JPS6214414A - Semiconductor thin film - Google Patents

Semiconductor thin film

Info

Publication number
JPS6214414A
JPS6214414A JP15238485A JP15238485A JPS6214414A JP S6214414 A JPS6214414 A JP S6214414A JP 15238485 A JP15238485 A JP 15238485A JP 15238485 A JP15238485 A JP 15238485A JP S6214414 A JPS6214414 A JP S6214414A
Authority
JP
Japan
Prior art keywords
thin film
germanium
layers
silicon
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15238485A
Other languages
Japanese (ja)
Other versions
JP2536836B2 (en
Inventor
Nobuhiro Fukuda
福田 信弘
Sadao Kobayashi
貞雄 小林
Koji Igarashi
孝司 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60152384A priority Critical patent/JP2536836B2/en
Publication of JPS6214414A publication Critical patent/JPS6214414A/en
Application granted granted Critical
Publication of JP2536836B2 publication Critical patent/JP2536836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To make an amorphous silicon/amorphous germanium multilayer thin film having excellent characteristics by a method wherein, in the formation of the amorphous germanium thin films, the energy to be directed on the thin film forming surfaces is decreased and the film quality of the amorphous germanium thin films is improved. CONSTITUTION:Two layers or more of amorphous silicon layers and two layers or more of amorphous germanium layers, which contain hydrogen and/or fluorine in the films thereof, are alternately laminated on the substrate [glass (a)] and the amorphous silicon/amorphous germanium multilayer thin film is formed on the substrate. When these silicon layers and germanium layers are respectively deposited on the substrate by a decomposition to be caused by the glow discharge of the raw gas containing a silicon compound and by a decomposition to be caused by the glow discharge of the raw gas containing a germanium compound, the irradiation intensities of the lights to be directed on the silicon layers and the germanium layers and the wavelengths of the lights are respectively changed and the film-forming conditions thereof shall be respectively a condition suitable to each layer of the layers. By this way, the film quality of the amorphous germanium films is improved. As a result, the amorphous silicon/amorphous germanium multilayer thin film having excellent characteristics is made.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体薄膜に関し、特に光電荷性に優れた非晶
質シリコン/非晶質ゲルマニウム多層薄膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a semiconductor thin film, and more particularly to an amorphous silicon/amorphous germanium multilayer thin film with excellent photocharging properties.

〔背景技術〕[Background technology]

多元素よりなる非晶質多層薄膜は薄膜の膜厚を変更する
ことにより光学バンドギャップや光電特性を種々変更す
ることができるので新規の光電材料の候補として最近、
注目されはじめている。いままでにa−8i : H/
 a−8i、xNx:H、a−8iN :H/ a−8
iC: H、a−si、−xcx、/ a−8i 、 
a−8i :H/a−8iGe:H等についての報告が
ある(昭和60年春季応用物理学会)。このようにa−
8i:H/ a−8ide : Hの多層構造の発表は
あるが本発明者らが提案する非晶質シリコン/非晶質ゲ
ルマニウム多層薄膜についての報告は全くない。しかし
ながら、この場合非晶質ゲルマニウム膜の膜質向上が実
現されていない現在においては多層膜の膜質を良好にす
ることは非常な困難を伴うと考えられる。
Amorphous multilayer thin films made of multiple elements can have various changes in optical bandgap and photoelectric properties by changing the thickness of the thin film, so they have recently been considered as candidates for new photoelectric materials.
It's starting to get attention. A-8i so far: H/
a-8i, xNx:H, a-8iN:H/a-8
iC: H, a-si, -xcx, / a-8i,
There is a report on a-8i:H/a-8iGe:H, etc. (1985 Spring Applied Physics Society). In this way a-
8i:H/a-8ide: Although there have been publications on the H multilayer structure, there have been no reports on the amorphous silicon/amorphous germanium multilayer thin film proposed by the present inventors. However, in this case, it is thought that it is extremely difficult to improve the film quality of a multilayer film at present, where improvement in the film quality of an amorphous germanium film has not been realized.

