JPS62142927A - Cooking burner - Google Patents

Cooking burner

Info

Publication number
JPS62142927A
JPS62142927A JP28350185A JP28350185A JPS62142927A JP S62142927 A JPS62142927 A JP S62142927A JP 28350185 A JP28350185 A JP 28350185A JP 28350185 A JP28350185 A JP 28350185A JP S62142927 A JPS62142927 A JP S62142927A
Authority
JP
Japan
Prior art keywords
heat
honeycomb structure
transmitting plate
pan
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28350185A
Other languages
Japanese (ja)
Inventor
Ryoji Shimada
良治 島田
Manabu Takada
学 高田
Kazuo Fujishita
藤下 和男
Yoshiyuki Gokajiya
後梶谷 嘉之
Tadao Sugano
菅野 忠男
Eiichi Tanaka
栄一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28350185A priority Critical patent/JPS62142927A/en
Publication of JPS62142927A publication Critical patent/JPS62142927A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a heating efficiency of a cooking burner by a method wherein a heat transmitting plate is placed just above a premixing and combustion plate which is composed of a honeycomb structure. CONSTITUTION:Premixed gas formed within a mixing pipe 17 with gas flow injected from a fuel nozzle 24 passes through several through-pass holes 18 of a honeycomb structure 19 made of ceramics so as to form a flame 25 at its upper surface. A radiation ray 26 generated by the flame 25 passes through a heat transmitting plate 21 just above it and then discharged to the surrounding atmosphere while being contacted with a curved part and an outer circumference of a pan 27 from between a thermo-transparent plate holding block 22 and the pan. At the contact part between the heat transmitting plate 21 and the bottom part of the pan 27, heat is transmitted to the bottom part of the pan 27 through a thermal conduction from the thermo-transparent plate 21. Since the honeycomb structure 19 having a high degree of opening is used, a cooking burner having a high heating efficiency can be attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は都市ガス、LPガラスの気体燃料を用いた家庭
用あるいは業務用のコンロバーナに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a stove burner for home or commercial use using gaseous fuel such as city gas or LP glass.

従来の技術 ′従来コンロバーナは、第2図に示す様fxクンゼン方
式が採られており、バーナボディ1とバーナキャップ2
を嵌合させて構成されている。バーナボディ1とバーナ
キャップ20間には混合気の通路3があり、混合気は実
線の矢印4の流れに沿って炎孔5から外気へ送入される
。混合気は炎孔5と外気との間で、実線の矢印6の流れ
に沿って上昇する2次空気によってブンゼン火炎7を形
成する。バーナキャップの直上には五徳8が設置されて
いる。
Conventional technology' The conventional stove burner adopts the fx kunsen method as shown in Fig. 2, and consists of a burner body 1 and a burner cap 2.
It is constructed by fitting the There is an air-fuel mixture passage 3 between the burner body 1 and the burner cap 20, and the air-fuel mixture is fed into the outside air from the flame hole 5 along the flow of a solid arrow 4. The air-fuel mixture forms a Bunsen flame 7 between the flame hole 5 and the outside air by secondary air rising along the flow of the solid arrow 6. Trivet 8 is installed directly above the burner cap.

また、他の従来例として、いわゆるスムーズトップ式の
コンロバーナがある。これは第3図に示す様に、開孔度
が40〜50%程度の比較的低開孔度を有するセラミッ
ク多孔板を燃焼盤10とし、その直上に耐熱ガラス等か
ら成る熱透過板11を埋設した天板12を設置し、燃焼
盤10上での燃焼によって発生した排ガスは実線の矢印
13に沿って後方の排気孔14から外気へ放出される構
成となっていた。
Further, as another conventional example, there is a so-called smooth top type stove burner. As shown in Fig. 3, the combustion plate 10 is a ceramic perforated plate with a relatively low porosity of about 40 to 50%, and a heat transmitting plate 11 made of heat-resistant glass or the like is placed directly above it. A buried top plate 12 was installed, and the exhaust gas generated by combustion on the combustion plate 10 was discharged to the outside air from a rear exhaust hole 14 along a solid arrow 13.

