JPS6214494A - Ultraviolet laser irradiation - Google Patents

Ultraviolet laser irradiation

Info

Publication number
JPS6214494A
JPS6214494A JP60154409A JP15440985A JPS6214494A JP S6214494 A JPS6214494 A JP S6214494A JP 60154409 A JP60154409 A JP 60154409A JP 15440985 A JP15440985 A JP 15440985A JP S6214494 A JPS6214494 A JP S6214494A
Authority
JP
Japan
Prior art keywords
ultraviolet
ultraviolet laser
reflecting mirror
irradiated
ultraviolet rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60154409A
Other languages
Japanese (ja)
Other versions
JPH028473B2 (en
Inventor
弘実 坂元
大野 幾男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60154409A priority Critical patent/JPS6214494A/en
Publication of JPS6214494A publication Critical patent/JPS6214494A/en
Publication of JPH028473B2 publication Critical patent/JPH028473B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、紫外線レーザーからの紫外線を透光性のフィ
ルム等に形成された回路パターンのマスクを介してプリ
ント基板等の上に塗布された紫外1!!硬化型レジスト
に照射し、マスクに形成されている回路パターンを焼付
ける露光装置等における紫外線レーザー照射方法に関す
るもので、微細な画像を形成する必要のある分野で利用
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the application of ultraviolet rays from an ultraviolet laser to a circuit pattern mask formed on a transparent film, etc. ! ! This relates to an ultraviolet laser irradiation method in an exposure device or the like that irradiates a hardening resist to print a circuit pattern formed on a mask, and is used in fields where it is necessary to form fine images.

従来の技術 プリント基板製造等においては、回路パターンが微細化
の傾向にあり、露光装置の解像力を上げる必要がある。
2. Description of the Related Art In the production of printed circuit boards, circuit patterns tend to become finer, and it is necessary to increase the resolution of exposure equipment.

マスクに形成された微細な回路パターンを紫外線硬化型
のエツチングレジストあるいはソルダーレジスト等のレ
ジストを塗布したプリント基板に露光して焼付けるため
には、解像力の点から平行光が必要なので、従来は点光
源に近い超高圧放電灯と光学系とを組合せて疑似平行光
をつくる照射方法が提案されている。
In order to expose and print a fine circuit pattern formed on a mask onto a printed circuit board coated with a resist such as an ultraviolet curing etching resist or solder resist, parallel light is required from the viewpoint of resolution. An irradiation method has been proposed in which pseudo-parallel light is created by combining an ultra-high pressure discharge lamp close to the light source and an optical system.

第2図は従来のこの種の露光装置の照射方法の一例を示
したものである。図において、6は超高圧水銀灯などの
超高圧放電灯、7は楕円面鏡、8は第一次反射鏡、9は
インチグレーター、10は第二次反射鏡、11は回路パ
ターンが形成されているマスク、12はレジストが塗布
されているプリント基板である。超高圧放電灯6からの
紫外線の光は、楕円面17を介して第一次反射鏡8に集
光され、その光がほぼ90度向きを変えて反射され、イ
ンチグレーター9を透過して第二次反射鏡10に照射さ
れる。第二状反射vA10はプリント基板12に対して
ほぼ45度の傾斜を持たせて設置されており、第二次反
1)11910で反射された光はマスク11を介してプ
リント基板12の全面に照射され、マスク11の回路パ
ターンがプリント基板12の上に塗布されたレジストに
焼付けられる。第−次反o4鏡8には超高圧放電灯6か
らの熱線を吸収させるためにコールドミラーを使用する
。インチグレーター9は紫外線の透過率をよくするため
石英製の小さな凸レンズを組合せて構成しである。
FIG. 2 shows an example of a conventional irradiation method of this type of exposure apparatus. In the figure, 6 is an ultra-high pressure discharge lamp such as an ultra-high pressure mercury lamp, 7 is an ellipsoidal mirror, 8 is a primary reflector, 9 is an inch grater, 10 is a secondary reflector, and 11 is a circuit pattern formed. The mask 12 is a printed circuit board coated with resist. The ultraviolet light from the ultra-high pressure discharge lamp 6 is focused on the primary reflecting mirror 8 via the elliptical surface 17, the light is reflected by changing its direction by approximately 90 degrees, and transmitted through the inch grater 9. The secondary reflecting mirror 10 is irradiated with light. The second reflection vA10 is installed at an angle of approximately 45 degrees with respect to the printed circuit board 12, and the light reflected by the second reflection vA10 is directed to the entire surface of the printed circuit board 12 through the mask 11. The circuit pattern of the mask 11 is printed onto the resist coated on the printed circuit board 12. A cold mirror is used as the second O4 mirror 8 to absorb heat rays from the ultra-high pressure discharge lamp 6. The inch grater 9 is constructed by combining small convex lenses made of quartz to improve the transmittance of ultraviolet rays.

