JPS62141507A - Optical integrated circuit and its production - Google Patents

Optical integrated circuit and its production

Info

Publication number
JPS62141507A
JPS62141507A JP60283336A JP28333685A JPS62141507A JP S62141507 A JPS62141507 A JP S62141507A JP 60283336 A JP60283336 A JP 60283336A JP 28333685 A JP28333685 A JP 28333685A JP S62141507 A JPS62141507 A JP S62141507A
Authority
JP
Japan
Prior art keywords
optical
semiconductor
integrated circuit
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283336A
Other languages
Japanese (ja)
Inventor
Masato Ishino
正人 石野
Yoshikazu Hori
義和 堀
Tetsuo Taniuchi
哲夫 谷内
Kazuo Toda
戸田 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60283336A priority Critical patent/JPS62141507A/en
Publication of JPS62141507A publication Critical patent/JPS62141507A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To eliminate the need for intricate optical alignment between semiconductors and dielectric materials by providing a dielectric crystal layer including optical waveguides and semiconductor epitaxial crystal layer including at least either of a light emitting region and light receiving region on a semiconductor substrate. CONSTITUTION:This optical integrated circuit consists of a thin LiNb2O3 film 9 and a semiconductor epitaxial layer consisting of InP/InGaAsP on the InP substrate 8. A Ti-diffused optical waveguide 11 is formed on the thin LiNb2O3 film 9 and a directional coupler having a control electrode 12 is formed particularly in an optical switch part 7. The semiconductor epitaxial layer forms a DFB type laser having a grating 13 in a light emitting part 6 and a P-N junction type photodiode in a light receiving part. The laser light oscillated in the light emitting part 6 is made incident on the Ti-diffused optical waveguide 11 at both ends and arrives at the light receiving part 5 on one side to make monitoring of the light output. Said light arrives at the optical switch part on the other end and after the optical path is changed over, the light is emitted from exit ends 14, 14'.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は誘電体を用いた導波路型光素子と、半導体を用
いた発光・受光素子とを集積した光集積回路とその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical integrated circuit that integrates a waveguide type optical device using a dielectric and a light emitting/light receiving device using a semiconductor, and a method for manufacturing the same.

従来の技術 L 1Nb2O.%代表される誘電体材料はTi 拡散
等の方法で1dB/cm以下の非常に低損失の光導波路
を形成することができる。
Conventional technology L 1Nb2O. The dielectric material represented by % can form an optical waveguide with very low loss of 1 dB/cm or less by a method such as Ti diffusion.

またこの材料は大きい電気光学効果を有し、光変調器・
光スイッチ等既に実用に値する特性が得られている。さ
らにこの材料は非線形光学効果が利用でき第2高調波(
!3HG)素子としても期待できる。
This material also has a large electro-optic effect, making it ideal for optical modulators and
Optical switches and other devices have already achieved practical properties. In addition, this material can utilize nonlinear optical effects to produce second harmonics (
! 3HG) can also be expected as an element.

一方、■−v族化合物半導体に代表される半導体材料は
その混晶も含めて発光・受光機能を有し。
On the other hand, semiconductor materials represented by group ■-V compound semiconductors, including their mixed crystals, have light emitting and light receiving functions.

光/電気変換素子として最も好ましい材料である。It is the most preferred material for optical/electrical conversion elements.

従ってこの2つの材料を用いたハイブリッド光集積回路
は光スイツチ付半導体レーザやSHGを利用した短波光
レーザ等幅広い応用が期待できる。
Therefore, a hybrid optical integrated circuit using these two materials can be expected to have a wide range of applications, such as a semiconductor laser with an optical switch and a short-wave optical laser using SHG.