シリコン化合物とゲルマニウム化合物との混合物をグロ
ー放電することによるa−8iGe:H膜の作製も多数
試みられたが満足のいく結果は得られていない。
Many attempts have been made to prepare an a-8iGe:H film by glow discharging a mixture of a silicon compound and a germanium compound, but no satisfactory results have been obtained.

非晶質ゲルマニウム膜においてはゲルマニウムと水素と
の結合が弱いため水素による未結合手(ダングリングボ
ンド)の除去が困難である。本発明者らは研究の結果、
ゲルマニウム化合物のグロー放電によるゲルマニウム薄
膜の形成において薄膜形成面のエネルギーを低下させる
ことにより膜質の改善を図ることが可能であることをみ
いだした。
In an amorphous germanium film, the bond between germanium and hydrogen is weak, so it is difficult to remove dangling bonds caused by hydrogen. As a result of our research, the inventors found that
It has been found that in the formation of germanium thin films by glow discharge of germanium compounds, it is possible to improve the film quality by lowering the energy on the thin film formation surface.

しかしながら、シリコン化合物のグロー放電によるシリ
コン薄膜の形成においてはこのようなゲルマニウム薄膜
の形成条件においてはかえって膜質の低下をひきおこし
た。
However, in the formation of a silicon thin film by glow discharge of a silicon compound, such germanium thin film formation conditions actually caused a deterioration in film quality.

本発明者らはこれらの問題点を解決すべく鋭意検討を加
えた結果、光を照射しつつグロー放電を行うシリコン化
合物とゲルマニウム化合物のそれぞれに適した薄膜の形
成方法をみいだして特性の優れた非晶質シリコン/非晶
質ゲルマニウム多層薄膜を得ることができた。
As a result of intensive studies to solve these problems, the present inventors discovered a method for forming thin films suitable for silicon compounds and germanium compounds, which perform glow discharge while being irradiated with light. We were able to obtain a multilayer thin film of amorphous silicon/amorphous germanium.

〔発明の開示〕[Disclosure of the invention]

本発明は第1図に示すように基体(たとえばガラス)上
に非晶質シリコン層と非晶質ゲルマニウム層(以下単に
シリコン層及びゲルマニウム層と略称する)を2層以上
交互に積層してなる多層構造の半導体薄膜である。シリ
コン層とゲルマニウム層の各々の膜厚は100 X以下
であり、好ましくは50A以下5A以上である。これら
の薄層を必要厚みになるように交互に(つかえし積層し
てなるものである。これらの各層は水素及び/又は弗素
を含有するものであり、非晶質の形態を主体とするもの
である。本発明においてはシリコン層とゲルマニウム層
を別々に成膜積層することが出来るために成膜条件をそ
れぞれに対し最適化できる。
As shown in FIG. 1, the present invention is made by alternately laminating two or more amorphous silicon layers and amorphous germanium layers (hereinafter simply referred to as silicon layers and germanium layers) on a substrate (for example, glass). It is a semiconductor thin film with a multilayer structure. The thickness of each of the silicon layer and the germanium layer is 100X or less, preferably 50A or less and 5A or more. These thin layers are alternately laminated to the required thickness. Each of these layers contains hydrogen and/or fluorine, and is mainly amorphous. In the present invention, since the silicon layer and the germanium layer can be deposited separately, the deposition conditions can be optimized for each.

