JPS62144041A - Measurement of optical fiber structure - Google Patents

Measurement of optical fiber structure

Info

Publication number
JPS62144041A
JPS62144041A JP28511785A JP28511785A JPS62144041A JP S62144041 A JPS62144041 A JP S62144041A JP 28511785 A JP28511785 A JP 28511785A JP 28511785 A JP28511785 A JP 28511785A JP S62144041 A JPS62144041 A JP S62144041A
Authority
JP
Japan
Prior art keywords
optical fiber
measured
transparent tube
light
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28511785A
Other languages
Japanese (ja)
Inventor
Tooru Miyougadani
徹 茗荷谷
Masayuki Nishimura
正幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28511785A priority Critical patent/JPS62144041A/en
Publication of JPS62144041A publication Critical patent/JPS62144041A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/412Index profiling of optical fibres

Abstract

PURPOSE:To measure the structure of an optical fiber, by making light transmitting through a liquid filled between an optical fiber to be measured and a transparent tube with the refractive index slightly higher than those of a clad of the optical fiber being measured and the transparent tube to observe it through a transparent plate. CONSTITUTION:An optical fiber 1 to be measured has a tip face 6 which is cut at a right angle to the axis thereof. The tip part 8 thereof is cleared of a cover layer 7 over a fixed length. A transparent plate 3 is arranged vertical to a transparent tube 2 ahead of the front end of the transparent tube 2 with the inner dia. larger than the outer dia. of a clad layer of the fiber 1 and the tip part 8 is inserted into the transparent tube 2. A liquid 4 with the refractive index slightly higher those of the clad of the fiber 1 and the transparent tube 2 is filled between inside the transparent tube 2, between the transparent tube 2 and the transparent plate 3 so that it infiltrates into the tip part 8. Light is projected into the liquid 4 from another optical fiber 5 or light is made to propagate from the fiber 1 itself to observe a end face 6 through the transparent plate 3. In this manner, the outer dia. of the fiber 1 or core shape and the light intensity distribution in the propagation mode can be measured.

Description

【発明の詳細な説明】 (イ)発明の属する技術分野 本発明は光ファイバの構造測定方法し、より詳細には光
ファイバの外径およびコアの形状寸法ならびに伝搬モー
ドの光強度分布測定も含めた光ファイバの構造測定方法
に関す葛。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field to which the invention pertains The present invention relates to a method for measuring the structure of an optical fiber, and more specifically includes measuring the outer diameter and core shape of an optical fiber, as well as the light intensity distribution of the propagation mode. A method for measuring the structure of optical fibers.

(ロ)従来技術とその問題点 従来上記のような項目に関する光ファイバの構造測定方
法としては、被測定光ファイバを軸方向に直角に切断し
、その端面をレンズで拡大してテレビカメラを用いて観
測するという方法が行われていた。この場合、光ファイ
バを透過する光によりコアの形状あるいは伝搬モードの
光強度分布が測定され、光ファイバ端面で反射する光に
より光フアイバ外径が測定される。第2図は従来の方法
による光ファイバの構造測定方法を示す概略図である。
(b) Prior art and its problems Conventionally, the method for measuring the structure of optical fibers regarding the items mentioned above involves cutting the optical fiber to be measured at right angles to the axial direction, enlarging the end face with a lens, and using a television camera. The method used was to observe the In this case, the shape of the core or the light intensity distribution of the propagation mode is measured by the light transmitted through the optical fiber, and the outer diameter of the optical fiber is measured by the light reflected at the end face of the optical fiber. FIG. 2 is a schematic diagram showing a conventional method for measuring the structure of an optical fiber.

第2図において、被測定光ファイバ11をその一端を軸
方向に直角な平面が形成されるように切断して微動ステ
ージ12に固定し、他端はV溝型接続器14を用いて励
振用光ファイバ13と接続する。励振用光ファイバ16
にはハロゲンランプ等のコア測定用光源15の光をレン
ズを介して入射する。微動ステージ12に固定された被
」11定光フアイバ11の端面な観測するために対物レ
ンズ16とテレビカメラ17が配置されている。
In FIG. 2, one end of the optical fiber 11 to be measured is cut so as to form a plane perpendicular to the axial direction and fixed to the fine movement stage 12, and the other end is used for excitation using a V-groove connector 14. Connect to optical fiber 13. Excitation optical fiber 16
Light from a core measurement light source 15 such as a halogen lamp is incident through a lens. An objective lens 16 and a television camera 17 are arranged to observe the end face of the fixed optical fiber 11 fixed to the fine movement stage 12.

