JPS62143875A - Manufacture of non-oxide sintered body - Google Patents

Manufacture of non-oxide sintered body

Info

Publication number
JPS62143875A
JPS62143875A JP60286095A JP28609585A JPS62143875A JP S62143875 A JPS62143875 A JP S62143875A JP 60286095 A JP60286095 A JP 60286095A JP 28609585 A JP28609585 A JP 28609585A JP S62143875 A JPS62143875 A JP S62143875A
Authority
JP
Japan
Prior art keywords
sintered body
length
plate
titanium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60286095A
Other languages
Japanese (ja)
Other versions
JPH0633178B2 (en
Inventor
隆博 和田
成司 安達
三原 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60286095A priority Critical patent/JPH0633178B2/en
Publication of JPS62143875A publication Critical patent/JPS62143875A/en
Publication of JPH0633178B2 publication Critical patent/JPH0633178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超硬工具や高温構造材として用いられる非酸
化物焼結体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a non-oxide sintered body used as a cemented carbide tool or a high-temperature structural material.

従来の技術 従来、非酸化物焼結体は、金属またはその酸化物に非金
属元素粉末または固形の非金属元素を混合し、高温で反
応させることによって合成した非酸化物を、十分に粉砕
したあと、高温高圧下で焼結させることによって製造し
ていた。この方法は、製造工程が長(複雑であるため不
純物が混入しやす(、シかもエネルギー消費が非常に大
きい。このようなtin 8点を解決するために、元素
の混合粉末から直接非酸化物焼結体を製造する方法が提
案されている。(例えば、ビー ディー ザビシャノス
 アンド シェイ アール モリス。
Conventional technology Conventionally, non-oxide sintered bodies are produced by thoroughly pulverizing non-oxides synthesized by mixing metals or their oxides with non-metal element powders or solid non-metal elements and reacting at high temperatures. Also, it was manufactured by sintering under high temperature and pressure. This method requires a long (complicated) manufacturing process, is prone to contamination with impurities, and consumes a large amount of energy. Methods for producing sintered bodies have been proposed (e.g., B.D. Zabisianos and S.R. Morris).

ジュニア、 セラミック エンジニアリング ソザエテ
ィ、プロシーディング(P、 D、 Zavitsan
osand  J、  R,Morris、  Jr、
、  Ceram、  Eng、  Sci、  Pr
Junior, Ceramic Engineering Society, Proceedings (P, D, Zavitsan
Osand J, R, Morris, Jr.
, Ceram, Eng, Sci, Pr
.

c、)、4.[7−8] 、624 (1983))。c, ), 4. [7-8], 624 (1983)).

この方法は、金属と非金属元素(炭素やホウ素)の粉末
を十分に混合した後、成形し、加圧下で成形体の一部に
着火して反応を開始させ、非酸化物の合成と焼結体の作
成を同時に行うものである(加圧自己燃焼焼結法と言わ
れている)、。
This method involves thoroughly mixing powders of metal and nonmetallic elements (carbon and boron), forming them, and igniting a part of the compact under pressure to start a reaction, which leads to the synthesis and sintering of non-oxides. This is a method in which the formation of solid bodies is performed at the same time (referred to as the pressurized self-combustion sintering method).

発明が解決しようとする問題点 このような方法で作成した焼結体は、作製に3GPaと
いう超高圧力が必要なうえに、相対密度〈焼結体の密度
/理論密度〉が95%以下と低(、さらに従来の方法で
作成した焼結体に比較して硬度等の機械的性質が若干低
かった。(ワイ ミャモト、エム コイズミ アンド 
オー ヤマダ。
Problems to be Solved by the Invention The sintered body produced by this method requires an ultra-high pressure of 3 GPa, and has a relative density (density of the sintered body/theoretical density) of 95% or less. Furthermore, mechanical properties such as hardness were slightly lower than sintered bodies made by conventional methods.
Oh Yamada.