シリコン層とゲルマニウム層はそれぞれシリコン化合物
及びゲルマニウム化合物を含む原料ガスのグロー放電分
解により基体上に堆積せられるものであるが、これら薄
膜の堆積中には薄膜形成主面上に光の照射を行う。シリ
コン層およびゲルマニウム層の堆積時には光の照射強度
や光の波長をそれぞれ変更して成膜条件をそれぞれに適
した条件とするようkして行う。
The silicon layer and the germanium layer are deposited on the substrate by glow discharge decomposition of raw material gases containing a silicon compound and a germanium compound, respectively, and during the deposition of these thin films, light is irradiated onto the main surface on which the thin film is formed. . When depositing the silicon layer and the germanium layer, the irradiation intensity and the wavelength of the light are respectively changed so that the film forming conditions are set to conditions suitable for each.

前述の如く、ゲルマニウムはシリコンに比べて共有結合
性が弱(、Ge−HやGe−Fが生成し難いので、非晶
質ゲルマニウム膜の膜質向上のためには、非晶質シリコ
ン膜の作製条件に対し、さらに温和な条件が必要とされ
るものである。実用上はプラズマ条件を等しくすること
が望ましいので、シリコン層の堆積中には光の強度をよ
り強くして、ゲルマニウム層の堆積中にはシリコン層の
堆積中よりも光の強度をより弱くすることが好ましい。
As mentioned above, germanium has a weaker covalent bond than silicon (Ge-H and Ge-F are difficult to form), so in order to improve the film quality of an amorphous germanium film, it is necessary to fabricate an amorphous silicon film. Milder conditions are required.In practice, it is desirable to equalize the plasma conditions, so during the deposition of the silicon layer, the intensity of the light is increased, and during the deposition of the germanium layer, In some cases, it is preferable to lower the intensity of the light than during the deposition of the silicon layer.

さらに条件を最適化するために光の波長を変更して行う
ことが好ましい。光の波長をより短かくすれば光の吸収
係数がより大きくなり、成膜表面(薄膜形成主面)のみ
で実質的にほとんど吸収されて光のエネルギーが緩和さ
れるので、先に形成された下層領域に与える影響が小さ
くなり、半導体装置に応用する場合に該装置の性能向上
につながる。
Furthermore, it is preferable to change the wavelength of light in order to optimize the conditions. If the wavelength of light is made shorter, the absorption coefficient of light becomes larger, and most of the light is absorbed only by the film forming surface (the main surface on which the thin film is formed), and the energy of the light is relaxed. The influence on the lower layer region is reduced, leading to improved performance of the device when applied to a semiconductor device.

いま具体的子側として半導体装置として非晶質太陽電池
を考える。該電池は通常、基板、第1の電極、第1の導
電型の膜、光活性層、第2の導電型の膜、第2の電極よ
り構成されるものである。
Now, as a concrete example, we will consider an amorphous solar cell as a semiconductor device. The cell typically comprises a substrate, a first electrode, a film of a first conductivity type, a photoactive layer, a film of a second conductivity type, and a second electrode.

この場合においては、たとえば光活性層の形成時には、
グロー放電のみで成膜条件の最適化を試みても、先に形
成されている第1の電極、第1の導電型の膜に与える影
響を少くするために、光活性層の形成条件が制限される
ということが生じ、グロー放電条件を任意に変更して該
条件の最適化をはかることが困難である。まして、多種
類の原料を用いる多層成膜においては該条件を最適化す
ることはすでに形成された膜に影響を与えてはならない
という制約からますます困難となる。これを解決するた
めに、本発明では光の照射を重畳することによりグロー
放電条件の補強を行うことな特徴とするものであり、高
品質膜の形成に必要なエネルギーの収支をとることがで
きたものである。
In this case, for example, when forming the photoactive layer,
Even if we try to optimize the film formation conditions using only glow discharge, the formation conditions of the photoactive layer are limited in order to reduce the influence on the first electrode and first conductivity type film that have been formed previously. Therefore, it is difficult to arbitrarily change the glow discharge conditions to optimize the conditions. Furthermore, in the case of multilayer film formation using a variety of raw materials, optimizing the conditions becomes increasingly difficult due to the constraint that the film that has already been formed must not be affected. In order to solve this problem, the present invention is characterized by reinforcing the glow discharge conditions by superimposing light irradiation, which makes it possible to balance the energy necessary to form a high-quality film. It is something that