さらに光ファイバの外径を測定すべく被測定光ファイバ
端面に光をあてるために、対物レンズ16とテレビカメ
ラ17の間にハーフミラ−18を配置し、同時に外径測
定用光源19をその光が・・−フミラー18で反射し被
測定光ファイバ11の端部に達するような位置に配置し
ている。以上の構成により、微動ステージ12を調整し
て被測定光ファイバ11の端面にテレビカメラ17の焦
点を合せ、被測定光ファイバのコア測定用光源15お5
よび外径測定用光源19を切り換えて使用することによ
り、被測定光ファイバのコア径、伝搬モードの光強度分
布および外径等を測定することができる。また上記測定
にもとづきコア中心位置、その偏心量、伝搬モードの光
強度分布の中心位置、その偏心量等を求めることができ
る。さらに、テレビカメラで撮影された影像をAD変換
してコンピュータに入力し、コア径、外径およびコア偏
心量等を自動的に計算することも可能である。
Furthermore, in order to shine light onto the end face of the optical fiber to be measured in order to measure the outer diameter of the optical fiber, a half mirror 18 is placed between the objective lens 16 and the television camera 17, and at the same time, the light source 19 for measuring the outer diameter is illuminated. . . . is placed at a position where it is reflected by the mirror 18 and reaches the end of the optical fiber 11 to be measured. With the above configuration, the fine movement stage 12 is adjusted to focus the television camera 17 on the end face of the optical fiber to be measured 11, and the light sources 15 and 5 for core measurement of the optical fiber to be measured are adjusted.
By switching between the light source 19 and the light source 19 for measuring the outer diameter, it is possible to measure the core diameter, the light intensity distribution of the propagation mode, the outer diameter, etc. of the optical fiber to be measured. Further, based on the above measurements, the core center position, its eccentricity, the center position of the light intensity distribution of the propagation mode, its eccentricity, etc. can be determined. Furthermore, it is also possible to AD convert an image taken by a television camera and input it into a computer to automatically calculate the core diameter, outer diameter, core eccentricity, etc.

ここで、上記測定にあたっては被測定光ファイバの被測
定端面がほぼ完全に軸方向に直角な平面になっているこ
とが重要である。すなわち被測定端面が不整状態にある
と被測定端面にテレビカメラの焦点が合わず、また透過
光、反射光とも端面不整の影響を5けるため正確な測定
ができないためである。さらに透過光の測定に関しては
光フアイバコアと空気との屈折率差の大きいことが正確
な測定に対し端面不整と相乗的に影響を与えていた。し
かしながら、被測定光ファイバを軸方向に完全に直角な
平面を得るように切断することは難しく、このことが測
定上の問題点となっていた。
Here, in the above measurement, it is important that the end face of the optical fiber to be measured is a plane that is almost completely perpendicular to the axial direction. That is, if the end face to be measured is irregular, the television camera will not be able to focus on the end face to be measured, and both transmitted light and reflected light will be affected by the irregularity of the end face, making accurate measurement impossible. Furthermore, regarding the measurement of transmitted light, the large difference in refractive index between the optical fiber core and air has a synergistic effect on accurate measurement with the irregularity of the end face. However, it is difficult to cut the optical fiber to be measured so as to obtain a plane completely perpendicular to the axial direction, which poses a problem in measurement.

(ハ)発明の目的 本発明は上記従来の事情に鑑みなされたものであって、
被測定光ファイバの被測定端面の不整状態および被測定
光ファイバコアと空気との屈折率差による影響をうける
ことなく正確に光ファイバのコア形状、伝搬モードの光
強度分布ならびに外径等を測定することができる方法を
提供することにある。
(c) Purpose of the invention The present invention has been made in view of the above-mentioned conventional circumstances, and includes:
Accurately measures the core shape, propagation mode light intensity distribution, outer diameter, etc. of an optical fiber without being affected by the irregularity of the end face of the optical fiber under test or the difference in refractive index between the optical fiber core and air. Our goal is to provide a way to do so.