発明が解決しようとする問題点 プリント基板等の被照射物の焼付番プのための露光時間
は被照射物の紫外線強度の最小値のところで決まるので
、出来るだけ高い値で均一に照射することが必要である
。しかるに上記したような従来の方式では、インチグレ
ータ一部゛や最終段の反射鏡を工夫して均斉度を改善し
ているが、インチグレータ一部を出た紫外線は拡がりが
あるので、どうしてら紫外線強度の分布は中心部が端部
より高くなる。均斉度をよりよくするため、光路長を長
くしたり、あるいは被照射物の大きさに対して照射面積
を大きくするなどの方法もあるが、いづれも紫外線強度
が低下し、露光時間が長くなるという問題があった。ま
た平行度の改善対策として、最終段の反rf4ilIを
放物面鏡にするなどの方法があるが、放物面鏡の仕上げ
が不完全であると、部分的に平行度が悪くなり、プリン
ト基板等の製品の品質に影響するという問題が生じる。
Problems to be Solved by the Invention Since the exposure time for printing the number of irradiated objects such as printed circuit boards is determined by the minimum value of the ultraviolet intensity of the irradiated object, it is necessary to uniformly irradiate the object with as high a value as possible. is necessary. However, in the conventional method described above, the degree of uniformity is improved by devising a part of the inch grater and a reflector at the final stage, but since the ultraviolet rays emitted from a part of the inch grater are spread out, what can be done? The distribution of ultraviolet light intensity is higher at the center than at the edges. In order to improve uniformity, there are methods such as increasing the optical path length or increasing the irradiation area relative to the size of the object to be irradiated, but either method reduces the UV intensity and increases the exposure time. There was a problem. In addition, as a measure to improve parallelism, there are methods such as making the final stage anti-RF4ILI a parabolic mirror, but if the finish of the parabolic mirror is incomplete, the parallelism will deteriorate in some parts, and the printing A problem arises in that the quality of products such as substrates is affected.

また良質の放物面鏡にすると、価格が非常に高くなるな
どの問題が生じる。さらに平行度についても光路長を良
くすると改善できるが、均斉度の場合と同様に紫外線強
度が低下し、露光時間が長くなるという問題が生じる。
Moreover, using a high-quality parabolic mirror causes problems such as an extremely high price. Furthermore, parallelism can be improved by increasing the optical path length, but similar to the case of uniformity, the problem arises that the ultraviolet intensity decreases and the exposure time becomes longer.

本発明は上記したような問題点を解消した露光装置にお
ける紫外線の照射方法を提供するものである。
The present invention provides a method for irradiating ultraviolet rays in an exposure apparatus that solves the above-mentioned problems.

問題点を解決するための手段 叩ら、本発明は、光源として平行光源である紫外線レー
ザーを使用し、且つ良質の平行度を得るために、紫外線
レー十アーからの紫外線を回転する多面体反射鏡等でス
キャニングするのではなく、対向した2枚の反射鏡を直
角内位I!関係でそれぞれ移動させることにより、固定
したプリント基板等の被照射物に紫外線レーザーからの
紫外線を有効に照射するようにして、紫外線レーザーか
らの高平行度の紫外線を被照射物に均一に照射できるよ
うにしたものである。
In order to solve the problem, the present invention uses an ultraviolet laser, which is a collimated light source, as a light source, and a polyhedral reflector that rotates the ultraviolet rays from the ultraviolet laser in order to obtain good parallelism. Rather than scanning with a mirror, etc., scan two opposing mirrors at a right angle. By moving each one in relation to each other, the ultraviolet rays from the ultraviolet laser can be effectively irradiated onto the fixed object to be irradiated, such as a printed circuit board, and the object to be irradiated can be uniformly irradiated with highly parallel ultraviolet rays from the ultraviolet laser. This is how it was done.