通常半導体レーザ等の光電変換素子と光導波路素子を光
学的に結合する方法としては7アイパを介する場合やレ
ンズ系を介する場合があるが、これは光の備波面の保存
性や光学的な安定性に欠ける。端面におけるモードの形
状や光学的安定性の立場から半導体レーザと誘電体光導
波路を直接近接して光学的に結合する方法が最も好まし
い。
Normally, methods for optically coupling a photoelectric conversion element such as a semiconductor laser and an optical waveguide element include via a 7-eyeper or via a lens system, but this is due to the preservation of the optical wavefront and the optical stability. Lacks sex. From the standpoint of mode shape and optical stability at the end facets, it is most preferable to optically couple the semiconductor laser and the dielectric optical waveguide in direct proximity.

第4図にその一例として、半導体レーザと先導波路を一
体化したノ1イブリッド型光集積回路を示す。
As an example, FIG. 4 shows a hybrid optical integrated circuit in which a semiconductor laser and a guiding waveguide are integrated.

ここで1はSLサブマウントで、この上に半導体し一ザ
2および誘電体導波路素子3が搭載・固着しである。S
iす、プマウント1は半導体レーザ2の活性層2′と誘
電体光導波路素子30光導波路3′の光軸が合うように
段差を形成しである。このような構成によって半導体レ
ーザと先導波路を直接結合することができる。
Here, 1 is an SL submount, on which a semiconductor layer 2 and a dielectric waveguide element 3 are mounted and fixed. S
i. The mount 1 is formed with a step so that the optical axes of the active layer 2' of the semiconductor laser 2 and the optical waveguide 3' of the dielectric optical waveguide element 30 are aligned. Such a configuration allows direct coupling between the semiconductor laser and the leading waveguide.

しかしながらこの方法では数百ミクロン程度の厚みを持
つ画素子を光軸を合わせるだけの精度でサブマウントに
段差を形成することは非常に婦しく、固着時の誤差も必
然的に大きい。
However, with this method, it is very difficult to form a step on the submount with enough precision to align the optical axis of a pixel element with a thickness of several hundred microns, and the error when fixing it is inevitably large.

このようなアライメントの難しさを克服する手段として
光導波路を含む領域もすべて化合物半導体で形成する方
法が試みられている。集積化の立場からはこの方法は最
も望ましいが、化合物半導体先導波路はLiNbO3等
の誘電体先導波路に比べて導波ロスが大きく、光スイツ
チ機能等に必要な材料固有の電気光学効果も小さい。
As a means to overcome such difficulties in alignment, attempts have been made to form the entire region including the optical waveguide using a compound semiconductor. Although this method is most desirable from the standpoint of integration, a compound semiconductor guided waveguide has a larger waveguide loss than a dielectric guided waveguide such as LiNbO3, and the material-specific electro-optic effect necessary for optical switch functions is also small.

個々の素子の特性を損うことなく、かつ複雑な光学的ア
ライメントを必要としない光集積回路を作成するには同
一基板上に防電体層と半導体層とを形成するのが最も良
い方法であるが、InP等の半導体基板上にLiNb2
O3エピタキシャル層をもしくはL i Nb2OJ板
上にInPエピタキシャル層を形成することは両者の結
晶構造さらに格子定数の違いから通常の手段ではほとん
ど不可能に近い。
The best way to create an optical integrated circuit that does not impair the characteristics of individual elements and does not require complicated optical alignment is to form an electric shield layer and a semiconductor layer on the same substrate. However, LiNb2 is placed on a semiconductor substrate such as InP.
It is almost impossible to form an O3 epitaxial layer or an InP epitaxial layer on a L i Nb2 OJ plate by normal means due to the difference in crystal structure and lattice constant between the two.

発明が解決しようとする問題点 以上述べたごとく、従来の技術では誘電体、半導体材料
の長所を生かし、かつ複雑な光学系の7ライメントを必
要としない光集積回路を得ることは非常に難しいことで
めりた。
Problems to be Solved by the Invention As stated above, it is extremely difficult with conventional techniques to obtain an optical integrated circuit that takes advantage of the advantages of dielectric and semiconductor materials and does not require a 7-line complex optical system. I got it.