(ニ)発明の構成 本発明は被測定光ファイバのクラッド外径よりも大きな
内径をもつ透明管の先端近傍に薄い透明板を前記透明管
と垂直に配し、前記透明管内に被覆層を除去した被測定
光ファイバの先端部分を前記透明板に概ね接する位置ま
で挿入して固定し、少くとも前記透明管内および前記透
明管と前記透明板の間に前記被測定光ファイバのクラッ
ドおよび前記透明管の屈折率よりわずかに高い屈折率を
有する液体を満たし、前記透明管の後端側から前記透明
管内に光を入射して前記透明管に沿って前記液体中に光
を伝搬せしめ被測定光ファイバの外径を測定すべ(前記
透明板を通して被測定光ファイバの端面を観測し、また
前記透明管内への光の入射と切換えて被測定光ファイバ
の後端から光を入射し被測定光ファイバのコアに光を伝
搬せしめ被測定光ファイバのコア形状および伝搬モード
の光強度分布を求めるべく前記透明板を通して被測定光
ファイバの端面を観測することを特徴とする。
(D) Structure of the Invention The present invention provides a transparent tube having an inner diameter larger than the outer diameter of the cladding of the optical fiber to be measured, and a thin transparent plate is placed near the tip of the transparent tube perpendicularly to the transparent tube, and the coating layer is removed inside the transparent tube. The distal end portion of the optical fiber to be measured is inserted and fixed to a position where it is almost in contact with the transparent plate, and the cladding of the optical fiber to be measured and the refraction of the transparent tube are formed at least within the transparent tube and between the transparent tube and the transparent plate. The transparent tube is filled with a liquid having a refractive index slightly higher than the optical fiber to be measured, and light is incident into the transparent tube from the rear end side and propagated into the liquid along the transparent tube. To measure the diameter (observe the end face of the optical fiber to be measured through the transparent plate, and change the incidence of light into the transparent tube to enter the light from the rear end of the optical fiber to be measured and enter the core of the optical fiber to be measured. The method is characterized in that the end face of the optical fiber to be measured is observed through the transparent plate in order to propagate light and determine the core shape and light intensity distribution of the propagation mode of the optical fiber to be measured.

(ホ)発明の作用 上記構成によれば被測定光ファイバとその周囲に配置さ
れた透明管の間に満たされた被測定光ファイバのクラッ
ドおよび透明管の屈折率よりわずかに高い屈折率を有す
る液体中を光を伝搬させることにより透明板を通して光
ファイバの外径測定を行うことができ、また被測定光フ
ァイバを伝わりその先端から出射した光を被測定ファイ
バ先端部を包囲する前記液体中を伝搬させた上で透明板
を通して観測することにより光ファイバのコア形状、伝
搬モードの光強度分布等を測定することができる。
(e) Effect of the invention According to the above configuration, the optical fiber to be measured has a refractive index slightly higher than the refractive index of the cladding of the optical fiber to be measured and the transparent tube filled between the optical fiber to be measured and the transparent tube arranged around it. The outer diameter of an optical fiber can be measured through a transparent plate by propagating light through a liquid, and the light transmitted through the optical fiber to be measured and emitted from its tip is transmitted through the liquid surrounding the tip of the fiber to be measured. By observing the optical fiber through a transparent plate after propagation, the core shape of the optical fiber, the light intensity distribution of the propagation mode, etc. can be measured.