シリコン層とゲルマニウム層の膜厚は各々100A以下
であり、好ましくは50X以下5A以上である。この膜
厚をこの範囲で小さくすることにより得られる半導体薄
膜の光学バンドギャップを任意に変更することが出来る
。膜厚が小さくなるにつれて光学バンドギャップはシリ
コン層のバンドギャップに近づく。
The film thicknesses of the silicon layer and the germanium layer are each 100A or less, preferably 50X or less and 5A or more. By reducing the film thickness within this range, the optical bandgap of the obtained semiconductor thin film can be arbitrarily changed. As the film thickness decreases, the optical bandgap approaches that of the silicon layer.

本発明で得られる多層構造の半導体薄膜は各薄膜層が水
素及び/又は弗素を膜中に含む非晶質半導体薄膜であり
、これら水素及び/又は弗素が非晶質の半導体薄膜に存
在する未結合手(ダングリングボンド)を補償するもの
である。
The semiconductor thin film having a multilayer structure obtained by the present invention is an amorphous semiconductor thin film in which each thin film layer contains hydrogen and/or fluorine, and these hydrogen and/or fluorine are present in the amorphous semiconductor thin film. This compensates for dangling bonds.

本発明においてグロー放電分解すべきシリコン化合物と
は、一般式5inH2n+2 で表わされるシリコン水
素化物、一般式”’mFzm+2 で表わされるシリコ
ン弗化物、一般式SiH,F4□で表わされるフン素置
換シリコン水素化物である。シリコン水素化物およびシ
リコン弗化物において好ましくは常温でガス状であるn
二1および2で表わされるモノシラン及びジシランであ
り、m−2のへキサフロロジシランである。フッ未置換
シリコン水素化物はa = 1〜3であり、特に好まし
くはa=2で表わされるジフロロシラン(SiH2F2
 )及びa=3で表わされるモノフロロシラン(5iH
8F )である。
In the present invention, the silicon compounds to be decomposed by glow discharge include silicon hydrides represented by the general formula 5inH2n+2, silicon fluorides represented by the general formula ''mFzm+2, and fluorine-substituted silicon hydrides represented by the general formula SiH,F4□. In silicon hydride and silicon fluoride, preferably n is gaseous at room temperature.
Monosilane and disilane represented by 21 and 2, and m-2 hexafluorodisilane. The fluorine-unsubstituted silicon hydride is difluorosilane (SiH2F2) in which a = 1 to 3, particularly preferably a = 2
) and monofluorosilane (5iH
8F).

特に好ましくはモノシラン及びジシランである。Particularly preferred are monosilane and disilane.

またグロー放電分解すべきゲルマニウム化合物としては
ゲルマン(GeH,)や4弗化ゲルマン(GeF4)が
用いられる。
Further, as the germanium compound to be decomposed by glow discharge, germane (GeH, ) and germane tetrafluoride (GeF4) are used.

