JPS62143472A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62143472A
JPS62143472A JP28284085A JP28284085A JPS62143472A JP S62143472 A JPS62143472 A JP S62143472A JP 28284085 A JP28284085 A JP 28284085A JP 28284085 A JP28284085 A JP 28284085A JP S62143472 A JPS62143472 A JP S62143472A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
layer
gate electrode
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28284085A
Other languages
Japanese (ja)
Inventor
Naoki Yamamoto
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28284085A priority Critical patent/JPS62143472A/en
Publication of JPS62143472A publication Critical patent/JPS62143472A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the short-channel effect, the leak in a junction layer, and the junction capacity and resistance, by covering totally or partially a contact region where a semiconductor is contacted with a metal or with an alloy of metal and semiconductor, with an insulator. CONSTITUTION:A gate oxide film 2 is formed in a predetermined region on an Si substrate 1 and a gate electrode 3 is formed thereon. Oxygen ions 4 are implanted, using the gate electrode 3 as a mask. The substrate is then heat treated in the atmosphere of nitrogen. The Si substrate is exposed and oxidized, whereby an oxide film 6 is formed. Subsequently after W is deposited, the substrate is heat treated in the atmosphere of hydrogen so that a silicide is formed only on the region where Si single crystals are exposed, and unreacted W on the SiO2 is removed while only the silicide 9 is left. Arsenic ions are then implanted and the substrate is heat treated. In this manner, it is possible to form an impurity diffusion layer 8 having a gentle concentration gradient only in the ends thereof to become source and drain.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に微細MO5型装置に好
適な不純物接合層と電極をそなえた半導体装置。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device equipped with an impurity junction layer and an electrode suitable for a fine MO5 type device.

〔発明の背景〕[Background of the invention]

一般に、M OS (Metal −0xide −S
em1conductor)型Si半導体装置の不純物
拡散層はSi単結晶基板内に設けられ、ソース、ドレイ
ンや配線として用いられている。MO5VLSI (V
ery Large 5cale工ntagrated
 C1rcuit)等、半導体装置の高集積。
Generally, MOS (Metal-Oxide-S
An impurity diffusion layer of an em1conductor type Si semiconductor device is provided in a Si single crystal substrate, and is used as a source, drain, or wiring. MO5VLSI (V
ery Large 5cale engineering tagged
High integration of semiconductor devices such as C1rcuit.

高速化に伴い、これらを構成する各素子の微細化が進め
られている。しかし微細化に伴う長所以外に問題点も顕
在化してきた。これらのうち、拡散層微細化に起因した
問題点は以下の四つである。
As speed increases, the elements constituting these devices are being miniaturized. However, in addition to the advantages associated with miniaturization, problems have also emerged. Among these, the following four problems are caused by the miniaturization of the diffusion layer.

(1)微細MO8hラントランジスタ望のしきい値電圧
を持つ素子を再現性良く製造するのが廻しい。
(1) Fine MO8h run transistor It is easy to manufacture devices with a desired threshold voltage with good reproducibility.

これはしきい値電圧のチャンネル長依存性が約1μmチ
ャンネル長近傍以下の短チヤンネル領域で急峻に低下す
るためである。この現象は短チャンネル効果と呼ばれ、
ソース、ドレインからの空乏層がチャンネル領域の中央
まで張り出してくるため生じる。短チャンネル効果を低
減する一方法として、ソース、ドレインを浅くする方法
が一般的に用いられている。しかしそれに伴い、拡散層
の抵抗が増大するため、トランジスタの相互コンダクタ
ンスが低下し、電流駆動能力や動作速度の高速比の障害
となってきた。この対策として、ソース、ドレイン上面
部を金属とSiの化合物(シリサイド)で裏打ちし、低
抵抗にする方法が広く検討されている。ところがシリサ
イドを形成すると拡散層のリーク電流が増大するという
欠点があることが明らかになってきた。
This is because the channel length dependence of the threshold voltage drops sharply in a short channel region of approximately 1 μm or less of channel length. This phenomenon is called short channel effect.
This occurs because the depletion layer from the source and drain extends to the center of the channel region. One method of reducing the short channel effect is to make the source and drain shallower. However, as a result of this, the resistance of the diffusion layer has increased, resulting in a decrease in the mutual conductance of the transistor, which has become an obstacle to the current drive ability and high speed ratio of the operation. As a countermeasure to this problem, a method of lining the upper surfaces of the source and drain with a compound of metal and Si (silicide) to lower the resistance has been widely studied. However, it has become clear that forming silicide has the drawback of increasing leakage current in the diffusion layer.