(へ)発明の実施例 以下添付図面を参照して本発明の好ましい実施例につい
て説明する。第1図にお℃・て被測定光フアイ71は軸
方向も(対し概ね直角Gて切断された先端面6を有し、
捷だ先端部分8は一定長さにわたって被覆層7を除去さ
れている。しかしながら、先端面6は光フアイバ特有の
切断の困難さから正確な軸直角平面とはならず不整状態
を有する。被測定光ファイバのクラッド層外径よりも大
きな内径をもつ透明管2の前端前方に薄い透明板ろを透
明管2と垂直に配し、透明g2内に被覆層を除去した被
測定光ファイバ1の先端部分8を挿入し、その先端面6
を透明板ろに突きあたるか、ある℃・はその近傍に位置
するよう被測定光ファイバ1を固定する。ここで少くと
も透明管2の内側および透明管2と透明板3との間に透
明管内に位置する被測定光ファイバの先端部分8がその
中に浸されるよう被測定光ファイバ1のクラッドおよび
透明管2の屈折率よりかすかに高い屈折率を有する液体
4を満たす。なお、被測定光ファイバ1の先端面6は前
述のように正確な軸直角平面でないため透明板3と密着
することはありえず、したがって被測定光ファイバの先
端面6と透明板3との間のわずかなすきまにも液体4が
満たされることになる。この状態にて被測定光ファイバ
1の構造測定を行う。
(F) Embodiments of the Invention Preferred embodiments of the invention will now be described with reference to the accompanying drawings. As shown in FIG.
The coating layer 7 is removed over a certain length of the twisted tip portion 8. However, the tip end face 6 does not form an accurate plane perpendicular to the axis due to the difficulty of cutting peculiar to optical fibers, and has an irregular state. An optical fiber to be measured 1 with a thin transparent plate filter arranged perpendicularly to the transparent tube 2 in front of the front end of a transparent tube 2 having an inner diameter larger than the outer diameter of the cladding layer of the optical fiber to be measured, and a coating layer removed inside the transparent tube 2. Insert the tip part 8 of the
The optical fiber 1 to be measured is fixed so that it abuts against the transparent plate filter, or is located near it at a certain degree. Here, the cladding of the optical fiber 1 to be measured and It is filled with a liquid 4 having a refractive index slightly higher than that of the transparent tube 2. Note that, as mentioned above, the tip end surface 6 of the optical fiber 1 to be measured is not a precise plane perpendicular to the axis, so it is impossible for it to come into close contact with the transparent plate 3. The liquid 4 will fill even the slightest gap. In this state, the structure of the optical fiber 1 to be measured is measured.

まず、被測定光ファイバの外径測定法につ(・て説明す
る。別の光ファイバ5を透明管2の後端側の内径部へ導
き、透明管2内の液体4中6C光を出射させる。光ファ
イバ5から出射された光は液体4が被測定光ファイバ1
のクラッドおよび透明管2より高い屈折率をもつため、
液体4と被測定光ファイバの先端部分8のクラッドの境
界面ならびに液体4と透明管2との境界面で全反射をく
り返して伝搬する。そのため被測定光ファイバの端面6
を透明板3を通して観察すれば、被測定光ファイバの端
面6は暗く、そのまわりの液体4は伝搬してきた光のた
め明るくなるので被測定光ファイバの先端部8の外径を
被測定光ファイバの端面6の切断状態の影響をうけるこ
となく正確に測定することができる。
First, the method for measuring the outer diameter of the optical fiber to be measured will be explained. Another optical fiber 5 is guided to the inner diameter part of the rear end of the transparent tube 2, and the 6C light in the liquid 4 in the transparent tube 2 is emitted. The light emitted from the optical fiber 5 passes through the liquid 4 to the optical fiber 1 to be measured.
Because it has a higher refractive index than the cladding and transparent tube 2,
It propagates through repeated total reflections at the interface between the liquid 4 and the cladding of the tip portion 8 of the optical fiber to be measured and between the liquid 4 and the transparent tube 2. Therefore, the end face 6 of the optical fiber to be measured
When observed through the transparent plate 3, the end face 6 of the optical fiber to be measured is dark, and the liquid 4 around it becomes bright due to the propagated light. Therefore, the outer diameter of the tip 8 of the optical fiber to be measured is Accurate measurements can be made without being affected by the cutting condition of the end face 6 of the.

次に被測定光ファ不バのコア形状および伝搬モード等の
測定法について説明する。前述つ光ファイバの外径測定
のための光ファイバ5からの光の入射にかえて、被測定
光フアイバ1自体の後端側から光を入射し被測定光ファ
イバ1のコアに光を伝搬せしめる。コアを伝搬した光は
被測定光ファイバ1の先端面6から出射され、次に被測
定光ファイバ1のクラッドの屈折率よりもわずかに高い
掘折率を有する液体4中を伝搬する。上記のように液体
4は被測定光ファイバ1のクラッドの屈折率よりもわず
かに高い屈折率を有する。ここで光ファイバのコアの屈
折率はクラッドの屈折率よりも少し大きいから被測定光
ファイバ1のコアと液体4の屈折率は近似することにな
る。したがって被測定光ファイバ1のコアから液体4中
への光の出射にあたっては先端面6の不整状態による影
響は小さく、光の伝搬状態の大きな変化は生じない。
Next, a method for measuring the core shape, propagation mode, etc. of the optical fiber to be measured will be explained. Instead of the light entering from the optical fiber 5 for measuring the outer diameter of the optical fiber as described above, light is entered from the rear end side of the optical fiber 1 to be measured and the light is propagated to the core of the optical fiber 1 to be measured. . The light propagated through the core is emitted from the distal end surface 6 of the optical fiber 1 to be measured, and then propagates through the liquid 4 having a refractive index slightly higher than the refractive index of the cladding of the optical fiber 1 to be measured. As described above, the liquid 4 has a refractive index slightly higher than the refractive index of the cladding of the optical fiber 1 to be measured. Here, since the refractive index of the core of the optical fiber is slightly larger than the refractive index of the cladding, the refractive index of the core of the optical fiber 1 to be measured and that of the liquid 4 are approximate. Therefore, when the light is emitted from the core of the optical fiber 1 to be measured into the liquid 4, the influence of the irregular state of the tip surface 6 is small, and the propagation state of the light does not change significantly.