本発明においては光の照射強度及び/又は波長を変更す
るが光の照射強度は成膜速度と関連づけて変更すること
が好ましい。成膜速度を高くする程照射強度を太き(す
ることが好ましい。また光の照射強度は基板温度とも関
係し、基板温度が低(なるほど照射強度は大きい方が好
ましい。また光の波長については紫外領域から赤外領域
まで使用できる。光の波長が異る場合、吸収係数が変化
するので最適な照射強度が異る。波長の単色性は特に限
定されない。レーザーのようなコヒーレント光及び水銀
ランプ、タングステンランプ、水素放電管、重水素放電
管、希ガスランプ、水銀−希ガスランプ等のインコヒー
レント光のいずれもが有効に使用される。レーザー光は
照射pho t on数を増加させる点において有用で
あり、またパルス発振のレーザーを用いる場合において
は、成膜速度にパルス発振間隔を適合させることができ
る。
In the present invention, the irradiation intensity and/or wavelength of light is changed, and it is preferable to change the irradiation intensity of light in relation to the film formation rate. The higher the film formation rate, the thicker the irradiation intensity (preferably. Also, the irradiation intensity of light is also related to the substrate temperature, and the lower the substrate temperature is, the higher the irradiation intensity is, the better. Also, regarding the wavelength of light, Can be used from the ultraviolet region to the infrared region.When the wavelength of light differs, the absorption coefficient changes, so the optimal irradiation intensity differs.The monochromaticity of the wavelength is not particularly limited.Coherent light such as laser and mercury lamp , tungsten lamps, hydrogen discharge tubes, deuterium discharge tubes, rare gas lamps, mercury-rare gas lamps, etc., can all be effectively used.Laser light has the advantage of increasing the number of irradiated photons. This is useful, and when a pulsed laser is used, the pulsed interval can be adapted to the film formation rate.

これに対し1ncoherent  光は大面積をスキ
ャンせずに照射出来る点においてすぐれている。
On the other hand, 1n coherent light is superior in that it can irradiate a large area without scanning it.

本発明において使用する基体としては、ガラス、ステン
レス鋼、アルミニウム、黄銅、ポリマー等の薄膜や板状
物は勿論、これらに電極や導電性薄膜、別の半導体装置
等を形成したものが有効に用いられる。
Substrates used in the present invention include thin films and plate-like materials such as glass, stainless steel, aluminum, brass, and polymers, as well as those on which electrodes, conductive thin films, other semiconductor devices, etc. are formed. It will be done.

本発明においては薄膜が形成される基体の加熱温度は後
記実施例に示すように比較的低温でよい。
In the present invention, the heating temperature of the substrate on which the thin film is formed may be relatively low as shown in Examples below.

光の照射強度及び/又は波長を選択することにより基体
を加熱することなく常温においても良質の膜形成ができ
る。
By selecting the irradiation intensity and/or wavelength of light, a high-quality film can be formed even at room temperature without heating the substrate.

先に述べた原料ガスとともに水素やヘリウμを希釈ガス
として用いることは本発明において好ましいことである
。水素やヘリウムを用いることにより薄膜形成時のグロ
ー放電を安定に保持することができるので膜質のさらな
る向上が可能になる。
In the present invention, it is preferable to use hydrogen or helium μ as a diluent gas together with the source gas mentioned above. By using hydrogen or helium, glow discharge during thin film formation can be stably maintained, making it possible to further improve film quality.

本発明はたとえば、第2図や第3図に示した装置により
実施できる。ここで 1.11は光発生手段、2,12は光導入手段、3゜1
3は基体、4.(4は基体加熱手段、5,15は原料ガ
ス導入手段、6 、6’、 16 、16’は真空排気
手段、7.17はグロー放電手段、8,18は基体保持
手段である。
The present invention can be implemented, for example, by the apparatus shown in FIGS. 2 and 3. Here, 1.11 is a light generation means, 2 and 12 are light introduction means, and 3゜1
3 is a base body; 4. (4 is a substrate heating means, 5 and 15 are raw material gas introduction means, 6, 6', 16, and 16' are evacuation means, 7.17 is a glow discharge means, and 8 and 18 are substrate holding means.

ここで第2図はグロー放電手段と基体を離して設備した
ものであり、基体への光照射を容易にするものである。
Here, FIG. 2 shows an arrangement in which the glow discharge means and the base are separated from each other to facilitate light irradiation onto the base.

さらに基体近傍のグロー放電を均質に保持すべく原料ガ
ス導入手段の位置調節を可能にするものである。
Furthermore, it is possible to adjust the position of the raw material gas introducing means in order to maintain a uniform glow discharge near the base.