ジャーナル オブ アメリカン セラミック ソザエテ
ィ(Y、旧yamoto、 M、 Koizumi a
nd O,Yamada、 J、 Am、 Ceram
、Soc、 ) 、 67、 No、11. C−22
4(1984)’) 問題点を解決するための手段 本発明の特徴は、加圧自己燃焼焼結法によって非酸化物
焼結体を作成する際に、金属原料として板状の金属を用
い、さらにその板状の金属を配向させたことにある。
Journal of the American Ceramic Society (Y, formerly Yamato, M, Koizumi a)
nd O, Yamada, J, Am, Ceram.
, Soc, ), 67, No, 11. C-22
4 (1984)') Means for Solving the Problems The feature of the present invention is that when a non-oxide sintered body is produced by a pressure self-combustion sintering method, a plate-shaped metal is used as a metal raw material, Another advantage lies in the fact that the plate-shaped metal is oriented.

作用 本発明によれば、加圧自己燃焼焼結法によって高密度の
焼結体が容易に得られるので、従来の非酸化物の粉末を
用いて作成した焼結体と同様、あるいはそれ以上の機(
戒的強度を有する非酸化物焼結体を、きわめて省エネル
ギーで作成することができる。
According to the present invention, a high-density sintered body can be easily obtained by the pressurized self-combustion sintering method, so the sintered body is similar to or even higher than that of a conventional sintered body made using non-oxide powder. Machine (
A non-oxide sintered body with excellent strength can be produced with extremely low energy consumption.

実施例 実施例1 出発原料として厚さ10μm1縦及び横の長さが1mm
の板状のチタンと粒径0.1μm以下のカーボンブラッ
クを用い、両者を1:1のモル比で秤取し、ヘキサン中
で湿式混合、その混合物をQ 、 5 nunXlOm
mの大きさの長方形のノズルを有する金型から押し出す
ことによって板状のチタンが配向した帯状混合物を得た
。この帯状混合物を適当な長さに切断し、それを積み重
ねてプレスし、そこから直径10馴、高さl Ommの
柱状の成形体を得た。この成形体を、炭化ケイ米製の型
材を用いた一軸加圧真空ホットプレスを用いて加圧自己
燃焼焼結を行った。成形体への着火は、タングステンフ
ィラメントに通電することによって行った。試料を10
0°C−真空(10−’ mmmm1l雰囲気・0.I
GPaの圧力条件下で、着火用ヒーターに通電して反応
を開始させた。
Examples Example 1 As a starting material, the thickness is 10 μm, the length and width are 1 mm.
Using plate-shaped titanium and carbon black with a particle size of 0.1 μm or less, both were weighed out at a molar ratio of 1:1, mixed wet in hexane, and the mixture was mixed with Q, 5 nunXlOm.
A strip-shaped mixture in which plate-shaped titanium was oriented was obtained by extruding it from a mold having a rectangular nozzle with a size of m. This strip-like mixture was cut into appropriate lengths, stacked and pressed to obtain a columnar molded body with a diameter of 10mm and a height of 10mm. This molded body was subjected to pressure self-combustion sintering using a uniaxial pressure vacuum hot press using a mold made of silicon carbide rice. The molded body was ignited by energizing the tungsten filament. 10 samples
0°C-vacuum (10-' mmmm1l atmosphere・0.I
Under pressure conditions of GPa, the ignition heater was energized to start the reaction.

得られた焼結体をX線回折を用いて同定したところ炭化
チタンの回折線しか見られなかった。またこの焼結体の
相対密度は、98.6’%であった。焼結体組織は均一
な平板状の粒からなっていて、幅方向の長さが約100
μ11厚さ方向の長さが10μmであった。厚さ方向の
長さが、出発原料のチタンの板厚と比較してほぼ同程度
であった。
When the obtained sintered body was identified using X-ray diffraction, only the diffraction line of titanium carbide was observed. Further, the relative density of this sintered body was 98.6'%. The structure of the sintered body consists of uniform tabular grains, and the length in the width direction is approximately 100 mm.
The length of μ11 in the thickness direction was 10 μm. The length in the thickness direction was approximately the same as the thickness of the titanium plate used as the starting material.