(2)短チヤンネルMOSトランジスタではドレイン端
電界強度が強くなるため、キャリアのエネルギが高くな
り、ゲート酸化膜中ヘキャリアが注入されてしきい値電
圧が変動するいわゆるホットキャリア耐性が低くなる。
(2) In a short channel MOS transistor, the electric field strength at the drain end becomes strong, so the energy of carriers becomes high, and the so-called hot carrier resistance, in which carriers are injected into the gate oxide film and the threshold voltage fluctuates, becomes low.

(3)高集積化に伴い、半導体装置外部あるいは装置に
用いられている材料に含有されている放射性不純物が崩
壊する時発生するα線が半導体基板内に入射し、電離に
伴う電子、正孔を生じ装置を誤動作させるソフトエラー
の問題が顕著になってきた。電離により生じたこれらの
キャリアは拡散層へも流れ込み、ソフトエラーを生じる
(3) With the increase in integration, alpha rays generated when radioactive impurities contained outside semiconductor devices or in the materials used in the devices decay enter the semiconductor substrate, causing electrons and holes due to ionization. The problem of soft errors that cause equipment to malfunction has become prominent. These carriers generated by ionization also flow into the diffusion layer, causing soft errors.

(4)高積層MO5VLSIでは不純物拡散層と半導体
基板間に形成される接合容量による信号遅延が顕著にな
ってきた。
(4) In highly laminated MO5VLSIs, signal delays due to junction capacitance formed between the impurity diffusion layer and the semiconductor substrate have become noticeable.

関連する従来技術としては、たとえばアイ・イー・イー
・イー・トランスアクションズ・オン・エレクタロン・
デバイスズ(IEEE Transactionson
 Electron Devices)、 E D −
28,10413頁〜1087頁、 &9.1981年
9月がある。
Related prior art includes, for example, IE Transactions on Electron.
Devices (IEEE Transactions
Electron Devices), ED-
28, pp. 10413-1087, &9. September 1981.

〔発明の目的〕[Purpose of the invention]

本発明の目的は金属あるいは金属と半導体の化合物層と
半導体の接触部の全体あるいは一部を絶縁層で覆うこと
により、上記の素子微細化に伴い生じた欠点を低減した
MO8形半導体装置を提供することにある。
An object of the present invention is to provide an MO8 type semiconductor device in which the above-mentioned defects caused by miniaturization of elements are reduced by covering the entire or part of the contact area between a metal or metal-semiconductor compound layer and a semiconductor with an insulating layer. It's about doing.

〔発明の概要〕[Summary of the invention]

前記の欠点(1)は短チャンネル効果を低減するために
拡散層を浅くした結果、従来問題とならなかった電極と
拡散層の反応に伴う欠陥や金属の微量の拡散により、リ
ーク電流が増大したものである。したがって、金属ある
いは化合物層と半導体基板間に絶縁層を設けることによ
り、リーク電流増大を抑制できる。(2)ホットキャリ
ア耐性の低下を防ぐためには、ドレイン端での電界を低
くすれば良い。この方法としてはドレイン端不純物の濃
度勾配を緩やかにするのが最も効果的である。
The drawback (1) mentioned above is that as a result of making the diffusion layer shallow to reduce the short channel effect, leakage current increases due to defects and trace amounts of metal diffusion due to the reaction between the electrode and the diffusion layer, which were not a problem in the past. It is something. Therefore, by providing an insulating layer between the metal or compound layer and the semiconductor substrate, increase in leakage current can be suppressed. (2) In order to prevent a decrease in hot carrier resistance, the electric field at the drain end may be lowered. The most effective method for this is to make the concentration gradient of the impurity at the drain end gentle.