発明が解決しようとする問題点 第2図に示した様な従来のコンロバーナでは、ブンゼン
火炎7がバーナキャップ2の形状に沿って、はぼリング
状の火炎を形成するため、五徳8上に設置された鍋15
の底面には、同グンゼン火炎8の先端がリング状に位置
し、これによシ、鍋底を均一に加熱することができず、
調理性の面で、例えば煮こみ加熱をする場合、どうして
も部分的にこげつきが生じ易いという欠点があった。ま
た、ブンゼン火炎7の場合、火炎にて次空気が拡散する
ため、どうしても火炎温度が低下し易く、鍋底に接触す
る排ガス流の温度も必然的に低下し、加熱効率も45〜
5096程度にとどまらざるを得なかった。
Problems to be Solved by the Invention In the conventional stove burner as shown in FIG. 2, the Bunsen flame 7 forms a ring-shaped flame along the shape of the burner cap 2. Installed pot 15
The tip of the Gunzen flame 8 is located in a ring shape on the bottom of the pot, which makes it impossible to heat the bottom of the pot uniformly.
In terms of cooking properties, for example, when boiling and heating, there is a drawback that parts of the food tend to burn. In addition, in the case of Bunsen flame 7, the flame temperature tends to drop because the air diffuses in the flame, and the temperature of the exhaust gas flow that comes into contact with the bottom of the pot also inevitably drops, resulting in a heating efficiency of 45~
I had no choice but to stay at around 5,096.

一方、第3図に示した様なスムーズトップ式のコンロバ
ーナでは、燃焼により燃焼盤1oの上面には800〜9
00℃程度の赤熱が発生し、その赤熱は輻射線16とな
って熱透過板11を通過し鍋15の底部に伝えられる。
On the other hand, in a smooth top type stove burner as shown in Fig. 3, the upper surface of the combustion plate 1o is heated by 800 to 90
Red heat of about 00° C. is generated, and the red heat becomes radiation 16 that passes through the heat transmitting plate 11 and is transmitted to the bottom of the pot 15.

さらに熱透過板11と鍋15の底部の接触による熱伝導
も加味される。
Furthermore, heat conduction due to contact between the heat transmitting plate 11 and the bottom of the pot 15 is also taken into consideration.

したがって、鍋15の底部は輻射線16や熱透過板11
との熱伝導により極めて均一に加熱される。
Therefore, the bottom of the pot 15 is exposed to the radiation 16 and the heat transmitting plate 11.
It is heated extremely uniformly due to heat conduction.

しかし、発生した排ガスの熱流はその大半が排気孔14
から外気へ放出され鍋15には全く触れないため、全体
的な加熱効率としては30〜40チ程度と極めて低くな
らざるを得なかった。
However, most of the heat flow of the generated exhaust gas is at the exhaust hole 14.
Since the heat is released into the outside air and does not touch the pot 15 at all, the overall heating efficiency has to be extremely low at about 30 to 40 inches.

本発明はかかる従来の問題点を解決するもので、ブンゼ
ンバーナ式のコンロバーナの加熱効率全上回る加熱効率
を有し、かつ鍋底を均一に加熱することができるコンロ
バーナを提供することを目的とする。
The present invention is intended to solve such conventional problems, and an object of the present invention is to provide a cooking stove burner which has a heating efficiency that exceeds the heating efficiency of the Bunsen burner type cooking stove burner and which can uniformly heat the bottom of the pot. do.

問題点を解決するための手段 上記の問題点を解決するために本発明のコンロバーナは
、高温耐熱性(1200℃以J:)を有し、かつ高い開
孔度を有するハニカム構造体を、耐熱性金属からなる混
合管直上に設置した予混合バーナを用い、前記予混合バ
ーナの直上に耐熱性セラミックスからなる熱透過板を設
置し、熱透過板の周囲を外気に開放する構成とした。
Means for Solving the Problems In order to solve the above problems, the stove burner of the present invention uses a honeycomb structure having high temperature resistance (1200°C or higher) and a high degree of porosity. A premix burner was installed directly above the mixing tube made of heat-resistant metal, and a heat-transmitting plate made of heat-resistant ceramics was installed directly above the pre-mixing burner, so that the area around the heat-transmitting plate was opened to the outside air.

作  用 本発明は上記の構成により、混合管内で予混合された予
混合気は予混合バーナの直上すなわちハニカム構造体の
上面で着火され、一部ブンゼン火炎を形成すると共にハ
ニカム構造体の上面を約1000〜1100℃の高温状
態に赤熱させる。
According to the above-described configuration, the premixed mixture in the mixing tube is ignited directly above the premix burner, that is, on the upper surface of the honeycomb structure, and partially forms a Bunsen flame and burns the upper surface of the honeycomb structure. Heat to a high temperature of about 1000-1100°C.

赤熱によって発生した輻射線は熱透過板を通過して鍋底
に伝達される。また鍋の熱透過板と接触した部分には熱
伝導によっても加熱される。一方、ハニカム構造体の上
面で形成されたブンゼン火炎は熱排ガス流となって熱透
過板の周囲から、鍋底及び鍋の外周を加熱しながら外気
へ放出される。
The radiation generated by the red heat passes through the heat transmitting plate and is transmitted to the bottom of the pot. The portion of the pot that comes into contact with the heat-transmitting plate is also heated by heat conduction. On the other hand, the Bunsen flame formed on the upper surface of the honeycomb structure becomes a hot exhaust gas flow and is emitted from the periphery of the heat transmitting plate to the outside air while heating the bottom and the outer periphery of the pot.

この様に、従来のセラミックバーナではその表面温度を
材質の保持のために900℃を超える高温には上昇し得
なかったが、本発明によるコンロバーナではハニカム構
造体のと面の温度を1100℃程度まで上昇させ得るの
で、従来よりも高い輻射効率を得ることができる。また
排ガス流も有効に利用できるため、従来よりも高い加熱
効率(55〜60%)1を得ると共に鍋底を均一に加熱
することができる。
In this way, in conventional ceramic burners, the surface temperature could not rise above 900°C in order to maintain the material quality, but in the stove burner according to the present invention, the temperature of the surface of the honeycomb structure could be raised to 1100°C. Since the radiation efficiency can be increased to a certain degree, it is possible to obtain higher radiation efficiency than before. Furthermore, since the exhaust gas flow can be effectively utilized, it is possible to obtain higher heating efficiency (55 to 60%)1 than before and to uniformly heat the bottom of the pot.

実施例 以下、本発明のコンロバーナの実施例を添付の図面に基
いて説明する。
Embodiments Hereinafter, embodiments of the cooking stove burner of the present invention will be described with reference to the accompanying drawings.

第1図に於て、耐熱性金属からなる混合管17の直とに
は、1200℃以上の高温耐熱性に優れた耐熱、性セラ
ミックスの内、Ag2O3、TiO2を素材とするとと
もて、多数の貫通孔18を有した開孔率約7596のハ
ニカム構造体19からなる予混合燃焼盤20があり、そ
の直上には耐熱衝撃性の良好な結晶化ガラスを素材とす
る熱透過板21が五徳形状をしだ熱透過板保持台22に
固定されている。一方、予混合燃焼盤20の外周囲には
ヌデンレス等の耐熱性金属あるいは耐熱塗装を施した受
皿2aが設置されている。さらに、混合管17の開放端
には燃料ノズ1V24が臨んでいる。
In Fig. 1, the material directly below the mixing tube 17 made of heat-resistant metal is made of Ag2O3, TiO2, which are heat-resistant ceramics with excellent high-temperature resistance of 1200°C or more, and many other materials. There is a premix combustion disk 20 made of a honeycomb structure 19 with a porosity of approximately 7596 and having through holes 18, and directly above it a heat transmitting plate 21 made of crystallized glass with good thermal shock resistance in the shape of a trivet. It is fixed to a heat transmitting plate holder 22. On the other hand, around the outer periphery of the premix combustion disk 20, a saucer 2a made of a heat-resistant metal such as Nudenless or coated with a heat-resistant coating is installed. Further, the open end of the mixing pipe 17 faces the fuel nozzle 1V24.

次に上記構成に於ける作用を説明する。Next, the operation of the above configuration will be explained.

燃料ノズ/Lz24から噴出したガス流により負圧が生
じ、空気も同時に混合管17内に流入し、予混合気が形
成される。混合管17内で形成された予混合気はハニカ
ム構造体19の多数の貫通孔18を通過し、その北面に
至る。その時点ですでに圧電トランス(図示せず)等に
より形成された火花で着火され、ハニカム構造体19の
上面で火炎25を形成する。火炎25はハニカム構造体
19の多数の貫通孔18f、炎孔として形成され、かつ
、ハニカム構造体1日の上面から1〜L5mmの部分を
赤熱させ、定常状態に於てはその赤熱温度は約1000
〜1100℃に至る。この状態で、ハニカム構造体19
の上面の高温赤熱により発生した輻射線26は、直重の
熱透過板21を通過して鍋27の底部に到達する。一方
、火炎25により生じた熱排ガス流2日は、熱透過板2
1の周囲を流れ、熱透過板保持台220間から鍋27の
曲部及び外周に接触しながら外気へ放出される。また、
熱透過板21と鍋27の底部の接触部分では、熱透過板
21からの熱伝導により鍋27の底部へ熱が伝えられる
。この様に、熱排ガス流による対流熱、熱透過板21と
鍋27の接触による伝導熱、ハニカム構造体19の上面
部の高温赤熱により発生した輻射線26による輻射熱の
王者が鍋27に与えられることになる。また、75チ程
度の高い開孔度を有するハニカム構造体19を用いてい
るため、従来の開孔度5011以下のセラミック燃焼盤
に比べて、面@あたりの燃焼量負荷を増大させることが
でき、従来よりもコンパクトなコンロバーすが得られる
。さらに、素材の耐久性の関係上900℃以下の赤熱温
度に抑えなければならなかった従来のセラミック燃焼盤
に比べ、最高11oO℃まで1昇させ得るため高温度の
輻射線を得ることができる。ちなみに、本実施例のコン
ロ、バーナを用いてC3HBを2000 kcae/h
で燃焼させた時の着火時(コールドスタート)から測定
した加熱効率は58チであった。
Negative pressure is generated by the gas flow ejected from the fuel nozzle/Lz 24, and air also flows into the mixing pipe 17 at the same time, forming a premixture. The premixed gas formed in the mixing tube 17 passes through a large number of through holes 18 of the honeycomb structure 19 and reaches its north face. At that point, it is ignited by a spark already formed by a piezoelectric transformer (not shown) or the like, and a flame 25 is formed on the upper surface of the honeycomb structure 19 . The flame 25 is formed as a large number of through holes 18f and flame holes in the honeycomb structure 19, and makes a part of 1 to 5 mm from the top of the honeycomb structure red hot, and in a steady state, the red hot temperature is about 1000
~1100°C. In this state, the honeycomb structure 19
The radiation 26 generated by the high-temperature red heat on the upper surface of the pot passes directly through the heat transmitting plate 21 and reaches the bottom of the pot 27. On the other hand, the heat exhaust gas flow generated by the flame 25 is
1, and is released into the outside air from between the heat transmitting plate holding stands 220 while coming into contact with the curved portion and outer periphery of the pot 27. Also,
At the contact portion between the heat transmitting plate 21 and the bottom of the pot 27, heat is conducted to the bottom of the pot 27 by heat conduction from the heat transmitting plate 21. In this way, the convection heat due to the heat exhaust gas flow, the conduction heat due to the contact between the heat transmitting plate 21 and the pot 27, and the radiant heat due to the radiation 26 generated by the high temperature red heat of the upper surface of the honeycomb structure 19 are given to the pot 27. It turns out. In addition, since the honeycomb structure 19 has a high porosity of about 75 inches, the combustion load per surface can be increased compared to conventional ceramic combustion disks with a porosity of 5011 or less. , you can get a stove that is more compact than before. Furthermore, compared to conventional ceramic combustion discs, which had to keep the red-hot temperature below 900 degrees Celsius due to the durability of the material, it is possible to raise the temperature up to a maximum of 110 degrees Celsius, making it possible to obtain high-temperature radiation. By the way, using the stove and burner of this example, C3HB can be heated at 2000 kcae/h.
The heating efficiency measured from the time of ignition (cold start) when combustion was performed was 58 degrees.

以上の様に、本実施例のコンロバーナによれば高負荷高
効率を達成することができる。
As described above, the stove burner of this embodiment can achieve high load and high efficiency.

発明の効果 本発明のコンロバーナによれば次に列記する効果が得ら
れる。
Effects of the Invention According to the stove burner of the present invention, the following effects can be obtained.

1、高い開孔度を有し、高温耐熱性を有するセラミック
スからなるハニカム構造体を燃焼盤とし、その直とに熱
透過板を設置し、熱透過板の周囲を外気に開放したこと
によシ、鍋底には高温輻射熱、伝導熱、熱排ガス流によ
る対流熱の王者を同時に加えることができる。
1. A honeycomb structure made of ceramics with high porosity and high temperature resistance is used as the combustion disk, a heat transmitting plate is installed directly next to it, and the area around the heat transmitting plate is opened to the outside air. The king of high-temperature radiant heat, conductive heat, and convection heat generated by hot exhaust gas flow can be applied to the bottom of the pot at the same time.

■、上記の構成、特に高開孔度であることにより従来の
セラミック燃焼盤よりも高負荷、コンパクトとすること
ができる。
(2) The above structure, especially the high pore size, allows for higher loads and more compact size than conventional ceramic combustion disks.

面、高温耐熱性分有するハニカム構造体を用いているた
め、赤熱温度を1100℃付近まで上昇させることがで
き、従来よりも高温輻射熱が得られるため、高い加熱効
率(55〜60%)を有するコンロバーナが得らレル。
Because it uses a honeycomb structure with high heat resistance, it is possible to raise the red-hot temperature to around 1100℃, and it has higher heating efficiency (55-60%) because it can obtain higher-temperature radiant heat than before. Conlovana got rel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるコンロバーナの一実施例の要部縦
断面図、第2図、第3図は従来のコンロバーナの要部縦
断面図である。 17・・・・・・混合管1,18・・・・・・貫通孔、
19・・・・・・ハニカム構造体、20・・・・・・予
混合燃焼盤、21・・・・・・熱透過板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1基筒 
1 図             /7−−−泥舎哨/
a−−− 1j11ル /q −−−へ二nb構6二9( 2θ−−−テ;晃今男気〃bl zt −−−=、ご色仮
FIG. 1 is a longitudinal cross-sectional view of a main part of an embodiment of a stove burner according to the present invention, and FIGS. 2 and 3 are longitudinal cross-sectional views of main parts of a conventional stove burner. 17... Mixing tube 1, 18... Through hole,
19... Honeycomb structure, 20... Premix combustion plate, 21... Heat transmission plate. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure /7---Mudhouse sentinel/
a---1j11ru/q---he2nb structure629(2θ---te; Akira is chivalrous〃bl zt---=, goirokari

Claims (1)

【特許請求の範囲】[Claims] 多数の貫通孔をし、かつ高い開孔度を有する耐熱性セラ
ミックスからなるハニカム構造体で予混合燃焼盤を構成
するとともに、混合管に連設し、さらにこの予混合燃焼
盤の直上に熱透過板を設置し、さらに熱透過板の周囲は
開放したコンロバーナ。
The premix combustion disk is composed of a honeycomb structure made of heat-resistant ceramics with many through holes and a high degree of porosity, and is connected to the mixing pipe, and a heat permeable structure is placed directly above the premix combustion disk. A stove burner with a board installed and an open area around the heat transmitting board.
JP28350185A 1985-12-17 1985-12-17 Cooking burner Pending JPS62142927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28350185A JPS62142927A (en) 1985-12-17 1985-12-17 Cooking burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28350185A JPS62142927A (en) 1985-12-17 1985-12-17 Cooking burner

Publications (1)

Publication Number Publication Date
JPS62142927A true JPS62142927A (en) 1987-06-26

Family

ID=17666361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28350185A Pending JPS62142927A (en) 1985-12-17 1985-12-17 Cooking burner

Country Status (1)

Country Link
JP (1) JPS62142927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970028056A (en) * 1995-11-06 1997-06-24 조남근 Burners for gas cookers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970028056A (en) * 1995-11-06 1997-06-24 조남근 Burners for gas cookers

Similar Documents

Publication Publication Date Title
US5458484A (en) Pre-mix flame type burner
JPH06180110A (en) Exhaust heat recovering combustion apparatus
JPS62142927A (en) Cooking burner
JPS62155428A (en) Burner for range
CN106439937A (en) Anti-backfire civil fuel gas cooking oven
JPS62142926A (en) Cooking burner
JPS61246512A (en) Burner
JPS62155427A (en) Burner for range
CN215259821U (en) Cantonese energy-saving furnace end
JPS5916657Y2 (en) surface combustion gas burner
JP4085219B2 (en) Combustion device
JPH02150608A (en) Tube burner
JPS62108912A (en) Burner for range
JPS6260605B2 (en)
GB1324376A (en) Gas burner for cooking
JP2529473B2 (en) Heating device
JPS62112907A (en) Ceramic burner
JPS62297615A (en) Burning device
JPH0444967Y2 (en)
JP2001065805A (en) Combustion device
JPH10185212A (en) Gas range
JPS60202221A (en) Burner plate body
JPS581687Y2 (en) radiant burner
JPS62297632A (en) Kitchen range
JPS618511A (en) Gas cooking apparatus