第3図はビーム状の光を導入する場合の実施例の一つで
ある。ビーム状の光は光発生手段から直接あるいはビー
ム走査手段を経て基体を照射するものである。ビーム状
の光として、レーザー光を用℃・る時に好ましい例であ
る。
FIG. 3 shows one embodiment in which beam-shaped light is introduced. The beam-shaped light is irradiated onto the substrate directly from the light generating means or via the beam scanning means. This is a preferred example when laser light is used as a beam of light.

〔発明を実施するための好ましい形態〕本発明はたとえ
ば第2図で実施できる。光発生手段、光照射手段、基体
導入手段、基体保持手段、基体加熱手段、原料ガス導入
手段、真空排気手段、グロー放電手段を少くとも有す光
照射グロー放電分解反応器に基体を設置し、真空排気下
、基体を300℃以下の低温に加熱する。シリコン化合
物からなる第1の原料ガスを導入しつつ、光発生手段に
より発生した光を適宜選択、調節して光照射手段により
基体の薄膜形成主面を照射し、真空排気手段で該反応器
の圧力を2 Tow以下として、グロー放電を行い薄膜
作成を開始する。同放電開始と共に薄膜の形成がはじま
るので成膜速度を考慮に入れて必要膜厚になる時間にお
いて放電を停止する。
[Preferred form for carrying out the invention] The present invention can be carried out, for example, as shown in FIG. installing the substrate in a light irradiation glow discharge decomposition reactor having at least a light generation means, a light irradiation means, a substrate introduction means, a substrate holding means, a substrate heating means, a raw material gas introduction means, a vacuum evacuation means, and a glow discharge means; The substrate is heated to a low temperature of 300° C. or lower under vacuum evacuation. While introducing the first raw material gas consisting of a silicon compound, the light generated by the light generation means is appropriately selected and adjusted to irradiate the main surface of the substrate on which the thin film is to be formed by the light irradiation means, and the reactor is evacuated by the evacuation means. The pressure is set to 2 Tow or less, glow discharge is performed, and thin film formation is started. Since the formation of a thin film starts at the same time as the discharge starts, the discharge is stopped when the required film thickness is reached, taking into consideration the film formation rate.

照射光の調整を行(・、第1の原料ガスの導入を停止し
、真空排気手段で10−’ Tow以下の圧力にした後
、ゲルマニウム化合物からなる第2の原料ガスを導入し
グロー放電を行う。必要膜厚になった時に第2の原料ガ
スの導入を停止し、照射光の調整を行い真空排気手段で
10−5Torr以下の圧力に排気する。以上の操作を
必要回数繰返してアモルファスシリコン膜トアモルファ
スゲルマニウム膜を積層した多層構造の半導体薄膜を得
る。
After adjusting the irradiation light (stop the introduction of the first raw material gas and reduce the pressure to 10-' Tow or less using a vacuum evacuation means, introduce the second raw material gas consisting of a germanium compound and generate a glow discharge. When the required film thickness is reached, the introduction of the second raw material gas is stopped, the irradiation light is adjusted, and the pressure is evacuated to 10-5 Torr or less using a vacuum evacuation means.The above operation is repeated as many times as necessary to form amorphous silicon. A semiconductor thin film having a multilayer structure in which amorphous germanium films are laminated is obtained.

本発明により得られる半導体薄膜は光学バンドギャップ
が1.6ev以下と狭いにもかかわらず電子スピン共鳴
法で得られたスピン密緻は10“°儂−。
Although the semiconductor thin film obtained by the present invention has a narrow optical bandgap of 1.6 ev or less, the spin density obtained by electron spin resonance method is 10"°.

と小さく、光導電度と暗導電度の比が103〜104と
大きいすぐれた特性を有する。
It has excellent properties such as a small ratio of photoconductivity to dark conductivity of 103 to 104.