作  用 紫外線レーザーからの紫外線のスポット径より大きい面
積の第一次反射鏡で紫外線レーザーからの紫外線を受け
、その紫外線を被照射面に水平に90度向きを変えて反
射させる。次にこの第一次反射鏡で反射された紫外線を
、第一次反射鏡と同一面上で、被照射物に対して45度
の角度に傾斜させて第一次反射鏡に対向して配置され、
且つ幅が紫外線のスポット径よりも大きく、長さが被照
射物より長い長方形の第一次反射鏡で受け、垂直方向に
90度向きを変えて反射させることにより1、紫外線レ
ーザーからの紫外線を被照射物に照射する。
Function: The primary reflector, which has an area larger than the spot diameter of the ultraviolet rays from the ultraviolet laser, receives the ultraviolet rays from the ultraviolet laser, and reflects the ultraviolet rays horizontally by 90 degrees to the irradiated surface. Next, the ultraviolet rays reflected by this primary reflecting mirror are placed on the same plane as the primary reflecting mirror and facing the primary reflecting mirror at an angle of 45 degrees to the irradiated object. is,
In addition, the ultraviolet rays from the ultraviolet laser are received by a rectangular primary reflecting mirror whose width is larger than the spot diameter of the ultraviolet rays and whose length is longer than the object to be irradiated, and the ultraviolet rays from the ultraviolet laser are reflected by changing the direction 90 degrees in the vertical direction. Irradiates the object to be irradiated.

さらに第一次反射鏡を紫外線レーザーからの入射光軸と
同一方向に連続的に前後移動させ、かつ第二次反射鏡を
第−次反!y4#Aからの反射光の光軸方向に移動させ
ることにより、即ち、第−次反fJ4鏡と第二次反射鏡
とを直角的位置関係でそれぞれ移動させることにより、
固定された被照射物の全面に紫外線レーザーから発揚さ
れた平行度の高い紫外線を均一に照射することができる
Furthermore, the primary reflecting mirror is continuously moved back and forth in the same direction as the incident optical axis from the ultraviolet laser, and the secondary reflecting mirror is moved back and forth in the same direction as the incident optical axis from the ultraviolet laser. By moving in the optical axis direction of the reflected light from y4#A, that is, by moving the first-order anti-fJ4 mirror and the second-order reflecting mirror in a perpendicular positional relationship,
The entire surface of a fixed object to be irradiated can be uniformly irradiated with highly parallel ultraviolet rays emitted from an ultraviolet laser.

実施例 以下、本発明の一実施例を第1図に基いて説明する。Example An embodiment of the present invention will be described below with reference to FIG.

図において、1は紫外線レーザー、2は紫外線レーザー
からの入射光を90度向きを変えて水平に反射させる第
一次反射鏡、3は第一次反射!f12からの反射光を垂
直方向に90a向きを変えて反射させる第二次反射鏡、
4はプリント基板用の回路を描いたマスク、5はレジス
トを塗布したプリント基板である。第一次反射鏡2と第
二次反射鏡3とはマスク4の上方に配置されていて、第
一次反射鏡2は紫外線レーザー1からの入射光Cに対し
て45度の傾斜を持たせて設置され、入射光Cと同一方
向であるA−A方向に連続的に前後移動する。
In the figure, 1 is the ultraviolet laser, 2 is the primary reflector that changes the direction of the incident light from the ultraviolet laser by 90 degrees and reflects it horizontally, and 3 is the primary reflection! a secondary reflecting mirror that changes the direction of 90a in the vertical direction and reflects the reflected light from f12;
4 is a mask depicting a circuit for a printed circuit board, and 5 is a printed circuit board coated with resist. The primary reflecting mirror 2 and the secondary reflecting mirror 3 are arranged above the mask 4, and the primary reflecting mirror 2 is inclined at 45 degrees with respect to the incident light C from the ultraviolet laser 1. The light source is installed in the same direction as the incident light C, and moves back and forth continuously in the A-A direction, which is the same direction as the incident light C.

第二次反射鏡3はマスク4に対して45度の傾斜を持た
せて設置され、第−次段04&l12からの反射光を垂
直方向に90度向きを変えて反射させながら、第一次反
射&lt2からの反射光と同一方向であるB−B方向に
移動する。第一次反射鏡2の大きさは紫外線レーザー1
からの紫外線のスポット径より大きな形状とし、第二次
反射鏡3の大きさは、幅は紫外線のスポット径より若干
大きく、長さは被照射物の幅より大きくした長方形とす
る。
The secondary reflecting mirror 3 is installed with an inclination of 45 degrees with respect to the mask 4, and while reflecting the reflected light from the second stage 04&l12 by changing the direction of the reflected light by 90 degrees in the vertical direction, the primary reflecting mirror 3 It moves in the B-B direction, which is the same direction as the reflected light from &lt2. The size of the primary reflector 2 is the ultraviolet laser 1
The size of the secondary reflecting mirror 3 is a rectangle whose width is slightly larger than the spot diameter of the ultraviolet rays and whose length is larger than the width of the object to be irradiated.

かかる本発明実施例において、紫外線レーザー1から出
た紫外線Cは第−次段o4!li2で水平方向に90度
向ぎを変えて反射されて第二次反射鏡3に照射され、さ
らに第二次反射鏡3で垂直下方向に90度向きを変えて
反射されて、マスク4を介してプリント基板5にスポッ
ト状で照射される。第一次反射鏡2をAからへ方向に移
動させることにより、紫外線のスポットはマスク4上を
aからa方向に移動しながら帯状に照射していく。紫外
線のスポットがa方向の端部に達すると、第二次反射鏡
3を紫外線のスポット径の大きさより若干少ない幅で8
からB′方向に移動させ、かつ第一次反射&l12をA
からA方向に移動させることにより、マスク4上のスポ
ットはaからa方向に移動し、再び帯状に照射していく
。この状態を繰り返すことにより、スポット部の帯はb
からb方向に移動し、マスク4を介してプリント基板5
にマスク4に描かれた回路のパターンを焼付けることが
できる。
In this embodiment of the present invention, the ultraviolet C emitted from the ultraviolet laser 1 is the second stage o4! The light is turned 90 degrees horizontally by the li2 and reflected onto the secondary reflecting mirror 3, and further reflected by the secondary reflecting mirror 3 by turning 90 degrees vertically downward to illuminate the mask 4. The printed circuit board 5 is irradiated in the form of a spot through the beam. By moving the primary reflecting mirror 2 in the direction from A to A, the spot of ultraviolet rays irradiates the mask 4 in a band shape while moving in the direction from a to a. When the ultraviolet ray spot reaches the end in the a direction, the secondary reflecting mirror 3 is moved to 8 with a width slightly smaller than the ultraviolet ray spot diameter.
, and move the primary reflection &l12 from A to B' direction.
By moving the spot from a to the direction A, the spot on the mask 4 moves from a to the direction a, and the spot is irradiated in a band shape again. By repeating this state, the spot band becomes b
, and moves from the direction b to the printed circuit board 5 through the mask 4.
The circuit pattern drawn on the mask 4 can be printed onto the mask 4.

また第一次反射鏡2と第二次段04$13の鏡面仕上げ
を紫外線の波長に合った仕上げにすることにより、効率
的に反射させることができる。またマスク4とレジスト
を塗布したプリント基板5とは密着でも、非密着でも、
紫外線レーザーは良質の平行光であるので、高解像力の
焼付けがでさる。
Further, by giving the mirror finish of the primary reflecting mirror 2 and the second stage 04$13 a finish that matches the wavelength of ultraviolet rays, it is possible to efficiently reflect the ultraviolet rays. Also, whether the mask 4 and the printed circuit board 5 coated with resist are in close contact or not,
Since the ultraviolet laser is a high-quality collimated beam, it produces high-resolution printing.

また同一構成のものをプリント基板5に対して上、下に
配置することにより両面露光もできる。
Further, by arranging the same configuration above and below the printed circuit board 5, double-sided exposure can be performed.

なお、本発明の照射方法は、プリント基板への回路パタ
ーンの焼付けの他、スクリーン印刷板、エツチングなど
の微細な画像形成にも応用できるものである。
The irradiation method of the present invention can be applied not only to printing circuit patterns on printed circuit boards but also to forming fine images on screen printing boards, etching, and the like.