問題点を解決するための手段 本発明は、上述した問題点を克服すべく、半導体基板上
の一部分に誘電体結晶を搭載もしくは固着し、他の部分
に半導体をエピタキシャル成長し、誘電体部分に光導波
路、半導体部分に受・発光部ならびに必要とあれば電気
菓子を形成し、さらに発光部・受光部と光導波路が同一
光軸上にるる光集積回路でおる。
Means for Solving the Problems In order to overcome the above-mentioned problems, the present invention mounts or fixes a dielectric crystal on a portion of a semiconductor substrate, epitaxially grows a semiconductor on the other portion, and provides optical guidance on the dielectric portion. A light receiving/emitting part and, if necessary, an electric confectionery are formed in the wave path and semiconductor part, and the light emitting part/light receiving part and the optical waveguide are formed on the same optical axis in an optical integrated circuit.

作  用 上述した手段によって誘電体光導波路素子、半導体光電
変換素子のそれぞれ単独の場合の特性を損うことなく、
困難なアライメントを必要としない光集積回路を容易に
提供できるものである。
Operation By using the above-mentioned means, the dielectric optical waveguide device and the semiconductor photoelectric conversion device can be improved without impairing their characteristics when used alone.
This makes it possible to easily provide an optical integrated circuit that does not require difficult alignment.

実施例 以下、本発明の実施例を半導体材料としてInP系材料
、誘電体としてl−1Nboa t−用いた場合につい
て説明する。
EXAMPLES Below, examples of the present invention will be described in which an InP-based material is used as the semiconductor material and l-1Nboat- is used as the dielectric material.

第1図は本発明の第1の実施例の光集積回路である。こ
れは光出力モ二ター機構および光′スイッチ付発光装置
であシ、第1図Aにその平面図、およ゛ び同図BにM
−M’  間の断面構造図を示す。ここで6は受光部、
6は発光部、7が光スイツチ部である。本集積回路dI
nP基板8上のLiNb2O7膜9 、!: InP 
/ InGaAsP系の半導体エピタキシャル層10か
ら成る。LiNb2O,−膜9上にはTi拡散光導波路
11が形成され、特に光スイツチ部7においては制御電
極12を具備した方向性結合器が形成されている。また
半導体エピタキシャル層は、発光部6においてグレーテ
ィング13を具備したDFB型レーザ、受光部において
はPa接合型7オドダイオードを形成している。発光部
6で発振したレーザー光は両端のTi拡散光導波路11
に入射、片側で受光部5に託して光出力のモニターを行
うとともに、他方で光スイツチ部に達し、光路切シ換え
後、出射端14 、14’から出射される。
FIG. 1 shows an optical integrated circuit according to a first embodiment of the present invention. This is a light emitting device with a light output monitor mechanism and a light switch. Figure 1A shows its plan view, and Figure 1B shows the
-M' shows a cross-sectional structural diagram. Here, 6 is the light receiving part,
6 is a light emitting section, and 7 is a light switch section. This integrated circuit dI
LiNb2O7 film 9 on nP substrate 8,! : InP
/ Consists of an InGaAsP-based semiconductor epitaxial layer 10. A Ti diffused optical waveguide 11 is formed on the LiNb2O,- film 9, and in particular, a directional coupler having a control electrode 12 is formed in the optical switch section 7. Further, the semiconductor epitaxial layer forms a DFB type laser equipped with a grating 13 in the light emitting part 6, and a Pa junction type 7-odd diode in the light receiving part. The laser beam oscillated by the light emitting section 6 passes through the Ti diffused optical waveguides 11 at both ends.
On one side, the light is entrusted to the light receiving section 5 to monitor the optical output, and on the other side, it reaches the optical switch section, and after the optical path is switched, it is emitted from the output ends 14, 14'.

本素子の特徴は半導体基板上に誘電体結晶層および半導
体エピタキシャル層を具備し、誘電体部分に光スィッチ
を含む光導波路が形成され、半導体部分に受発光素子が
形成され、かつ両者が同一光軸上に存することである。
The feature of this device is that it has a dielectric crystal layer and a semiconductor epitaxial layer on a semiconductor substrate, an optical waveguide including an optical switch is formed in the dielectric part, a light receiving/emitting element is formed in the semiconductor part, and both of them use the same light. It is to exist on the axis.