そして透明板6を通して被」り走光ファイバ1の先端面
6を観察し、そのコアの形状およびその中心位置、また
伝搬モードの光強度分布およびその中心位置を検出する
ことにより被測定光ファイバのコア径、コアの偏心量、
伝搬モード径および伝搬モードの偏心量を測定すること
ができる。
Then, the tip surface 6 of the covered optical fiber 1 is observed through the transparent plate 6, and the core shape and center position of the core, as well as the light intensity distribution of the propagation mode and the center position are detected. diameter, core eccentricity,
The propagation mode diameter and the eccentricity of the propagation mode can be measured.

(ト)発明の効果 以上のように本発明洗よれば、被測定光ファイバの外径
測定にあたっては被測定光ファイバの先端部の周囲を取
り囲む透明管内に満たされた液体中を伝搬する光により
測定がなされるので被測定光ファイバ先端面の不整状態
の影響を直接うけることなく正確な測定を行うことがで
きる。また被測定光ファイバのコア形状、伝搬モードの
光強度分布等の測定にあたっては被測定光ファイバのコ
アを伝搬してきた光が被測定光ファイバ先端面から出射
されて被測定光ファイバのクラッドよりわずかに高い屈
折率、すなわち被」11定光フアイバのコアの屈折率に
近似した屈折率を有する液体中を伝搬し、この伝搬式が
透明板を通して観察される。したがって被測定光ファイ
バコアかもの出射光の伝搬状態はほとんど変化せず、か
(して被測 ′走光ファイバ先端面の不整状態の影響を
ほとんどうけずに正確な測定を行うことができる。
(g) Effects of the Invention As described above, according to the present invention, when measuring the outer diameter of an optical fiber to be measured, light propagating in a liquid filled in a transparent tube surrounding the tip of the optical fiber to be measured is used. Since the measurement is performed, accurate measurement can be performed without being directly influenced by the irregular state of the end face of the optical fiber to be measured. In addition, when measuring the core shape of the optical fiber to be measured, the light intensity distribution of the propagation mode, etc., the light that has propagated through the core of the optical fiber to be measured is emitted from the tip of the optical fiber to be measured. This propagation equation is observed through a transparent plate. Therefore, the propagation state of the light emitted from the core of the optical fiber to be measured hardly changes, and accurate measurement can be performed with almost no influence from the irregularity of the tip surface of the optical fiber to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ファイバの構造測定方法の原理を示
す概略図、 第2図は従来の光ファイバの構造測定法の原理を示す概
略図。 1・・・・・・被測定光ファイバ 2・・・・・・透 
明 管6・・・・・・透明板  4・・・・・・液体特
許出願人 住友電気工業株式会社 第2図 文慴荀レン大
FIG. 1 is a schematic diagram showing the principle of the optical fiber structure measuring method of the present invention, and FIG. 2 is a schematic diagram showing the principle of the conventional optical fiber structure measuring method. 1...Optical fiber to be measured 2...Transparent
Bright tube 6...Transparent plate 4...Liquid Patent applicant Sumitomo Electric Industries, Ltd. Figure 2 Wenhei Sun Renda

Claims (1)