発明の効果 以上述べたような本発明による紫外線レーザーの照射方
法を用いると、紫外線レーザーの特徴である平行光線を
そのまま利用でき、高度の平行光が得られ、解像力が向
上し、微細な回路のプリント基板等の製造が容易になり
、かつ被照射面に均一な照射ができ、良質な画像が得ら
れるとともに、紫外線レーザーからの強力な紫外線によ
り焼付速度を早めることができ、露光時開の短縮がはか
れ、その実用的効果は大きい。
Effects of the Invention By using the ultraviolet laser irradiation method according to the present invention as described above, it is possible to directly utilize the parallel beams that characterize ultraviolet lasers, obtain highly parallel beams, improve resolution, and improve the precision of fine circuits. It is easier to manufacture printed circuit boards, etc., and the surface to be irradiated can be uniformly irradiated, resulting in high-quality images.The powerful ultraviolet rays from the ultraviolet laser can speed up the printing speed, shortening the exposure time. The practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明紫外線レーザー照射方法の一実施例を示
す立体図、第2図は従来の照射方法の一例を示す断面図
である。
FIG. 1 is a three-dimensional view showing an embodiment of the ultraviolet laser irradiation method of the present invention, and FIG. 2 is a sectional view showing an example of the conventional irradiation method.

Claims (1)

【特許請求の範囲】[Claims]  紫外線レーザーの紫外線を照射する露光装置における
紫外線レーザー照射方法において、対向して配置した2
枚の反射鏡を直角的関係で移動させることにより、被照
射物を移動させることなく、均一に照射する紫外線レー
ザー照射方法。
In an ultraviolet laser irradiation method in an exposure device that irradiates ultraviolet rays from an ultraviolet laser, two
An ultraviolet laser irradiation method that uniformly irradiates the irradiated object without moving it by moving two reflecting mirrors in a perpendicular relationship.
JP60154409A 1985-07-12 1985-07-12 Ultraviolet laser irradiation Granted JPS6214494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154409A JPS6214494A (en) 1985-07-12 1985-07-12 Ultraviolet laser irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154409A JPS6214494A (en) 1985-07-12 1985-07-12 Ultraviolet laser irradiation

Publications (2)

Publication Number Publication Date
JPS6214494A true JPS6214494A (en) 1987-01-23
JPH028473B2 JPH028473B2 (en) 1990-02-23

Family

ID=15583517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154409A Granted JPS6214494A (en) 1985-07-12 1985-07-12 Ultraviolet laser irradiation

Country Status (1)

Country Link
JP (1) JPS6214494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255330A (en) * 1988-08-22 1990-02-23 Matsushita Electric Ind Co Ltd Production of oriented film for liquid crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501027Y2 (en) * 1993-01-26 1996-06-12 輝実 太田 Gate ball passage confirmation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255330A (en) * 1988-08-22 1990-02-23 Matsushita Electric Ind Co Ltd Production of oriented film for liquid crystal

Also Published As

Publication number Publication date
JPH028473B2 (en) 1990-02-23

Similar Documents

Publication Publication Date Title
US5222112A (en) X-ray pattern masking by a reflective reduction projection optical system
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
US5302999A (en) Illumination method, illumination apparatus and projection exposure apparatus
JPS62178904A (en) Laser-beam irradiator
US4841341A (en) Integrator for an exposure apparatus or the like
KR970011202B1 (en) Overhead projector
JPH0151162B2 (en)
KR20010043419A (en) Method for making optical masters using incoherent light
JPS61212816A (en) Lighting equipment
JPS6214494A (en) Ultraviolet laser irradiation
US5084808A (en) Lighting optical system
US6532047B1 (en) Irradiation device for polarized light for optical alignment of a liquid crystal cell element
KR0132137B1 (en) Circuit arc illumination apparatus
JPS6332555A (en) Exposing device
JPS6269519A (en) Irradiation method for ultraviolet ray laser
JPS58222522A (en) Projection aligner
JPH04250455A (en) Arcuate illuminator
JPS62231924A (en) Exposure lighting device
JPS636540A (en) Integrator
JPH0349213A (en) Exposure device
JPS6381420A (en) Illuminating device
JP3531245B2 (en) Illumination device and exposure device
JP2788434B2 (en) Projection exposure method and apparatus
KR100263325B1 (en) Ligjt-exposing method
JPH0511454A (en) Hologram plotting device