このために、第1図(a)に示すごとく、ゲート電極3
の断面が台形々状になるように加工し、ゲート電極3を
マスクとして酸素、窒素あるいは炭素等、半導体基板材
料と反応し絶縁物を形成するような元素4をイオン打込
する。打込まれた元素はゲート電極が無い部分では基板
内部深く注入され、電極下では、その側壁形状に従って
浅く打込まれる。この後、ひ素、りんまたはほう素7を
注入あるいは拡散すればドレイン端部では表面近傍まで
酸素、窒素、炭素等の微量不純物が分布するため拡散層
の濃度勾配が緩やかにできる。そして、この後深く絶縁
物を形成する元素が注入された領域を金属と半導体の化
合物層9で置きかえればソース、ドレイン等の低抵抗化
が達成される。また、ソース、ドレインとなる不純物拡
散層がチャンネル領域と接触するのはチャンネル表面近
傍のみであり、その他の部分はイオン打込により形成さ
れた絶縁膜で覆われているため、空乏層のチャンネル領
域への広がりを抑制でき、短チャンネル効果を低減でき
る。
For this purpose, as shown in FIG. 1(a), the gate electrode 3
is processed to have a trapezoidal cross section, and using the gate electrode 3 as a mask, ions of an element 4 such as oxygen, nitrogen, or carbon that reacts with the semiconductor substrate material to form an insulator are implanted. The implanted elements are implanted deeply into the substrate in areas where there is no gate electrode, and are implanted shallowly under the electrodes according to the shape of the sidewalls. After that, if arsenic, phosphorus, or boron 7 is implanted or diffused, trace impurities such as oxygen, nitrogen, and carbon are distributed near the surface at the drain end, so that the concentration gradient of the diffusion layer can be made gentle. Thereafter, by replacing the region into which the element forming the insulator is deeply implanted with a metal-semiconductor compound layer 9, the resistance of the source, drain, etc. can be reduced. In addition, the impurity diffusion layer that becomes the source and drain contacts the channel region only near the channel surface, and the other parts are covered with an insulating film formed by ion implantation, so the channel region of the depletion layer It is possible to suppress the spread and reduce the short channel effect.

次に、従来構造の欠点として(3)で示したα線による
ソフトエラーも、接合層が絶縁膜で覆われているため生
じにくい。先の(4)で示した如く、Si半導体MO3
VLSIでは拡散層と基板間に形成されろ接合容量によ
る信号遅延が顕著になっている。
Next, the soft error caused by α rays shown in (3), which is a drawback of the conventional structure, is difficult to occur because the bonding layer is covered with an insulating film. As shown in (4) above, Si semiconductor MO3
In VLSI, signal delays due to junction capacitance formed between a diffusion layer and a substrate have become significant.

しかしこれらの間にSi酸化物や窒化物層を設けると、
容量が従来の数分の1に低減できる。これは、これらの
絶縁膜の誘導率がSiの数分の1と小さいためである。
However, if a Si oxide or nitride layer is provided between these,
Capacity can be reduced to a fraction of the conventional capacity. This is because the dielectric constant of these insulating films is a few times lower than that of Si.

上記はイオン打込により絶縁膜を形成した場合について
示したが、第2図に示すごとく、イオン打込法を用いな
くても、全く同様の効果を持つ絶縁層を形成できる。
Although the case where the insulating film is formed by ion implantation has been described above, as shown in FIG. 2, an insulating layer having exactly the same effect can be formed without using the ion implantation method.

なお、従来MOSトランジスタを絶縁基板上に形成する
いわゆるSOI (Semiconductor on
Insulator)構造が広く検討されている。しか
し、この方法では絶縁層上に良質の単結晶を形成するの
が難しく、単結晶Si基板内に形成したMO8トランジ
スタと同等の特性が得られるまでに至っていない。また
、チャンネル領域も絶縁層上に在るため、外部からの影
響を受は易く、電位が安定せず、特性が不安定となる。
Note that conventional MOS transistors are formed on an insulating substrate, so-called SOI (Semiconductor on
Insulator) structures have been widely studied. However, with this method, it is difficult to form a high-quality single crystal on an insulating layer, and characteristics equivalent to those of an MO8 transistor formed in a single-crystal Si substrate have not yet been obtained. Further, since the channel region is also located on the insulating layer, it is easily influenced by external influences, and the potential becomes unstable, resulting in unstable characteristics.