【特許請求の範囲】[Claims] 被測定光ファイバのクラッド外径よりも大きな内径をも
つ透明管の先端近傍に薄い透明板を前記透明管と垂直に
配し、前記透明管内に被覆層を除去した被測定光ファイ
バの先端部分を前記透明板に概ね接する位置まで挿入し
て固定し、少くとも前記透明管内および前記透明管と前
記透明板の間に前記被測定光ファイバのクラッドおよび
前記透明管の屈折率よりわずかに高い屈折率を有する液
体を満たし、前記透明管の後端側から前記透明管内に光
を入射して前記透明管に沿って前記液体中に光を伝搬せ
しめ被測定光ファイバの外径を測定すべく前記透明板を
通して被測定光ファイバの端面を観測し、また前記透明
管内への光の入射と切換えて被測定光ファイバの後端か
ら光を入射し被測定光ファイバのコアに光を伝搬せしめ
被測定光ファイバのコア形状および伝搬モードの光強度
分布を求めるべく前記透明板を通して被測定光ファイバ
の端面を観測することを特徴とする光ファイバの構造測
定方法。
A thin transparent plate is arranged perpendicularly to the transparent tube near the tip of a transparent tube having an inner diameter larger than the outer diameter of the cladding of the optical fiber to be measured, and the tip portion of the optical fiber to be measured from which the coating layer has been removed is placed inside the transparent tube. The optical fiber to be measured is inserted and fixed to a position where it is approximately in contact with the transparent plate, and has a refractive index that is at least slightly higher than the refractive index of the cladding of the optical fiber to be measured and the transparent tube within the transparent tube and between the transparent tube and the transparent plate. The transparent tube is filled with a liquid, and light is incident into the transparent tube from the rear end side of the transparent tube to propagate into the liquid along the transparent tube and pass through the transparent plate in order to measure the outer diameter of the optical fiber to be measured. The end face of the optical fiber to be measured is observed, and the light is input from the rear end of the optical fiber to be measured by changing the incidence of light into the transparent tube, and the light is propagated to the core of the optical fiber to be measured. A method for measuring the structure of an optical fiber, comprising observing the end face of the optical fiber to be measured through the transparent plate in order to determine the core shape and the light intensity distribution of the propagation mode.
JP28511785A 1985-12-18 1985-12-18 Measurement of optical fiber structure Pending JPS62144041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28511785A JPS62144041A (en) 1985-12-18 1985-12-18 Measurement of optical fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28511785A JPS62144041A (en) 1985-12-18 1985-12-18 Measurement of optical fiber structure

Publications (1)

Publication Number Publication Date
JPS62144041A true JPS62144041A (en) 1987-06-27

Family

ID=17687336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28511785A Pending JPS62144041A (en) 1985-12-18 1985-12-18 Measurement of optical fiber structure

Country Status (1)

Country Link
JP (1) JPS62144041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125885A (en) * 2014-12-26 2016-07-11 住友電気工業株式会社 Method of measuring optical fiber structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125885A (en) * 2014-12-26 2016-07-11 住友電気工業株式会社 Method of measuring optical fiber structure

Similar Documents

Publication Publication Date Title
US6750967B2 (en) Light scattering measuring probe
CA1267790A (en) Fiber optic doppler anemometer
JP2529966B2 (en) Particle size measuring device
JPH1068843A (en) High reflection attenuation type light receiving device
JPS5937452B2 (en) Air-cooled tempered glass surface stress measuring device
JPH083464B2 (en) Optical measuring device
JP2006220466A (en) Self-mixing type laser doppler velocimeter
JPS62144041A (en) Measurement of optical fiber structure
KR100647749B1 (en) Instrument for measuring light scattering
JP3343756B2 (en) Manufacturing method of collimator for optical circuit
JPS5914181B2 (en) Surface stress measurement method for air-cooled tempered glass
US5335057A (en) Measuring geometry of optical fibre coatings with transverse incident beams
JPH076867B2 (en) Optical fiber structure measurement method
JPS57194324A (en) Optical temperature measuring device
JP2903748B2 (en) Shape measurement method by laser microscope
JPH0756041A (en) Dual core optical fiber and temperature measuring instrument using the same
JPH0610606B2 (en) Optical measurement method for quartz optical waveguide
CA1295476C (en) Method and apparatus of measuring outer diameter and structure of optical fiber
JPS6344139A (en) Optical-fiber end-surface inspection method and device
RU94020463A (en) Reflectometer
JPS5629146A (en) Photometric sensor of immersion type
JPS63168529A (en) Inspection of optical fiber connector
KR100674530B1 (en) Light scattering measuring probe
JPS63311139A (en) Characteristic measuring apparatus for optical fiber
JPS61163304A (en) Welding connection device of optical fiber