このように長波長側に高い光感度を有する本発明の薄膜
は光電変換素子、薄膜太陽電池、光感光体等の製造に極
めて有用なものである。
The thin film of the present invention having high photosensitivity on the long wavelength side is extremely useful for manufacturing photoelectric conversion elements, thin film solar cells, photoreceptors, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の一つでありガラス板:H)膜
を多層積層している状態を示す断面図である。第2図お
よび第3図は本発明を実施するに適した光照射グロー放
電分解反応器を示す説明図である。図において、 1、II・・・・光発生手段、2,12・・・・光導入
手段、3,13・・・・基体、4,14・・・・基体加
熱手段、5,15・・・・原料ガス導入手段、6 、6
’、 16゜16′・・・・真空排気手段、7.7’、
17.17’・・・・グロー放電手段、8,18・・・
・基体保持手段を示す。
FIG. 1 is one of the embodiments of the present invention, and is a cross-sectional view showing a state in which glass plates (H) films are laminated in multiple layers. FIGS. 2 and 3 are explanatory diagrams showing a light irradiation glow discharge decomposition reactor suitable for carrying out the present invention. In the figure, 1, II... light generation means, 2, 12... light introducing means, 3, 13... substrate, 4, 14... substrate heating means, 5, 15... ...Means for introducing raw material gas, 6, 6
', 16°16'...Evacuation means, 7.7',
17.17'...Glow discharge means, 8,18...
- Indicates the substrate holding means.

Claims (6)

【特許請求の範囲】[Claims] (1)基体上に非晶質シリコン層と非晶質ゲルマニウム
層を2層以上交互に積層してなることを特徴とする多層
構造の半導体薄膜。
(1) A semiconductor thin film with a multilayer structure, characterized in that it is formed by alternately laminating two or more amorphous silicon layers and amorphous germanium layers on a substrate.
(2)シリコン層厚及びゲルマニウム層厚はそれぞれ1
00Å以下である特許請求の範囲第1項記載の半導体薄
膜。
(2) Silicon layer thickness and germanium layer thickness are each 1
The semiconductor thin film according to claim 1, which has a thickness of 00 Å or less.
(3)シリコン層は水素及び/又は弗素を含有する特許
請求の範囲第1項記載の半導体薄膜。
(3) The semiconductor thin film according to claim 1, wherein the silicon layer contains hydrogen and/or fluorine.
(4)ゲルマニウム層は水素及び/又は弗素を含有する
特許請求の範囲第1項記載の半導体薄膜。
(4) The semiconductor thin film according to claim 1, wherein the germanium layer contains hydrogen and/or fluorine.
(5)シリコン化合物とゲルマニウム化合物のグロー放
電を交互に行い基体上にシリコン層とゲルマニウム層を
交互に2層以上積層すると共に該薄膜形成主面上に光を
照射しつつ該積層を行うことを特徴とする多層構造の半
導体薄膜の形成方法。
(5) Alternating glow discharge of a silicon compound and a germanium compound to alternately laminate two or more silicon layers and germanium layers on a substrate, and perform the laminate while irradiating light onto the main surface on which the thin film is formed. A method for forming a semiconductor thin film with a characteristic multilayer structure.
(6)光の照射強度及び/又は光の波長をシリコン層の
形成中とゲルマニウム層の形成中において変更する特許
請求の範囲第5項記載の半導体薄膜の形成方法。
(6) The method for forming a semiconductor thin film according to claim 5, wherein the irradiation intensity of light and/or the wavelength of light are changed during formation of the silicon layer and during formation of the germanium layer.
JP60152384A 1985-07-12 1985-07-12 Semiconductor thin film Expired - Fee Related JP2536836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60152384A JP2536836B2 (en) 1985-07-12 1985-07-12 Semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60152384A JP2536836B2 (en) 1985-07-12 1985-07-12 Semiconductor thin film

Publications (2)

Publication Number Publication Date
JPS6214414A true JPS6214414A (en) 1987-01-23
JP2536836B2 JP2536836B2 (en) 1996-09-25