したがって、チャンネル領域は半導体基板に直接々触す
るか、基板内に設け、接合層のみが絶縁層により覆われ
ている構造が良い。
Therefore, it is preferable to have a structure in which the channel region is in direct contact with the semiconductor substrate or is provided within the substrate, and only the bonding layer is covered with an insulating layer.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第1図(a)に示すようにp型(100)S i基板1
の所定領域に、20nm厚さのゲート酸化膜2を形成し
、その上にりんを含有させた多結晶Siを形成し、ドラ
イエツチング法で、断面が台形になるように加工しゲー
タ電極3とした1次に、この電極をマスクとして、酸素
4を120 K e Vで2 X 10 ”70m”イ
オン注入し、その後、1000℃で30分間の窒素雰囲
気熱処理を行った。次に、ゲート電極周辺部の5iOz
を−たん除去し、単結晶Si基板を露出させた後、再び
水分を含む酸化雰囲気中で酸化した。この時、多結晶部
に200nm8度の厚い酸化膜6を形成しても、単結晶
Si表面は数10mmPj度しか形成されない。この単
結晶Si表面のS i Oz膜を再び除去した後。
Example 1 As shown in FIG. 1(a), a p-type (100) Si substrate 1
A gate oxide film 2 with a thickness of 20 nm is formed on a predetermined region of the gate oxide film 2, and polycrystalline Si containing phosphorus is formed on the gate oxide film 2, which is then processed by dry etching to have a trapezoidal cross section. Next, using this electrode as a mask, 2×10 ions of oxygen 4 were implanted at 120 K e V in a length of 70 m, and then heat treatment was performed at 1000° C. for 30 minutes in a nitrogen atmosphere. Next, 5iOz around the gate electrode
After removing the single crystal Si substrate to expose the single crystal Si substrate, it was oxidized again in an oxidizing atmosphere containing moisture. At this time, even if a thick oxide film 6 of 200 nm and 8 degrees is formed on the polycrystalline portion, the single crystal Si surface will only be formed with a thickness of several tens of mmPj. After removing the SiOz film on the single crystal Si surface again.

Wを50mm堆積し、続いて750℃30分の水素雰囲
気中で熱処理し、Si単結晶露出部分のみにシリサイド
を形成し、S i 012上の未反応Wを過酸化水素で
除去し、シリサイド9部分のみを残存させた6次にAs
7を80 K e VでlX10”70m”シリサイド
層を注入し、その後、950℃。
W was deposited to a thickness of 50 mm, followed by heat treatment at 750°C for 30 minutes in a hydrogen atmosphere to form silicide only on the exposed Si single crystal, and unreacted W on the SiO12 was removed with hydrogen peroxide to form silicide 9. 6th order As with only part remaining
Implant a 70m silicide layer at 80 K eV and then 950°C.

30分の窒素雰囲気中で熱処理を行うと、シリサイド中
をAsが拡散し、ソース、ドレインとなる端部にのみ緩
傾斜濃度勾配を持つ不純物拡散層8が形成できた。この
ようにして得られたMOS)−ランジスタは従来方式の
不純物接合肩部分がシリサイドで構成されるため、配線
として用いてもその抵抗は低く、不純物拡散層のみで形
成される場合より約1桁低い、o、4Ω/口のシート抵
抗が得られた。
When the heat treatment was performed in a nitrogen atmosphere for 30 minutes, As was diffused in the silicide, and an impurity diffusion layer 8 having a gently sloped concentration gradient was formed only at the end portions that would become the source and drain. In the MOS)-transistor obtained in this way, since the impurity junction shoulder part of the conventional method is composed of silicide, its resistance is low even when used as a wiring, about one order of magnitude higher than that when it is formed only with an impurity diffusion layer. A low sheet resistance of 4Ω/hole was obtained.

また、ドレイン端部は浅くなっているため、短チャンネ
ル効果は第3図に示すごと〈従来法より改善された。ま
たドレイン端部の不純物濃度分布が緩やかになったため
、ホットキャリアによるしきい値電圧が一定量変化する
までの時間、いわゆる寿命が約1.5〜2.0桁長くな
った。なお、拡散層のリーク電流は純AQ電極11を用
いた場合でも、印加電圧20Vで10”’1sA以下と
良好な特性を得た。
Furthermore, since the drain end is shallow, the short channel effect is improved as shown in FIG. 3 (compared to the conventional method). Furthermore, since the impurity concentration distribution at the drain end became gentle, the time required for the threshold voltage to change by a certain amount due to hot carriers, so-called lifetime, became longer by about 1.5 to 2.0 orders of magnitude. In addition, even when the pure AQ electrode 11 was used, the leakage current of the diffusion layer was 10'''1 sA or less at an applied voltage of 20 V, and good characteristics were obtained.

実施例2 本発明の実施例2を第2図を用いて説明する。Example 2 Example 2 of the present invention will be described using FIG. 2.

ゲート電極形成までは実施例1と同じである。ただし第
2図(a)に示したように、電極の端部はできるだけ傾
斜を持たないように加工した。なおゲート電極加工にあ
たっては5iOz膜14をマスクとした。次に化学蒸着
(CV D : Chemical VaporDsp
osition)法でS i Ox膜15を0.3pm
堆積後、異方性ドライエツチング技術を用い、ゲート電
極側壁部のみに、この5iOz15を残存させた(第2
図(b))。続いて、再び異方性エツチング技術により
、第2図(c)に示したようにゲート電極3の周辺部に
露出したSi基板1を深さ0.1μm掘り、その後、C
VD法でSi窒化膜を0.2μm堆積し、さらに異方性
エツチングにより、Si基板内の側壁部とゲート電極側
壁にSi窒化膜16をを残存させた0次に再び露出した
Si基板を異方性エツチング技術により、0.5μm掘
り、その後、水分を含んだ酸化雰囲気中でSi基板の露
出部分を酸化し、第2図(d)に示すように約0.4μ
m厚さの5iOz5を形成した。この後。
The steps up to the formation of the gate electrode are the same as in Example 1. However, as shown in FIG. 2(a), the ends of the electrodes were processed to have as little slope as possible. Note that the 5iOz film 14 was used as a mask in processing the gate electrode. Next, chemical vapor deposition (CVD)
SiOx film 15 is deposited to a thickness of 0.3 pm using the
After deposition, this 5iOz15 was left only on the side walls of the gate electrode using an anisotropic dry etching technique (second
Figure (b)). Next, as shown in FIG. 2(c), the Si substrate 1 exposed around the gate electrode 3 is etched to a depth of 0.1 μm using the anisotropic etching technique again.
A Si nitride film 16 was deposited to a thickness of 0.2 μm using the VD method, and anisotropic etching was performed to leave the Si nitride film 16 on the side walls of the Si substrate and the side walls of the gate electrode. Using a directional etching technique, the exposed portion of the Si substrate is etched by 0.5 μm, and then the exposed portion of the Si substrate is oxidized in an oxidizing atmosphere containing moisture to form an etching layer of about 0.4 μm as shown in Figure 2(d).
A 5iOz5 film with a thickness of m was formed. After this.

側壁部のSi窒化膜16を熱りん酸で除去した。The Si nitride film 16 on the side wall portion was removed with hot phosphoric acid.

続いて、第2図(e)に示すようにりんを含有した多結
晶5i17を形成した。
Subsequently, as shown in FIG. 2(e), polycrystalline 5i17 containing phosphorus was formed.

この時、溝を堀った領域の多結晶5iL7は図に示すよ
うに凹んでいる。この状態でホトレジスト18をウェハ
全面に塗布すると平坦部より凹んだ部分の方がレジスト
膜厚が厚くなる。次にArプラズマ中で平坦部のレジス
トが無くなるまでエツチングすると、凹んだ部分のみレ
ジスト18が残存する。
At this time, the polycrystal 5iL7 in the grooved region is depressed as shown in the figure. When photoresist 18 is applied to the entire surface of the wafer in this state, the resist film thickness will be thicker in the recessed areas than in the flat areas. Next, etching is performed in Ar plasma until the resist on the flat portions is removed, leaving only the recessed portions of the resist 18.

このレジスト18をマスクとして、多結晶5i17をエ
ツチングして、第21M (f )に示すように、ソー
ス、ドレインとなる部分のみ多結晶Siを残存させた。
Using this resist 18 as a mask, the polycrystal 5i17 was etched, leaving polycrystalline Si only in the portions that would become the source and drain, as shown in 21M(f).

次にレジスト18を除去し、900℃で30分の熱処理
を行うと、ソース、トレイン端部のSi基板内に多結晶
Si中のりんが拡散し、緩傾斜濃度勾配の不純物拡散層
8が形成できた。
Next, the resist 18 is removed and heat treatment is performed at 900° C. for 30 minutes, whereby phosphorus in the polycrystalline Si is diffused into the Si substrate at the source and train ends, forming an impurity diffusion layer 8 with a gently sloped concentration gradient. did it.

この後、Tiを80 n m4+積し、680℃の窒素
雰囲気中で熱処理し、第2図(g)に示すように多結晶
SiをTiシリサイド9にした。なお未反応Tiはエツ
チング液により除去した。この後は通常の方法で、層間
絶縁膜1.0.AQ電極11.パシベーション膜12を
形成し、MOSトランジスタを形成した。本実施例によ
ると、実施例1と同様の効果があるとともに、ソース、
ドレインがTiシリサイドで形成されているため、さら
抵抗を2分の1に低減できた。
Thereafter, 80 nm 4+ of Ti was deposited and heat treated in a nitrogen atmosphere at 680° C. to convert the polycrystalline Si into Ti silicide 9 as shown in FIG. 2(g). Note that unreacted Ti was removed using an etching solution. After this, the interlayer insulating film 1.0. AQ electrode 11. A passivation film 12 was formed, and a MOS transistor was formed. According to this embodiment, the same effects as in embodiment 1 are obtained, and the source and
Since the drain is made of Ti silicide, the resistance can be further reduced to one-half.

〔発明の効果〕 本発明によれば、MOSトランジスタの短チャンネル効
果、接合層リーク、接合層容量と抵抗を低減できるとと
もに、ホットキャリアおよびソフトエラーに強い半導体
装置を得ることができる。
[Effects of the Invention] According to the present invention, it is possible to reduce the short channel effect, junction layer leakage, junction layer capacitance and resistance of a MOS transistor, and to obtain a semiconductor device that is resistant to hot carriers and soft errors.

なお、本発明の実施例では、多結晶Siゲート電極の場
合のみ示したが、タングステンやモリブデンなどの高融
点金属ゲート電極、あるいはシリサイドと多結晶Siを
重ねたゲート電極を持つMOS型半導体装置にも適用で
きるのは言うまでもない。
In the embodiments of the present invention, only the case of a polycrystalline Si gate electrode is shown, but it can also be applied to a MOS type semiconductor device having a gate electrode of a high-melting point metal such as tungsten or molybdenum, or a gate electrode in which silicide and polycrystalline Si are stacked. Needless to say, it can also be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ本発明の実施例を示す工程図
、第3図は本発明の効果を示す図である。 1・・・Si基板、2・・・ゲート酸化膜、3・・・ゲ
ート電極、4・・・0.C,N等打込イオン、5・・・
絶縁物層、6・・・ゲート電極被覆Si0g膜、7・・
・A s 、 P等打込イオン、8・・・緩傾斜濃度不
純物拡散層、9・・・シリサイド層、10・・・層間絶
縁膜、11・・・An電極、12・・・パシベーション
膜、13・・・素子間分離S i Oz、14−・・ゲ
ート電極加工用5jO2,膜、15・・・側壁5iOz
l!ll、16・・・側壁窒化膜、17・・・多結¥ 
1  国 ↓ 壷 ↓ ↓ ↓4 第 Z 図 (C)                     (
1)(C)(’r) (I)
FIGS. 1 and 2 are process diagrams showing embodiments of the present invention, and FIG. 3 is a diagram showing the effects of the present invention. DESCRIPTION OF SYMBOLS 1...Si substrate, 2...gate oxide film, 3...gate electrode, 4...0. C, N, etc. implanted ions, 5...
Insulator layer, 6... Gate electrode coating Si0g film, 7...
- Implanted ions such as As and P, 8... Slowly gradient concentration impurity diffusion layer, 9... Silicide layer, 10... Interlayer insulating film, 11... An electrode, 12... Passivation film, 13... Isolation between elements S i Oz, 14-... 5jO2 for gate electrode processing, film, 15... Side wall 5iOz
l! ll, 16... sidewall nitride film, 17... polycrystalline ¥
1 Country ↓ Jar ↓ ↓ ↓4 Figure Z (C) (
1) (C) ('r) (I)

Claims (1)

【特許請求の範囲】 1、半導体装置内の金属と半導体の接続部分あるいは、
金属と半導体の化合物層もしくは該化合物と不純物拡散
層から構成される部分を絶縁層上に設けたことを特徴と
する半導体装置。 2、該化合物と不純物拡散層の低面および側面の一部あ
るいは全面を絶縁層で覆つたことを特徴とする特許請求
の範囲第1項記載の半導体装置。 3、該絶縁層が半導体装置の半導体基板内に設けられて
いることを特徴とする特許請求の範囲第1項もしくは第
2項記載の半導体装置。
[Claims] 1. A connecting portion between a metal and a semiconductor in a semiconductor device, or
1. A semiconductor device comprising a metal-semiconductor compound layer or a portion composed of the compound and an impurity diffusion layer provided on an insulating layer. 2. The semiconductor device according to claim 1, characterized in that part or all of the lower and side surfaces of the compound and impurity diffusion layer are covered with an insulating layer. 3. The semiconductor device according to claim 1 or 2, wherein the insulating layer is provided within a semiconductor substrate of the semiconductor device.
JP28284085A 1985-12-18 1985-12-18 Semiconductor device Pending JPS62143472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28284085A JPS62143472A (en) 1985-12-18 1985-12-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28284085A JPS62143472A (en) 1985-12-18 1985-12-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62143472A true JPS62143472A (en) 1987-06-26

Family

ID=17657753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28284085A Pending JPS62143472A (en) 1985-12-18 1985-12-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62143472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191475A (en) * 1988-01-27 1989-08-01 Nec Corp Semiconductor device
JPH0251238A (en) * 1988-08-12 1990-02-21 Sanyo Electric Co Ltd Semiconductor device and its manufacture
US7528453B2 (en) 2002-10-07 2009-05-05 Infineon Technologies Ag Field effect transistor with local source/drain insulation and associated method of production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191475A (en) * 1988-01-27 1989-08-01 Nec Corp Semiconductor device
JPH0251238A (en) * 1988-08-12 1990-02-21 Sanyo Electric Co Ltd Semiconductor device and its manufacture
US7528453B2 (en) 2002-10-07 2009-05-05 Infineon Technologies Ag Field effect transistor with local source/drain insulation and associated method of production
US7824993B2 (en) 2002-10-07 2010-11-02 Infineon Technologies Ag Field-effect transistor with local source/drain insulation and associated method of production
US20110012208A1 (en) * 2002-10-07 2011-01-20 Infineon Technologies Ag Field-effect transistor with local source/drain insulation and associated method of production
US9240462B2 (en) 2002-10-07 2016-01-19 Infineon Technologies Ag Field-effect transistor with local source/drain insulation and associated method of production
US20160118477A1 (en) * 2002-10-07 2016-04-28 Infineon Technologies Ag Method of production of field-effect transistor with local source/drain insulation

Similar Documents

Publication Publication Date Title
JP2657588B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPH0712058B2 (en) Semiconductor device and manufacturing method thereof
JPS62143472A (en) Semiconductor device
JP2881267B2 (en) Semiconductor device and manufacturing method thereof
JPH02192172A (en) Superconducting transistor
JPS6132576A (en) Semiconductor device
JPH0298939A (en) Manufacture of semiconductor device
JPS62143471A (en) Semiconductor device
JPS63305566A (en) Semiconductor device and manufacture thereof
JP2589065B2 (en) Method for manufacturing semiconductor integrated device
JP3450547B2 (en) Semiconductor device and manufacturing method thereof
JPH0348428A (en) Semiconductor device
JPS6153868B2 (en)
JP3260485B2 (en) Method for manufacturing semiconductor device
JP2531688B2 (en) Method for manufacturing semiconductor device
JPS61101077A (en) Manufacture of semiconductor device
JPS59231863A (en) Insulated gate semiconductor device and manufacture thereof
JPH10270569A (en) Semiconductor device and manufacture thereof
JPH0629315A (en) Semiconductor device and manufacture thereof
JPS5982766A (en) Semiconductor device
JPS58173845A (en) Semiconductor device
JPH0213827B2 (en)
JPH02304931A (en) Semiconductor device and manufacture thereof
JPS5834951B2 (en) Manufacturing method of semiconductor device
JPH0258771B2 (en)