このような構造の光集積回路では、誘電体・半導体の特
長を最大限に利用でき、複雑な光学系の7ライメントを
必要とせず、光学的に安定で、半導体レーザ/光導波路
間の結合ロス、光導波路内の伝搬ロス、光スィッチにお
けるロスを最小限にすることができる。
Optical integrated circuits with this structure can take full advantage of the features of dielectrics and semiconductors, do not require a complex optical system, are optically stable, and have low coupling loss between the semiconductor laser and optical waveguide. , propagation loss in the optical waveguide and loss in the optical switch can be minimized.

本実施例の光集積回路の製造プロセスを第2図に示す。FIG. 2 shows the manufacturing process of the optical integrated circuit of this example.

まず’nP基板8上に/Sンドリンク可能な程度の厚み
(〜1ooμm)ノLINbO3結晶9を搭載もしくは
固着する。固着の方法としては大出力のレーザ光をLi
Nbo3/ InP界面に照射し両者を直接融着するか
、金属層等を中間層とし両者のバインダーとして同様に
融着する方法がある(第2図A)。次にL zNbO3
結晶9f、以下のプロセスでの加工に適した厚み(数1
0μm以下)まで研磨による薄膜化する(第2図B)。
First, on the 'nP substrate 8, a LINbO3 crystal 9 having a thickness (~10 μm) that can be linked with the S/N is mounted or fixed. As a method of fixing Li, high power laser light is
There is a method in which the Nbo3/InP interface is irradiated to directly fuse the two, or a metal layer or the like is used as an intermediate layer and is similarly fused as a binder between the two (FIG. 2A). Next, L zNbO3
Crystal 9f, thickness suitable for processing in the following process (several 1
The film is made thinner by polishing to a thickness of 0 μm or less (Figure 2B).

この工程は必ずしも必須でない。次にLiNbo3結晶
9上の必要な場所にT1拡散を行い光導波路11を形成
する(第2図C)。
This step is not necessarily essential. Next, T1 diffusion is performed at necessary locations on the LiNbo3 crystal 9 to form an optical waveguide 11 (FIG. 2C).

次に受光部52発光部6の領域のL i NbO,をド
ライエッチングにより除去してInP基板8表面を露出
させる(第2図D)。さらに必要とあらばLiNbO3
の固着時およびエツチング時に形成され露出されたIn
P表面の欠陥層は王水やBx  メタノール等を用いた
ウェットエツチングで除去することができる。
Next, the LiNbO in the area of the light receiving part 52 and the light emitting part 6 is removed by dry etching to expose the surface of the InP substrate 8 (FIG. 2D). If more is needed, LiNbO3
The exposed In formed during fixing and etching
The defect layer on the P surface can be removed by wet etching using aqua regia, Bx methanol, or the like.

