厚塗り用モルタルとしても使用
はできるが最適ではない。 次に混合骨材Cは厚塗り(20mm)でもF値、M
値が適切に大きく、下地に対し適切なこて押えが
きくと共に、ψ値が小さくてこてすべりもよく厚
塗りし易い。また薄塗りしようとすれば、F値お
よびM値が極端に増大するので、現場においては
作業者は自然に1ストロークのこて塗りで厚く塗
り付けてしまう。この点Cは混合骨材中にスラグ
が多く混入されて、かつガラス質微小中空球状体
の混入による効果も付加された為と判断される。 第5図および第6図は厚塗り作業の容易性と、
下地への圧締性による硬化後の仕上層の性能向上
との両者のバランスを考慮した上で、適正な特性
値領域(斜線域)を予想したものである。 上記実験における装置(第1図)において、ブ
レード1(こて面に相当する)の長さl(進行方
向)は200mm、巾は90mm、こて面とにぎりの中心
との最短距離hは35mm、ブレードと試料とのなす
角度θは1.4度、ブレードの速度υは25cm/sec、
塗厚Tは5mm、10mm、15mm、20mmであつた。第5
図および第6図中△は5mm、○は10mm、◇は15
mm、□は20mmの塗厚を示す記号である。 即ちこの発明によれば、骨材として前記混合骨
材を用い、スラグを25%〜75%(重量)、軽量球
状体を5%〜50%(重量)混合したので適度のF
値およびM値を保有し、ψ値は小さくて厚塗り用
左官材料に要求された諸特性を満足させる効果が
ある。 次にRC躯体壁に15mmの塗厚で1回塗りした混
合骨材Cのモルタル仕上層の4週材令においての
引張接着強さを求めたところ、試験数5個で12.5
〜15.7Kgf/cm2を得た。 上記の実験におけるセメントモルタル層は硬化
後確実な付着力を呈し、かつ3ケ月経過後も亀裂
またはひびわれを生じなかつた。 次にJISR5201に準拠したモルタル試験体を作
製して20℃、60%RHの環境で、材令4週間養生
したものの曲げ強度および曲げ弾性係数を求めた
ところ、表―4の結果を得た。混合骨材Dに比べ
て曲げ強度および曲げ弾性係数は小さく、変形能
にすぐれ、ムーブメントによる発性応力を緩和で
きることが判明した。
[Table] Cement mortar is made by using the above three types of mixed aggregates A, B, and C and adding ordinary Portland cement, polymer dispersion of styrene-butadiene rubber, and water, and this is shown in Figure 1. The F
When the value, ψ value and M value were measured, the results shown in FIGS. 2 to 6 were obtained. In this case, the polymer/cement ratio was 7% (weight) in terms of solid content, the cement/mixed aggregate ratio was 1:2 (volume), and the water/cement ratio was 48% (weight). Also, the room temperature is 20±2℃,
The humidity was 60±5%RH, and the water temperature used was 18°C. Considering the results of the above experiment, the characteristics of thick coating with a trowel were determined after 5 minutes of kneading. According to Figures 2 to 4, mortar using mixed aggregate A had a thick coating property (20 mm) F value is abnormally small,
The ψ value is abnormally large and difficult to paint. On the other hand, in the case of thin coating (5 mm), the ψ value was small and the F value and M value were appropriate, making it suitable as a mortar for thin coating, but unsuitable for thick coating. This was presumed to be due to the lack of glassy microscopic hollow spheres in the mixed aggregate. In addition, for mixed aggregate B, F is applied between thick coating and thin coating.
Since the difference in value, M value, and ψ value is not very large, it can also be used for thin coating. Therefore, even if thick coating is supported, there is a possibility that workers will inevitably apply thin coating. Therefore, although it can be used as mortar for thick coating, it is not optimal. Next, even when mixed aggregate C is thickly coated (20 mm), the F value and M
The value is appropriately large, and the trowel can be properly pressed against the base, and the ψ value is small, so the trowel slips easily and is easy to apply thickly. Furthermore, if you try to apply a thin coat, the F value and M value will increase dramatically, so in the field, workers naturally apply a thick coat with one stroke of the trowel. This point C is considered to be due to the fact that a large amount of slag was mixed into the mixed aggregate, and the effect of the mixing of glassy microscopic hollow spheres was also added. Figures 5 and 6 show the ease of thick coating work,
Appropriate characteristic value ranges (shaded areas) are predicted after considering the balance between improving the performance of the finished layer after hardening due to the ability to press against the base. In the apparatus used in the above experiment (Fig. 1), the length l (progressing direction) of the blade 1 (corresponding to the iron surface) is 200 mm, the width is 90 mm, and the shortest distance h between the iron surface and the center of the grip is 35 mm. , the angle θ between the blade and the sample is 1.4 degrees, the speed of the blade υ is 25 cm/sec,
The coating thickness T was 5 mm, 10 mm, 15 mm, and 20 mm. Fifth
In the figure and Figure 6, △ is 5 mm, ○ is 10 mm, ◇ is 15
mm and □ are symbols indicating a coating thickness of 20 mm. That is, according to the present invention, the above-mentioned mixed aggregate is used as the aggregate, and 25% to 75% (by weight) of slag and 5% to 50% (by weight) of lightweight spherical bodies are mixed, so that a moderate F.
It has a small ψ value and has the effect of satisfying various characteristics required for thick plastering plastering materials. Next, we determined the tensile adhesive strength of the mortar finish layer of mixed aggregate C, which was applied once to the RC building wall with a coating thickness of 15 mm, after 4 weeks of age, and found that it was 12.5 with 5 tests.
~15.7Kgf/ cm2 was obtained. The cement mortar layer in the above experiment exhibited reliable adhesion after hardening and did not crack or crack even after three months. Next, we prepared mortar test specimens in accordance with JISR5201 and cured them for 4 weeks in an environment of 20°C and 60% RH.The bending strength and bending elastic modulus of the specimens were determined, and the results shown in Table 4 were obtained. It was found that the bending strength and bending elastic modulus were lower than that of Mixed Aggregate D, and that it had excellent deformability and was able to alleviate stress caused by movement.