Family

ID=15539344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60152384A Expired - Fee Related JP2536836B2 (en) 1985-07-12 1985-07-12 Semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2536836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118140A (en) * 1992-12-25 2000-09-12 Hitachi, Ltd. Semiconductor apparatus having conductive thin films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710920A (en) * 1980-06-23 1982-01-20 Canon Inc Film forming process
JPS6074612A (en) * 1983-09-30 1985-04-26 Toshiba Corp Method and equipment for forming amorphous semiconductor film
JPS60100424A (en) * 1983-10-06 1985-06-04 エクソン リサ−チ アンド エンジニアリング カンパニ− Doping method and its application
JPS60117711A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming apparatus of thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710920A (en) * 1980-06-23 1982-01-20 Canon Inc Film forming process
JPS6074612A (en) * 1983-09-30 1985-04-26 Toshiba Corp Method and equipment for forming amorphous semiconductor film
JPS60100424A (en) * 1983-10-06 1985-06-04 エクソン リサ−チ アンド エンジニアリング カンパニ− Doping method and its application
JPS60117711A (en) * 1983-11-30 1985-06-25 Toshiba Corp Forming apparatus of thin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118140A (en) * 1992-12-25 2000-09-12 Hitachi, Ltd. Semiconductor apparatus having conductive thin films
US6346731B1 (en) 1992-12-25 2002-02-12 Hitachi, Ltd. Semiconductor apparatus having conductive thin films
US6468845B1 (en) 1992-12-25 2002-10-22 Hitachi, Ltd. Semiconductor apparatus having conductive thin films and manufacturing apparatus therefor
US7091520B2 (en) 1992-12-25 2006-08-15 Renesas Technology Corp. Method of manufacturing semiconductor device having conductive thin films
US7442593B2 (en) 1992-12-25 2008-10-28 Renesas Technology Corp. Method of manufacturing semiconductor device having conductive thin films

Also Published As

Publication number Publication date
JP2536836B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
US4968384A (en) Method of producing carbon-doped amorphous silicon thin film
US20100300505A1 (en) Multiple junction photovolatic devices and process for making the same
JP2616929B2 (en) Method for manufacturing microcrystalline silicon carbide semiconductor film
US6043105A (en) Method for manufacturing semiconductor sensitive devices
US4799968A (en) Photovoltaic device
US4749588A (en) Process for producing hydrogenated amorphous silicon thin film and a solar cell
JPS6214414A (en) Semiconductor thin film
US4772565A (en) Method of manufacturing solid-state image sensor
JPH09312258A (en) Polycrystal silicon thin film laminate, its manufacture and silicon thin film solar cell
JPS6216510A (en) Formation of semiconductor thin film
JP3107425B2 (en) Amorphous solar cell
Jia et al. Plasma parameters for fast deposition of highly crystallized microcrystalline silicon films using high-density microwave plasma
JPH0726382A (en) Forming method of semiconductor film and semiconductor device using this semiconductor film
JPH07183550A (en) Amorphous photoelectric conversion device
JPS59126680A (en) Amorphous silicon solar battery and manufacture thereof
JPS6216512A (en) Manufacture of semiconductor thin film
JPS62115710A (en) Manufacture of semiconductor device
JPH03284882A (en) Semiconductor thin film and manufacture thereof
JPS63152177A (en) Manufacture of solar cell
Hazra et al. Development of high quality 1.36 eV amorphous SiGe: H alloy by RF glow discharge under helium dilution
JPH04192373A (en) Photovoltaic element
JPS61278132A (en) Forming method for amorphous hydride sige film
EP0137043B1 (en) Method of manufacturing hydrogenated amorphous silicon thin film and solar cell
JPH08181079A (en) Forming method of amorphous semiconductor thin film
JPH07263728A (en) Manufacture of thin film solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees