JPS62141740A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS62141740A
JPS62141740A JP28331085A JP28331085A JPS62141740A JP S62141740 A JPS62141740 A JP S62141740A JP 28331085 A JP28331085 A JP 28331085A JP 28331085 A JP28331085 A JP 28331085A JP S62141740 A JPS62141740 A JP S62141740A
Authority
JP
Japan
Prior art keywords
metal
grooves
insulating film
wiring
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28331085A
Other languages
Japanese (ja)
Inventor
Tsutomu Fujita
勉 藤田
Hiroshi Yamamoto
浩 山本
Shoichi Tanimura
谷村 彰一
Takao Kakiuchi
垣内 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28331085A priority Critical patent/JPS62141740A/en
Publication of JPS62141740A publication Critical patent/JPS62141740A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a metal wiring and an interlayer insulating film free from void and to make them flat by a method wherein, after cavity-shaped grooves for wiring are formed in an insulating film, a thin semiconductor or metal film is formed on the side surfaces of the grooves, and a gas containing metal is made to react to make the metal grow selectively only in the cavity-shaped grooves. CONSTITUTION:After cavity-shaped grooves 2a and 2b for wiring metal are formed, polycrystalline silicon 3 is deposited on the whole surface by a CVD method. Next, the polycrystalline silicon film 3 on the bottom surfaces of the cavity-shaped grooves 2a and 2b and on the surface of an insulating film 1 is removed by using anisotropic dry etching. Since the etching goes only in the vertical direction, the polycrystalline silicon film 3 is left on the side surfaces of the grooves 2a and 2b. Then, a gas prepared by diluting WF6 with Ar is made to react with the polycrystalline silicon film 3. In other words, tungsten W5a and W5b is made to grow selectively only on the side surfaces of the cavity-shaped grooves respectively by using the reducing reaction of silicon. On the occasion, W does not grow on the surface of the insulating film 1. Next, W is made to grow by using the reducing reaction of hydrogen. Since hydrogen has a property that it is adsorbed only on the surface of metal to ionize same, the above-mentioned reducing reaction of hydrogen grows, on this occasion, only from the side surfaces of the grooves 2a and 2b, while the grooves 2a and 2b are buried completely with W.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細な多層配線を有する高密度大集積な半導体
集積回路の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a high-density, large-scale integrated semiconductor integrated circuit having fine multilayer wiring.

従来の技術 従来、多層配線を形成する場合において、メタル配線を
行なった後平坦化絶縁膜及び層間絶縁膜全堆積する方法
がとられている。これと第8図。
2. Description of the Related Art Conventionally, when forming multilayer interconnections, a method has been used in which a flattening insulating film and an interlayer insulating film are entirely deposited after metal interconnections are formed. This and Figure 8.

第9図をもとに説明する。第8図において9は絶縁膜、
10a、10b、10Cはメタル配線である。ここで1
0& 、 10bのメタル配線間隔はサブミクロンにな
っている。第9図において全面に層間絶縁膜11を例え
ばステップカバレジの良いプラズマ法で堆積しても同図
に示すようにサブミクロン間隔を有するメタル配線10
4.10bの間には完全に埋込まれなく、ボイド12と
呼ばれる空洞が生じる。
This will be explained based on FIG. In FIG. 8, 9 is an insulating film;
10a, 10b, and 10C are metal wirings. Here 1
The metal wiring spacing of 0&, 10b is submicron. In FIG. 9, even if the interlayer insulating film 11 is deposited over the entire surface by, for example, a plasma method with good step coverage, the metal wiring 11 with submicron spacing as shown in the same figure.
4.10b is not completely filled in, and a cavity called a void 12 is created.

発明が解決しようとする問題点 このような空洞が生じると、部分的に層間膜11が薄く
なり絶縁耐圧の低下が起こったり信頼性上の問題が発生
する。他に平坦化絶縁膜を堆積する方法としてバイアス
スパッタ法があるが、この方法は形成に時間がかかる上
にダメージが発生し実用化上大きな問題がある。
Problems to be Solved by the Invention When such cavities occur, the interlayer film 11 becomes partially thin, resulting in a drop in dielectric strength and reliability problems. Another method for depositing a planarizing insulating film is bias sputtering, but this method takes time to form and causes damage, which poses major problems in practical use.

以上述べたように従来の方法では、微細な多層配線を有
する高密度大集積な半導体集積回路を製造することは困
難であった。
As described above, with conventional methods, it is difficult to manufacture high-density, large-scale integrated semiconductor integrated circuits having fine multilayer wiring.

本発明は従来の欠点を鑑みてなされたもので、微測な多
層配線において簡単な方法で、ボイドのないメタル配線
及び居間絶縁膜の形成及び平坦化を行なうことを目的と
している。
The present invention has been made in view of the drawbacks of the conventional art, and an object of the present invention is to form and planarize void-free metal wiring and living room insulating films using a simple method in multilayer wiring with microscopic measurements.

問題点を解決するための手段 本発明は上記問題点を解決するため、絶縁膜に配線用の
凹状の溝を形成した後、その溝側面に薄く半導体薄膜や
金属薄膜を形成し、金属を含んだガスを反応させて凹状
の溝のみに金属を選択的に成長させるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention forms concave grooves for wiring in an insulating film, and then forms a thin semiconductor film or a thin metal film on the side surfaces of the grooves, so that the grooves do not contain metal. This method selectively grows metal only in the concave grooves by reacting with gas.

作用 本発明により、サブミクロン多層配線の配線メタル、層
間絶縁膜の平坦化を簡単に行なうことができ、高信頼性
の多層配線が得られる。
Operation According to the present invention, wiring metal and interlayer insulating film of submicron multilayer wiring can be easily planarized, and highly reliable multilayer wiring can be obtained.

実施例 第1図は本発明の実施例を示すもので、サブミクロンの
間隔を有する配線メタル及び平坦化絶縁膜を形成した断
面図である。同図において1は平坦化絶縁膜、51L、
5bはサブミクロンの間隔を有する配線メタルで、ボイ
ドの発生がなく完全に平坦化がなされている。以下第2
図〜第6図をもとに本実施例の製造方法を説明する。
Embodiment FIG. 1 shows an embodiment of the present invention, and is a cross-sectional view in which wiring metal and planarizing insulating films having submicron intervals are formed. In the figure, 1 is a flattening insulating film, 51L,
5b is a wiring metal having submicron intervals, and is completely flattened without generating voids. 2nd below
The manufacturing method of this embodiment will be explained based on FIGS.

第2図において1は絶縁膜、2a、2bはそれぞれ配線
メタル用の凹状の溝である。2a 、2bの溝の間隔は
サブミクロ/になっている。第3図においてCVD法で
全面に多結晶シリコン3をデポする。溝2&、2bの底
面及び側面にも薄くデポされる。次に第4図では異方性
のドライエツチングを用いて凹状の溝2a、2bの底面
及び絶縁膜1の表面の多結晶シリコン膜3を除去する。
In FIG. 2, 1 is an insulating film, and 2a and 2b are concave grooves for wiring metal. The spacing between the grooves 2a and 2b is submicro//. In FIG. 3, polycrystalline silicon 3 is deposited over the entire surface by CVD. A thin layer is also deposited on the bottom and side surfaces of the grooves 2&, 2b. Next, in FIG. 4, the polycrystalline silicon film 3 on the bottom surfaces of the concave grooves 2a and 2b and on the surface of the insulating film 1 is removed using anisotropic dry etching.

エツチングは垂直方向のみしか進まないので、溝2−1
.2−2の側面には多結晶シリコン膜3が残る。第6図
において、WF6 (6弗化タングステン)をムr(ア
ルゴン)で希釈したガスを多結晶シリコン膜3と反応さ
せる。即ち 2WF6+38i  →  2W+3SiF。
Since etching only progresses in the vertical direction, groove 2-1
.. The polycrystalline silicon film 3 remains on the side surface of 2-2. In FIG. 6, a gas prepared by diluting WF6 (tungsten hexafluoride) with argon (argon) is reacted with the polycrystalline silicon film 3. As shown in FIG. That is, 2WF6+38i → 2W+3SiF.

のシリコン環元反応を利用して凹状の溝の側面のみにタ
ングステン(W)sa 、5btそれぞれ選択成長させ
る。この時、絶縁膜1の表面にはWは成長しない。この
反応は多結晶シリコン膜3がなくなるまで進む。Wの厚
みは約数100人である。
Tungsten (W) sa and 5bt are selectively grown only on the side surfaces of the concave groove using the silicon ring element reaction. At this time, W does not grow on the surface of the insulating film 1. This reaction proceeds until the polycrystalline silicon film 3 disappears. The thickness of W is approximately several hundred people.

次に第6図において、WF6+H2(水素)を含んだガ
スを反応させる。即ち WF6+3H2→ W−1−6HF ↑の水素環元反応
を利用してWを成長させる。この時、水素は金属表面の
みに吸着してイオン化する性質があるので、上記の水素
環元反応は溝21L。
Next, in FIG. 6, a gas containing WF6+H2 (hydrogen) is reacted. That is, W is grown using the hydrogen ring reaction of WF6+3H2→W-1-6HF↑. At this time, since hydrogen has the property of being adsorbed and ionized only on the metal surface, the above hydrogen ring reaction occurs in the groove 21L.

2bの側面からのみ成長して、溝2a、2bが完全にW
で埋まる。この水素環元反応は完全に表面反応なので、
成長は等方性となりボイド(空洞)が成長することがな
い。
Grooves 2a and 2b are completely formed by growing only from the side of groove 2b.
Filled with This hydrogen ring reaction is completely a surface reaction, so
Growth is isotropic and voids do not grow.

よって第6図に示すように、サブミクロンの間隔をもつ
メタル配線とその間を埋める平坦化絶縁膜1がボイドを
発生させることなく完全に平坦化される。第7図は、二
層配線に適用した例で、6は下地絶縁膜、7は平坦化絶
縁膜、sa、abは一層目のメタル配線、1′は層間絶
縁膜、5&’。
Therefore, as shown in FIG. 6, the metal interconnections having submicron intervals and the planarization insulating film 1 filling the gaps are completely planarized without generating voids. FIG. 7 shows an example applied to a two-layer wiring, where 6 is a base insulating film, 7 is a flattening insulating film, sa and ab are first-layer metal wirings, 1' is an interlayer insulating film, and 5 &'.

6b’ は二層目のメタル配線である。第2図〜第6図
で説明した方法ヲ<シ返すことにより第7図に示すよう
にボイドのない完全に平坦な二層配線を容易に形成する
ことができる。
6b' is the second layer metal wiring. By repeating the method explained in FIGS. 2 to 6, it is possible to easily form a completely flat two-layer wiring without voids as shown in FIG. 7.

発明の効果 以上述べたように本発明によれば、サブミクロンの多層
配線において、簡単な方法で、ボイド(空洞)のない層
間絶縁膜が得られ高い層間耐圧を有することができる。
Effects of the Invention As described above, according to the present invention, in submicron multilayer wiring, an interlayer insulating film without voids (cavities) can be obtained by a simple method and can have a high interlayer breakdown voltage.