【表】 また吸水試験についてはJISA6203に準拠した
モルタル試験体を作製し、20℃、60%RHの環境
で4週材令で気乾比重と吸水率(48時間吸水後)
を求めたところ、表―5のとおりであつた。防水
性は満足することが判明した。
[Table] For the water absorption test, mortar test specimens were prepared in accordance with JISA6203, and air-dried specific gravity and water absorption rate (after 48 hours of water absorption) were prepared at 20℃ and 60% RH for 4 weeks.
The results were as shown in Table 5. It was found that the waterproofness was satisfactory.

【表】 実験例 2 使用骨材は表―6のような品質である。【table】 Experimental example 2 The quality of the aggregate used is as shown in Table 6.

【表】 次に実験に用いた混合骨材の構成比は表―7の
通りである。
[Table] Table 7 shows the composition ratio of the mixed aggregate used in the experiment.

【表】 上記2種の混合骨材E・Fを用い、夫々に普通
ポルトランドセメント、スチレン―ブタジエンゴ
ムのポリマーデイスパージヨンおよび水を加えて
セメントモルタルを作つて諸特性を求めたところ
表―8および表―9に示す結果を得た。 この場合におけるポリマー・セメント比は固形
分で4%(重量)セメントと混合骨材比は1:
2.5(容積)、水・セメント比は混合骨材Eでは56
%(重量)、同Fでは55%(重量)とした。室温
は25±3℃、湿度は65±5%RHとし、使用水温
は21℃であつた。 試験方法および試験条件は実験例1と同じであ
つた。
[Table] Using the above two types of mixed aggregates E and F, we added ordinary Portland cement, styrene-butadiene rubber polymer dispersion, and water to make cement mortar, and determined various properties. Table 8 The results shown in Table 9 were obtained. In this case, the polymer/cement ratio is 4% solids (by weight), and the cement to mixed aggregate ratio is 1:
2.5 (volume), water/cement ratio is 56 for mixed aggregate E
% (weight), and 55% (weight) for the same F. The room temperature was 25±3°C, the humidity was 65±5%RH, and the water temperature used was 21°C. The test method and test conditions were the same as in Experimental Example 1.

【表】【table】

【表】 表―10は同じポリマーセメントモルタルをコン
クリート下地に25mm厚さに塗つた壁の4週材令に
おける引張接着強さの結果を示す。
[Table] Table 10 shows the results of the tensile bond strength after 4 weeks of age for walls with the same polymer cement mortar applied to a concrete base to a thickness of 25 mm.

【表】 上記ポリマーセメントモルタル仕上げは変形能
が大きく、亀裂またはひびわれは3ケ月経つても
発生しなかつた。 実験例 3 実験例2で使用した乙種の混合骨材と同じ混合
骨材E・Fを用いて、夫々に普通ポルトランドセ
メント、水溶性セルロースエーテルおよび水を加
えてセメントモルタルを作つてその諸特性を求め
たところ、表―11および表―12に示す結果を得
た。 この場合におけるポリマーセメント比は0.3%
(重量)、セメントと混合骨材比は1:2.5(容
積)、水・セメント比は混合骨材E・Fの場合、
共に67%(重量)とした。室温は25±3℃、湿度
は65±5%RHとし、使用水温は21℃であつた。 試験方法および試験条件は実験例1及び実験例
2と同じであつた。
[Table] The above polymer cement mortar finish had a high deformability and no cracks or cracks appeared even after 3 months. Experimental Example 3 Using mixed aggregates E and F, which are the same as Type B mixed aggregate used in Experimental Example 2, ordinary Portland cement, water-soluble cellulose ether, and water were added to each to make cement mortar, and its properties were investigated. The results shown in Table 11 and Table 12 were obtained. The polymer cement ratio in this case is 0.3%
(weight), cement and mixed aggregate ratio is 1:2.5 (volume), water and cement ratio is mixed aggregate E and F,
Both were set at 67% (weight). The room temperature was 25±3°C, the humidity was 65±5%RH, and the water temperature used was 21°C. The test method and test conditions were the same as in Experimental Examples 1 and 2.

【表】【table】

【表】 表―13は同じポリマーセメントモルタルをコン
クリート下地に22mm厚さに塗つた壁の4週材令に
おける引張接着強さの結果を示す。
[Table] Table 13 shows the results of the tensile bond strength after 4 weeks of age for walls with the same polymer cement mortar applied to a concrete base to a thickness of 22 mm.

【表】 上記ポリマーセメントモルタル仕上げは変形能
があり、ひびわれの発生は3ケ月経過時に多少認
められたに過ぎない。亀裂は発生しなかつた。 次にこの発明の実施例について説明する。 実施例 1 硅砂50%(重量)、高炉水滓スラグ40%(重
量)、ガラス質微小中空球状体10%(重量)を混
合してなる混合骨材をセメント1に対し、2.5
(容積)で調合し、更にスチレン―ブタジエンゴ
ムのラテツクスをセメントに対し、固形分で10%
(重量)を加え、水・セメント比35%(重量)で
混練したセメントモルタルを厚さ15mm〜25mmに1
回乃至2回の追かけ塗りで約5m2RC外壁面に補
修の目的で塗付けた所、3ケ月経過後において亀
裂やひびわれ及び浮きなどの異常を認められなか
つた。 実施例 2 硅砂30%(重量)、高炉水滓スラグ50%(重
量)、ガラス質微小中空球状体20%(重量)を混
合してなる混合骨材をセメント1に対し、2(容
積)で調合し、更にエチレン―酢酸ビニル樹脂共
重合体エマルシヨンをセメントに対し、固形分で
7%(重量)加え、水・セメント比45%(重量)
で混練したセメントモルタルを30mm〜50mmに2回
乃至3回の追かけ塗りで約10m2、天井裏RC梁下
端部の水平鉄筋まで欠損した部分を補修の目的
で、重ね塗り被覆した処、3ケ月経過後におい
て、異常を認められなかつた。4週材令での引張
接着強さは、10Kgf/cm2以上であつた。 実施例 3 硅砂40%(重量)、高炉水滓スラグ55%(重
量)、ガラス質微小中空球状体5%(重量)を混
合してなる混合骨材をセメント1に対し、1.5
(容積)で調合し、更にスチレン―ブタジエンゴ
ムのラテツクスをセメントに対し、固形分で7%
(重量)加え、水・セメント比38%(重量)で混
練したセメントモルタルをタイル張付用モルタル
として使用した。下地は12mm厚の耐水合板で、そ
の上にポリマー・セメント比12%(スチレン―ブ
タジエンゴムラテツクスの固形分重量)、セメン
ト:混合骨材=1:0.7(容積)、水・セメント比
30%(重量)のセメントリツチ、ポリマーリツチ
のモルタルを下塗りをした後、上記モルタルで
108×60mm、厚さ16mmの外装タイルを接着層厚8
〜12mmで圧着張りした処、6ケ月経過後において
浮きや亀裂などの異常を求められなかつた。同材
令の引張接着強さは8〜10Kgf/cm2であつた。
[Table] The above polymer cement mortar finish has deformability, and only some cracking was observed after 3 months. No cracks occurred. Next, embodiments of this invention will be described. Example 1 Mixed aggregate made by mixing 50% (by weight) of silica sand, 40% (by weight) of blast furnace water slag, and 10% (by weight) of glassy microscopic hollow spheres was mixed to 1:2.5 of cement.
(by volume), and then add styrene-butadiene rubber latex to cement at a solid content of 10%.
(by weight) and mix the cement mortar at a water/cement ratio of 35% (by weight) to a thickness of 15 mm to 25 mm.
It was applied to an approximately 5 m 2 RC exterior wall surface for repair purposes after one to two additional coats, and no abnormalities such as cracks, crazing, or lifting were observed after 3 months. Example 2 Mixed aggregate made by mixing 30% (by weight) of silica sand, 50% (by weight) of blast furnace water slag, and 20% (by weight) of vitreous micro hollow spheres was mixed at a ratio of 2 (by volume) to 1 part of cement. Then, add 7% solids (weight) of ethylene-vinyl acetate resin copolymer emulsion to the cement, making the water/cement ratio 45% (weight).
Cement mortar mixed with 30 mm to 50 mm was applied two to three times to cover an area of approximately 10 m 2 and to repair the missing horizontal reinforcing bars at the lower end of the RC beam in the ceiling. No abnormalities were observed after several months had passed. The tensile adhesive strength at 4 weeks of age was 10 Kgf/cm 2 or more. Example 3 Mixed aggregate made by mixing 40% (by weight) of silica sand, 55% (by weight) of blast furnace water slag, and 5% (by weight) of vitreous micro hollow spheres was mixed to 1.5% of cement.
(by volume), and then add styrene-butadiene rubber latex to cement at a solid content of 7%.
(by weight) and a cement mortar mixed at a water/cement ratio of 38% (by weight) was used as mortar for tiling. The base is 12 mm thick waterproof plywood, and on top of that is a polymer/cement ratio of 12% (solid weight of styrene-butadiene rubber latex), cement: mixed aggregate = 1:0.7 (volume), water/cement ratio.
After applying 30% (by weight) cement-rich and polymer-rich mortar, apply the above mortar.
108×60mm, 16mm thick exterior tile with adhesive layer thickness 8
After 6 months of crimping at ~12mm, no abnormalities such as lifting or cracking were found. The tensile adhesive strength of the same material was 8 to 10 kgf/cm 2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の左官材料の特性を試験する
装置の原理図、第2図は同じくF値と塗厚の関係
グラフ、第3図は同じくM値と塗厚の関係グラ
フ、第4図は同じくψ値と塗厚の関係グラフ、第
5図は同じくF値とψ値の関係グラフ、第6図は
同じくF値とM値の関係グラフである。
Figure 1 is a diagram of the principle of the apparatus for testing the characteristics of plastering materials according to the present invention, Figure 2 is a graph of the relationship between the F value and coating thickness, Figure 3 is a graph of the relationship between the M value and coating thickness, and Figure 4 is a graph of the relationship between the M value and coating thickness. 5 is a graph of the relationship between the F value and the φ value, and FIG. 6 is a graph of the relationship between the F value and the M value.

Claims (1)

【特許請求の範囲】 1 無機質結合材料・混合骨材および合成高分子
混和剤よりなる左官材料であつて、無機質結合材
料と混合骨材の比は1:1.0〜4.0(容積)であ
り、混合骨材は硅砂、高炉水滓及び比重1.70以
下、その篩呼び寸法を3mm以下とした無機質で微
小中空の軽量球状体を含み、混合骨材中の高炉水
滓は25%〜70%(重量)であることを特徴とした
厚塗り用左官材料。 2 混合骨材中のスラグは混合骨材に対し25%〜
75%(重量)、軽量球状体は5%〜50%(重量)
を特徴とする特許請求の範囲第1項記載の厚塗り
用左官材料。
[Scope of Claims] 1. A plastering material consisting of an inorganic binder material/mixed aggregate and a synthetic polymer admixture, wherein the ratio of the inorganic binder material to the mixed aggregate is 1:1.0 to 4.0 (by volume); The aggregate includes silica sand, blast furnace water slag, and inorganic, microscopic, hollow, lightweight spherical bodies with a specific gravity of 1.70 or less and a nominal sieve size of 3 mm or less, and blast furnace water slag accounts for 25% to 70% (by weight) of the mixed aggregate. A thick plastering material characterized by: 2 Slag in the mixed aggregate is 25% or more of the mixed aggregate
75% (by weight), lightweight spheres from 5% to 50% (by weight)
A plastering material for thick coating according to claim 1, characterized by:
JP57132358A 1982-07-28 1982-07-28 Plaster material for thick coating Granted JPS5921564A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57132358A JPS5921564A (en) 1982-07-28 1982-07-28 Plaster material for thick coating
ZA835458A ZA835458B (en) 1982-07-28 1983-07-26 Thick set plastering material
FR8312428A FR2531065B1 (en) 1982-07-28 1983-07-27 THICK PLASTER MATERIAL
CA000433301A CA1218679A (en) 1982-07-28 1983-07-27 Thick set plastering material
GB8320404A GB2124610B (en) 1982-07-28 1983-07-28 Plastering material
DE19833327167 DE3327167A1 (en) 1982-07-28 1983-07-28 THICK APPLICABLE PLASTER MATERIAL
KR1019830003519A KR900002297B1 (en) 1982-07-28 1983-07-28 Plastering Materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57132358A JPS5921564A (en) 1982-07-28 1982-07-28 Plaster material for thick coating

Publications (2)

Publication Number Publication Date
JPS5921564A JPS5921564A (en) 1984-02-03
JPS6214515B2 true JPS6214515B2 (en) 1987-04-02

Family

ID=15079492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57132358A Granted JPS5921564A (en) 1982-07-28 1982-07-28 Plaster material for thick coating

Country Status (7)

Country Link
JP (1) JPS5921564A (en)
KR (1) KR900002297B1 (en)
CA (1) CA1218679A (en)
DE (1) DE3327167A1 (en)
FR (1) FR2531065B1 (en)
GB (1) GB2124610B (en)
ZA (1) ZA835458B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213654A (en) * 1983-05-19 1984-12-03 信越化学工業株式会社 Thick-plastering material composition
ES2187245B1 (en) * 2000-08-02 2004-06-16 Universidad De Granada PORTIFUL ARTIFICIAL STONE: PREFABRICATED AND ADAPTABLE MORTARS (KIT) FOR APPLICATION IN CONSTRUCTION AND RESTORATION WORKS.
KR20020088533A (en) * 2001-05-18 2002-11-29 주식회사 서린건축사사무소 finishing member make use of electric furnace slag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412930A (en) * 1977-06-30 1979-01-31 Hitachi Chem Co Ltd Racket frame
JPS5692153A (en) * 1979-12-26 1981-07-25 Japan Synthetic Rubber Co Ltd Lightweight heattinsulating mortar composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB597486A (en) * 1945-08-21 1948-01-27 Louis Gelbman Improvements in lightweight concrete aggregate
US3196122A (en) * 1964-02-14 1965-07-20 Master Mechanics Company Cementitious compositions containing acrylic ester polymers
DE1646495C3 (en) * 1967-11-10 1982-05-06 Deutsche Amphibolin-Werke Von Robert Murjahn, 6105 Ober-Ramstadt Plaster compounds with a high thermal insulation value
GB1218411A (en) * 1968-03-13 1971-01-06 Thermocrete Baupatente Verwetu Improvements relating to methods of making mortar and concrete
US3538036A (en) * 1968-04-25 1970-11-03 Harry T Campbell Sons Corp Concrete composition containing polymeric acrylic resin
DE2345692B1 (en) * 1973-09-11 1975-03-06 Wasagchemie Ag Structural lightweight concrete of particularly low density
US3955992A (en) * 1973-12-17 1976-05-11 Albert Lee Roberts Cementitious wall composition and method
FR2299292A1 (en) * 1975-01-29 1976-08-27 Valigiani Marc Composite building material used for thermal and acoustic insulation - comprising cellular concrete or mortar filled with hollow glass spheres
GB1543562A (en) * 1975-02-07 1979-04-04 Laing & Son Ltd John Water-hardenable compositions and their manufacture
FR2307092A1 (en) * 1975-04-07 1976-11-05 Bonnal Et Cie Renaulac Sprayable thermal insulating wall plaster compsn. - contg. expanded glass granules polymeric binder and water, together with a hydraulic binder
DE2608927B2 (en) * 1976-03-04 1978-03-02 4300 Essen Aggregate for concrete, especially for concrete blocks with high compressive strength
DE2658128C3 (en) * 1976-12-22 1982-03-25 Dyckerhoff & Widmann AG, 8000 München Flowable concrete mix
DE2708839B1 (en) * 1977-03-01 1978-06-22 Schmitz Wido F Plaster made from aggregate and binding agent for coating components
AT359907B (en) * 1977-12-30 1980-12-10 Perlmooser Zementwerke Ag Mortar or concrete mix
GB2017673B (en) * 1978-02-15 1982-10-06 Fosroc International Ltd Hydraulic cement compositions
CS215262B1 (en) * 1978-04-27 1982-08-27 Jaroslav Lebeda Special plaster mortar material
US4277355A (en) * 1979-09-28 1981-07-07 Alexander Farcnik Insulative fireproof textured coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412930A (en) * 1977-06-30 1979-01-31 Hitachi Chem Co Ltd Racket frame
JPS5692153A (en) * 1979-12-26 1981-07-25 Japan Synthetic Rubber Co Ltd Lightweight heattinsulating mortar composition

Also Published As

Publication number Publication date
GB2124610B (en) 1986-12-17
DE3327167A1 (en) 1984-02-09
FR2531065A1 (en) 1984-02-03
JPS5921564A (en) 1984-02-03
FR2531065B1 (en) 1987-12-24
CA1218679A (en) 1987-03-03
KR900002297B1 (en) 1990-04-10
ZA835458B (en) 1984-04-25
GB8320404D0 (en) 1983-09-01
GB2124610A (en) 1984-02-22
KR840005419A (en) 1984-11-12

Similar Documents

Publication Publication Date Title
RU2471738C1 (en) Repair-waterproofing composition and additive in form of wollastonite complex for repair-waterproofing composition, mortar, concrete and articles based thereon
US3228907A (en) Mortar compositions containing latex blends
WO2011058574A2 (en) A composition suitable for use in building construction
US20230015398A1 (en) Dry mortar, in particular cementitious tile adhesive
JPH08283059A (en) Composition for base preparation
JPS61158851A (en) Cement composition
JPS6214515B2 (en)
JP2006273597A (en) Polymer cement mortar for tile adhesion
KR102251955B1 (en) Mortar composition using cement mixture and constructing method using it
WO2003091181A1 (en) Mortar composition
JPH0118024B2 (en)
JP3032792B2 (en) Cement-based base adjustment composition
JP3417700B2 (en) Lightweight body composition for thickening decorative pattern formation
JP2992876B2 (en) Plate-like elastic mortar product and method of manufacturing the same
US20050016422A1 (en) Mortar composition
JPS59213654A (en) Thick-plastering material composition
JP3165590B2 (en) Concrete surface thickening makeup method
JP2000144088A (en) Adhesive composition
JPS62182143A (en) Cement composition
JPS583517B2 (en) General-purpose coating material for construction
JPS5925863A (en) Waterproof construction method using sheet
Herold et al. Modification of ceramic tile adhesive with redispersible polymer powders
JP2006008421A (en) Non-fluidity mortar composition for cross-sectional repair
JPH0230648A (en) Cement admixture
JP2000001962A (en) Exposed concrete structure repairing method