試料のビッカース硬度は、荷重500gで29 GN/
イであった。この値は、従来の方法で作成された焼結体
の硬度と変わらない値であった。
The Vickers hardness of the sample is 29 GN/ at a load of 500g.
It was. This value was the same as the hardness of a sintered body produced by a conventional method.

実施例2 出発原料として1ワさ30μm1縦文び横の長さが0 
、5 mmの板状のチタンと粒径0.1μm以下のカー
ボンブラックを用い、両者を1:1のモル比で秤取し、
それを実施例1と同様の条件て成形体を作製した。この
成形体を、炭化ケイ米製の型材を用いた一軸加圧真空ホ
ットプレスを用いて加圧自己燃焼焼結を行った。成形体
への着火は、タングステンフィラメントに通電するこ七
によって行った。
Example 2 As a starting material, 1 size: 30 μm, 1 vertical pattern, 0 horizontal lengths
, using a 5 mm plate-shaped titanium and carbon black with a particle size of 0.1 μm or less, weighing both at a molar ratio of 1:1,
A molded body was produced under the same conditions as in Example 1. This molded body was subjected to pressure self-combustion sintering using a uniaxial pressure vacuum hot press using a mold made of silicon carbide rice. The molded body was ignited by applying electricity to the tungsten filament.

試料を100℃・真空(10= +nmt1g)雰囲気
・0.1GPaの圧力条件で、着火用ヒーターに通電し
て反応を開始させた。
The sample was heated at 100° C. in a vacuum (10=+nmt1g) atmosphere and at a pressure of 0.1 GPa, and the ignition heater was energized to start the reaction.

得られた焼結体をX11i!回折を用いて同定したとこ
ろ炭化チタンの回折線しか見られなかった。
The obtained sintered body was subjected to X11i! When it was identified using diffraction, only the diffraction lines of titanium carbide were observed.

またこの焼結体の相対密度は、99zであった。Further, the relative density of this sintered body was 99z.

焼結体組織は実施例1と同様に平板状、の粒からなって
おり、幅方向の長さが杓100μln、厚さが約25μ
mであった。この厚さ方向の長さは、出発原料であるチ
タンの板厚と比較して同程度であった。
The structure of the sintered body is composed of flat grains as in Example 1, and the length in the width direction is 100 μln and the thickness is approximately 25 μl.
It was m. This length in the thickness direction was approximately the same as the thickness of the titanium plate that was the starting material.

試寧1のビッカース硬度は、荷重500gで28GN/
n(であった。
The Vickers hardness of Trial 1 is 28GN/ at a load of 500g.
n(was.

実施例3 モル比で1:1の、厚さ20μmn縦及び横の長さが1
mの板状のジルコニウムと実施例1と同様のカーボンブ
ラックを用いて実施例1と同様の方法で炭化ジルコニウ
ムの焼結体を作成した。但し、アルゴン雰囲気下で、5
00℃に加熱した後、真空状態(10’ nw Hz 
)にして着火した。また、加圧力は、0.05G Pa
であった。
Example 3 Molar ratio of 1:1, thickness of 20 μm, length and width of 1
A sintered body of zirconium carbide was prepared in the same manner as in Example 1 using the same plate-shaped zirconium as in Example 1 and the same carbon black as in Example 1. However, under an argon atmosphere, 5
After heating to 00 °C, vacuum condition (10' nw Hz
) and ignited. In addition, the pressing force is 0.05G Pa
Met.

得られた焼結体をX線回折を用いて同定したところ炭化
ジルコニウムの回折線しか見られなかった。またこの焼
結体の相対密度は、98.7%であった。焼結体組織は
実施例1や2と同様に板状の粒からなっていた。そして
、幅方向の軸の長さが130μmで、厚み方向の軸の長
さが20μmであった。
When the obtained sintered body was identified using X-ray diffraction, only the diffraction line of zirconium carbide was observed. Further, the relative density of this sintered body was 98.7%. The structure of the sintered body was composed of plate-shaped grains as in Examples 1 and 2. The length of the axis in the width direction was 130 μm, and the length of the axis in the thickness direction was 20 μm.

この厚み方向の長さが出発原料のジルコニウムの板厚と
比較して同程度であった。
This length in the thickness direction was comparable to the thickness of the zirconium plate used as the starting material.

試料のビッカース硬度は、荷重500gで26 GN/
n?であった。
The Vickers hardness of the sample is 26 GN/ under a load of 500g.
n? Met.

実施例4 モル比で1=2の実施例1と同様の板状のチタンと粒径
が0,1μm以下の非晶質のホウ素を用いて実施例1と
同様の方法でホウ化チタンの焼結体を作成した。但し、
室温、真空状態(10−’ mm tl g )、0.
1GPaの加圧下で着火した。
Example 4 Titanium boride was sintered in the same manner as in Example 1 using the same plate-shaped titanium as in Example 1 with a molar ratio of 1=2 and amorphous boron with a particle size of 0.1 μm or less. Created a body. however,
Room temperature, vacuum condition (10-' mm tl g ), 0.
It ignited under a pressure of 1 GPa.

得られた焼結体をX線回折を用いて同定したところホウ
化チタンの回折線しか見られなかった。
When the obtained sintered body was identified using X-ray diffraction, only the diffraction line of titanium boride was observed.

またこの焼結体の相対密度は、99.4%であった。Further, the relative density of this sintered body was 99.4%.

焼結体組織は実施例1と同様に平板状の粒からなってい
た。そして、この粒の幅方向の長さが30μm口で、厚
み方向の長さが5μo1であっj5:。)Vみ方向の長
さが出発原イ1のチタンの板厚と比較してかなり小さか
っtこ。
The structure of the sintered body was composed of tabular grains as in Example 1. The length of this grain in the width direction is 30 μm, and the length in the thickness direction is 5 μo1. ) The length in the V direction is quite small compared to the thickness of the titanium plate from the starting material 1.

試料のビッカース硬度は、荷重500gで26ON/l
iてあった。
The Vickers hardness of the sample is 26ON/l at a load of 500g.
It was there.

実施例5 モル比で1:2の実施例3と同様の板状のジルコニウム
と粒径が0.1μm11以下の非晶質のホウ素を用いて
、実施例1と同様の方法でポウ化ジルコニウムの焼結体
を作成した。但し、室温、真空状、帳(10’ mm 
tag )、0.1GPaの加圧下で着火した。
Example 5 Zirconium boride was produced in the same manner as in Example 1 using the same plate-shaped zirconium as in Example 3 and amorphous boron with a particle size of 0.1 μm or less at a molar ratio of 1:2. A sintered body was created. However, at room temperature, in a vacuum state, with a sheet (10' mm)
tag), ignited under a pressure of 0.1 GPa.

得られた焼結体をX線回折を用いて同定したところポウ
化ジルコニウムの回折線しか見られなかった。またこの
焼結体の相対密度は、99.2%であった。焼結体組織
は実施例1と同様に、平板状の粒から成り立っていた。
When the obtained sintered body was identified using X-ray diffraction, only the diffraction line of zirconium poride was observed. Moreover, the relative density of this sintered body was 99.2%. As in Example 1, the sintered body structure was composed of tabular grains.

この粒の幅方向の長さが約20μmであり、厚み方向の
長さが杓5μm11であった。この厚み方向の長さは原
料に用いたジルコニウムの板厚に比べてかなり小さかっ
た。
The length of the grains in the width direction was about 20 μm, and the length in the thickness direction was 5 μm. This length in the thickness direction was considerably smaller than the thickness of the zirconium plate used as the raw material.

試料のビッカース硬度は、荷重500gで26 GN/
mlであった。
The Vickers hardness of the sample is 26 GN/ under a load of 500g.
It was ml.

実施例6 モル比で1:1:2の実施例1と同様の板状のチタンと
粒径が約40μmのチタン粉末と粒径が0.1μm以下
のノJ−ボンブラックを用いて実施例1と同様の方法で
炭化チタンの焼結体を作成した。但し、アルゴン雰囲気
下で、200℃に加熱した後、真空状態(10−’mm
Hg)、0.1GPaの加圧下で着火した。
Example 6 Example using plate-shaped titanium similar to Example 1 with a molar ratio of 1:1:2, titanium powder with a particle size of about 40 μm, and NoJ-bon black with a particle size of 0.1 μm or less. A titanium carbide sintered body was produced in the same manner as in Example 1. However, after heating to 200°C in an argon atmosphere, heating in a vacuum state (10-'mm
Hg), ignited under a pressure of 0.1 GPa.

得られた焼結体をX線回折を用いて同定したところ炭化
チタンの回折線しか見られなかった。またこの焼結体の
相対密度は、99%であった。焼結体組織は実施例1と
異なり、等方的な粒と平板状の粒から成り立っていた。
When the obtained sintered body was identified using X-ray diffraction, only the diffraction line of titanium carbide was observed. Further, the relative density of this sintered body was 99%. The structure of the sintered body was different from Example 1 and consisted of isotropic grains and tabular grains.

そして、等方的な粒の粒径が杓30μmで、平板状の粒
では、幅方向が100μm厚み方向が10μmであった
The grain size of the isotropic grains was 30 μm, and the diameter of the flat grains was 100 μm in the width direction and 10 μm in the thickness direction.

試料のビッツ1−ス硬度は、荷重500gで25 GN
#であった。
The bits hardness of the sample is 25 GN at a load of 500g.
#Met.

実施例7 モル比で1:l:4の実施例3と同様の板状のジルコニ
ウムと粒径が30μm以下のジルコニウム粉末、粒径が
0.1μm以下の非晶質ホウ素を用いて実施例1と同様
の方法でホウ化ジルコニウムの焼結体を作成した。但し
、室温、真空状態(10’mmmm1l、O,lG P
aの加圧下で着火した。
Example 7 Example 1 was prepared using plate-shaped zirconium similar to Example 3 in a molar ratio of 1:l:4, zirconium powder with a particle size of 30 μm or less, and amorphous boron with a particle size of 0.1 μm or less. A sintered body of zirconium boride was prepared in the same manner as described above. However, room temperature, vacuum condition (10'mmmm1l, O, lG P
It ignited under the pressure of a.

得られた焼結体をX線回折を用いて同定したところホウ
化ジルコニウムの回折線しか見られなかった。またこの
焼結体の相対密度は、98.5%であった。焼結体組織
は実施例1と異なり、等方的な粒と平板状の粒から成り
立っていた。そして、等方的な粒の粒径が約5μmであ
り、平板状の粒の幅方向が20μm1厚み方向が5μm
であった。
When the obtained sintered body was identified using X-ray diffraction, only the diffraction line of zirconium boride was observed. Further, the relative density of this sintered body was 98.5%. The structure of the sintered body was different from Example 1 and consisted of isotropic grains and tabular grains. The grain size of the isotropic grains is approximately 5 μm, and the width direction of the tabular grains is 20 μm and the thickness direction is 5 μm.
Met.

試料のビッカース硬度は、荷重500gで27 GN/
n?であった。
The Vickers hardness of the sample is 27 GN/ at a load of 500g.
n? Met.

発明の効果 本発明の製造方法によれば、配向した板状の金属と非金
属元素からなる混合物からなる成形体に圧力をかけた状
態で、その成形体の一部を強熱点火して燃焼反応を起こ
させるだけで炭化物焼結体が作製できる。従って、本発
明の製造方法によれば、従来の非酸化粉末を用いた製造
方法に比較してはるかに低温のプロセスで、つまり、き
わめて小さなエネルギーで非酸化物焼結体が作製できる
。しかも、得られた焼結体は、従来の製造方法によって
作製した焼結体と変わらないかそれ以上の特性を有して
いる。
Effects of the Invention According to the manufacturing method of the present invention, while pressure is applied to a molded body made of a mixture of oriented plate-shaped metals and nonmetallic elements, a part of the molded body is ignited at high heat and burned. A carbide sintered body can be produced simply by causing a reaction. Therefore, according to the manufacturing method of the present invention, a non-oxide sintered body can be manufactured with a much lower temperature process, that is, with extremely less energy, compared to the conventional manufacturing method using non-oxidized powder. Moreover, the obtained sintered body has properties that are the same as or better than those of sintered bodies produced by conventional manufacturing methods.

Claims (2)

【特許請求の範囲】[Claims] (1)配向した板状の金属と非金属元素とからなる成形
体に加圧条件下で点火して燃焼過程を開始させ、その燃
焼過程の結果発生する熱によって、前記金属と非金属元
素との反応及び生成した非酸化物の焼結を進行させる非
酸化物焼結体の製造方法。
(1) A compact made of an oriented plate-shaped metal and a nonmetallic element is ignited under pressure to start a combustion process, and the heat generated as a result of the combustion process causes the metal and nonmetallic element to ignite. A method for producing a non-oxide sintered body, which proceeds with the reaction and sintering of the generated non-oxide.
(2)配向した板状の金属と非金属元素とからなる成形
体を加圧・加熱した条件下で燃焼過程を開始させること
を特徴とする特許請求の範囲第1項記載の非酸化物焼結
体の製造方法。
(2) Non-oxide sintering according to claim 1, characterized in that the combustion process is started under conditions in which a molded body consisting of an oriented plate-shaped metal and a nonmetallic element is pressurized and heated. Method for producing solids.
JP60286095A 1985-12-19 1985-12-19 Method for producing non-oxide sintered body Expired - Lifetime JPH0633178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286095A JPH0633178B2 (en) 1985-12-19 1985-12-19 Method for producing non-oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286095A JPH0633178B2 (en) 1985-12-19 1985-12-19 Method for producing non-oxide sintered body

Publications (2)

Publication Number Publication Date
JPS62143875A true JPS62143875A (en) 1987-06-27
JPH0633178B2 JPH0633178B2 (en) 1994-05-02

Family

ID=17699871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286095A Expired - Lifetime JPH0633178B2 (en) 1985-12-19 1985-12-19 Method for producing non-oxide sintered body

Country Status (1)

Country Link
JP (1) JPH0633178B2 (en)

Also Published As

Publication number Publication date
JPH0633178B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US5139720A (en) Method of producing sintered ceramic material
JPH02296771A (en) Composite ceramic and its production
JPS62143875A (en) Manufacture of non-oxide sintered body
JP2614875B2 (en) Manufacturing method of high temperature corrosion resistant sintered material
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS62143873A (en) Manufacture of non-oxide sintered body
US5334339A (en) Boron nitride sinter and process for its production
JPS62143874A (en) Manufacture of non-oxide sintered body
JPS62148374A (en) Manufacture of non-oxide sintered body
JPH02275772A (en) Production of aluminum nitride-base sintered material
JPS623071A (en) Manufacture of carbon-ceramic composite material
JP2538340B2 (en) Method for manufacturing ceramics sintered body
JPS62143876A (en) Manufacture of non-oxide sintered body
JPH0235705B2 (en)
JPH0283265A (en) Production of silicon nitride
JPS62132770A (en) Manufacture of carbide sintered body
JP2628668B2 (en) Cubic boron nitride sintered body
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JPS62256773A (en) Manufacture of composite sintered body comprising carbide and composite oxide
JPH07106944B2 (en) High-density sintered body manufacturing method
JPS63117966A (en) Manufacture of boron nitride base sintered body
JPS61141671A (en) Manufacture of sialon sintered body
JPS6110069A (en) High strength minute silicon nitride sintered body and manufacture
KR930004555B1 (en) Al2o3 composite ceramic articles and methods of making same