また完全に平坦な構造が得られるので、パターン形成の
容易性、信頼性の向上環にも効果を発揮する。従ってサ
ブミクロンの多層配線を有する高密度で大集積な半導体
集積回路の実現が容易となる。
Furthermore, since a completely flat structure can be obtained, it is effective in improving ease of pattern formation and reliability. Therefore, it becomes easy to realize a high-density, large-scale integrated semiconductor integrated circuit having submicron multilayer wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例方法による微細なメタル配線
の断面図、第2図〜第7図は同微細な多層配線の製造プ
ロセスを説明するための工程断面図、第8図、第9図は
従来の製造法によるメタル配線の断面図である。 1・・・・・・絶縁膜、3・・・・・・多結晶シリコン
膜、5a。 5b・・・・・・サブミクロンの間隔を有するメタル配
線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 メタル配線 第2図 第4図 第5図 第 6 図 第7図 第8図 第9図
FIG. 1 is a cross-sectional view of a fine metal wiring produced by a method according to an embodiment of the present invention, FIGS. FIG. 9 is a cross-sectional view of metal wiring produced by a conventional manufacturing method. 1... Insulating film, 3... Polycrystalline silicon film, 5a. 5b...Metal wiring with submicron spacing. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Metal wiring Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 絶縁膜に配線用の凹状の溝を形成する工程と、前記凹状
の溝側面のみに薄く半導体膜又は金属を含んだ膜を形成
する工程と、金属を含んだガスを反応させて前記凹状の
溝のみに前記金属を選択的に成長させる工程を含んでな
る半導体集積回路の製造方法。
A process of forming a concave groove for wiring in an insulating film, a process of forming a thin semiconductor film or a film containing a metal only on the side surfaces of the concave groove, and a process of forming a concave groove by reacting a gas containing a metal. A method for manufacturing a semiconductor integrated circuit, comprising the step of selectively growing the metal only in the metal.
JP28331085A 1985-12-16 1985-12-16 Manufacture of semiconductor integrated circuit Pending JPS62141740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28331085A JPS62141740A (en) 1985-12-16 1985-12-16 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28331085A JPS62141740A (en) 1985-12-16 1985-12-16 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62141740A true JPS62141740A (en) 1987-06-25

Family

ID=17663800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28331085A Pending JPS62141740A (en) 1985-12-16 1985-12-16 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62141740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983543A (en) * 1988-09-07 1991-01-08 Fujitsu Limited Method of manufacturing a semiconductor integrated circuit having an interconnection wire embedded in a protective layer covering the semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983543A (en) * 1988-09-07 1991-01-08 Fujitsu Limited Method of manufacturing a semiconductor integrated circuit having an interconnection wire embedded in a protective layer covering the semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US5063175A (en) Method for manufacturing a planar electrical interconnection utilizing isotropic deposition of conductive material
JPH0529315A (en) Semiconductor device and manufacture thereof
JPH05206064A (en) Manufacture of semiconductor device
JPH09139429A (en) Manufacture of semiconductor device
JP2573621B2 (en) Method of manufacturing electrical interconnect
JPS61237452A (en) Manufacture of multilayer interconnection for semiconductor integration circuit
JP2591450B2 (en) Method for manufacturing semiconductor device
JPS62141740A (en) Manufacture of semiconductor integrated circuit
JPH10335459A (en) Semiconductor device and its manufacture
JPS61208241A (en) Manufacture of semiconductor device
JPS63117447A (en) Manufacture of semiconductor integrated circuit
JP2519217B2 (en) Method of forming an interconnection conductor
JPH02143527A (en) Wiring formation
JPH043455A (en) Soi transistor laminated semiconductor device and manufacture thereof
JPH02148760A (en) Semiconductor device and manufacture thereof
JP3036499B2 (en) Method for forming aluminum film for wiring and semiconductor device having aluminum wiring
JPS6286818A (en) Manufacture of semiconductor device
JPH0272630A (en) Manufacture of semiconductor device
JP2723560B2 (en) Method for manufacturing semiconductor device
JPH0669199A (en) Metallurgical structure and its formation method
JP2782912B2 (en) Method for manufacturing semiconductor device
JPS62147743A (en) Manufacture of semiconductor device
JPH03203325A (en) Manufacture of semiconductor device
JPH06132246A (en) Contact hole buried structure and contact hole burying method
JPH03280545A (en) Wiring forming method of semiconductor device