以下このようにLiNbO3eで部分的にマスクされた
InP基板8上のInP基板表面の露出した部分にIn
P / InGaAsP系のエピタキシャル成長を必要
とあらば複数回行い、受光部・発光部を形成する(第2
図F)。エピタキシャル成長法としては気相成長法と液
相成長法があるが、MOCVD+MBE等の気相成長法
ではLiNbO3上へも単結晶が成長してしまうが液相
成長法ではInP表面の露出した部分にしか結晶成長し
ない。このことはさらに成長速度が速い点から液相成長
法でエピタキシャル成長するのが最も良い。光導波路9
と発光部6の半導体レーザおよび受光部5のフォトダイ
オードの光軸をよシ厳密に一致させるためには第2、図
Eに示すごと(LiNbO59よ膜厚(InPl 0’
をエピタキシャル成長する。さらに研磨にょシ平坦化し
てLiNbO39表面上1nPエピタキシャル層15表
面を同一の高さにしたのち、以後のエピタキシャル成長
で膜厚制御が可能であるような深さく1〜2μm)程度
InPエピタキシャル層9をエツチングする。
Below, InP is applied to the exposed part of the InP substrate surface on the InP substrate 8 partially masked with LiNbO3e.
Epitaxial growth of the P/InGaAsP system is performed multiple times if necessary to form a light receiving part and a light emitting part (second
Figure F). There are two epitaxial growth methods: vapor phase growth and liquid phase growth. In vapor phase growth methods such as MOCVD+MBE, a single crystal grows even on LiNbO3, but in liquid phase growth, it grows only on the exposed part of the InP surface. No crystal growth. For this reason, it is best to perform epitaxial growth using a liquid phase growth method since the growth rate is even faster. Optical waveguide 9
In order to match the optical axes of the semiconductor laser in the light emitting section 6 and the photodiode in the light receiving section 5 more precisely, the second step is to increase the film thickness (LiNbO59 and InPl 0') as shown in Figure E.
grow epitaxially. After further polishing and flattening the surface of the 1nP epitaxial layer 15 on the LiNbO39 surface to the same height, the InP epitaxial layer 9 is etched to a depth of about 1 to 2 μm so that the film thickness can be controlled in subsequent epitaxial growth. do.

次に発光部6のInP表面にグレーティング13を形成
したのちInGaAsP / InP多層エピタキシャ
ル成長で成長層10の形成を行いDFB型レーザを形成
する。さらに受光部5にInGaAs層をエピタキシャ
ル成長し、一部にP型不純物であるZnを拡散領域16
を形成し、フォトダイオードを形成する(第2図F)。
Next, a grating 13 is formed on the InP surface of the light emitting section 6, and then a growth layer 10 is formed by InGaAsP/InP multilayer epitaxial growth to form a DFB type laser. Furthermore, an InGaAs layer is epitaxially grown on the light receiving part 5, and Zn, which is a P-type impurity, is partially diffused into the diffusion region 16.
to form a photodiode (FIG. 2F).

このような工程にょシ、発光部6.受光部5.および光
導波路11を容易に同一光軸上に形成することができる
。エピタキシャル成長以前の工程でInP基板8上にL
iNbO3結晶9を固着せずに単に搭載した場合も以後
のエピタキシャル成長における半導体エピタキシャル層
10の存在によ、9LiF出039を機械的に固着する
ことができ以後軸ずれを起こすことはない。
In such a process, the light emitting part 6. Light receiving section 5. and the optical waveguide 11 can be easily formed on the same optical axis. L is formed on the InP substrate 8 in the process before epitaxial growth.
Even when the iNbO3 crystal 9 is simply mounted without being fixed, the presence of the semiconductor epitaxial layer 10 in the subsequent epitaxial growth makes it possible to mechanically fix the 9LiF crystal 039, and no axis misalignment will occur thereafter.

最後に必要な部分に電極12′!i−形成することによ
シ第1図に示す半導体レーザ・光スィッチおよびモニタ
ー用フォトダイオードを一体化した光集積回路を作製で
きる。
Finally, electrode 12' on the necessary part! By forming the i-formation, it is possible to fabricate an optical integrated circuit in which a semiconductor laser/optical switch and a monitoring photodiode shown in FIG. 1 are integrated.

このような光集積回路の製造方法はI nP / L 
i NbO3間の異種エピタキシャル成長という困難な
方法を用いることなく、容易に半導体と誘電体を同一基
板上に集積できるものである。
The manufacturing method for such optical integrated circuits is InP/L.
A semiconductor and a dielectric can be easily integrated on the same substrate without using the difficult method of heterogeneous epitaxial growth between iNbO3.

次に本発明の第2の実施例を第3図に示す。これは半導
体レーザとL 1NbO3光導波路を一体化した第2高
調波発生(SHG)素子である。L xNbo3の特徴
は電気光学効果が大きいことだけなく、非線型光学効果
を有しかつ発生した第2高調波に対して透明であシ、短
波長レーザ光発生材料として最も好ましい。InGaA
s+P / InP系材料を用いた半導体レーザ(波長
1.2〜1.4μm)を1次光として用いるとo、eμ
m帯の第2高調波が、AI!GaAs/GaAs系材料
の半導体レーf(波長0.8〜0.9μm)では0.4
μm帯の第2高調波が得られる。第3図の光集積回路は
InP基板8上に、光導波路11を含むLiNbO3結
晶9および埋め込み型半導体レーザを形成するI nG
aAsP P / I nP系エピタキシャル層10゜
およびレーザへの電流注入用の電極12から構成される
。この構造は第2図A−Fの製造プロセス後、へき開に
より出力端を形成することによシ得られる。、このよう
に半導体レーザとLiNbO3光導波路を集積化するこ
とによシ高い結合効率が得られ、高い効率で第2高調波
を発生させることができる。
Next, a second embodiment of the present invention is shown in FIG. This is a second harmonic generation (SHG) device that integrates a semiconductor laser and an L 1NbO3 optical waveguide. The characteristics of L x Nbo3 are not only that it has a large electro-optic effect, but also that it has a nonlinear optical effect and is transparent to the generated second harmonic, making it most preferable as a material for generating short wavelength laser light. InGaA
When a semiconductor laser (wavelength 1.2 to 1.4 μm) using s+P/InP material is used as the primary light, o, eμ
The second harmonic of the m band is AI! 0.4 for semiconductor laser f (wavelength 0.8 to 0.9 μm) made of GaAs/GaAs material
A second harmonic in the μm band is obtained. In the optical integrated circuit shown in FIG. 3, an InP substrate 8 is formed with a LiNbO3 crystal 9 including an optical waveguide 11, and an InG film forming an embedded semiconductor laser.
It consists of an aAsP/I nP epitaxial layer 10° and an electrode 12 for injecting current into the laser. This structure is obtained by forming the output end by cleaving after the manufacturing process of FIGS. 2A-F. By integrating the semiconductor laser and the LiNbO3 optical waveguide in this manner, high coupling efficiency can be obtained, and the second harmonic can be generated with high efficiency.

尚、本実施例においては半導体としてInPを用いたが
GaAm等の他の半導体でもよく、誘電体としてはLi
NbO3を用いたがPLZT等他の誘電体材料でもよい
仁とは言うまでもない。
Although InP is used as the semiconductor in this example, other semiconductors such as GaAm may be used, and Li may be used as the dielectric.
Although NbO3 is used, it goes without saying that other dielectric materials such as PLZT may also be used.

発明の効果 以上のように本発明の光集積回路は半導体基板上に先導
波路を含む誘電体結晶層と、発光領域、受光領域の少な
くとも一方の領域を含む半導体エピタキシャル結晶層を
有する構造の光集積回路を、半導体基板上の一部に誘電
体結晶を搭載もしくは固着後、半導体基板の無出した部
分に半導体tエピタキシャル成長させるという製造法に
よって得ることによシ、半導体および誘電体を単独で用
いた時の性能を損うことなく、かつ両者間の複雑な光学
的アライメントが不必要で高い結合効率を有する光集積
回路を提供できるものである。
Effects of the Invention As described above, the optical integrated circuit of the present invention has a structure including a dielectric crystal layer including a guiding waveguide and a semiconductor epitaxial crystal layer including at least one of a light emitting region and a light receiving region on a semiconductor substrate. A circuit is obtained by a manufacturing method in which a dielectric crystal is mounted or fixed on a part of a semiconductor substrate, and then a semiconductor T is epitaxially grown on an unexposed part of the semiconductor substrate, whereby a semiconductor and a dielectric are used alone. Accordingly, it is possible to provide an optical integrated circuit that has high coupling efficiency without impairing the optical performance, does not require complicated optical alignment between the two, and has high coupling efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

同党集積回路の製造プロセスを示す工程図、第3図は本
発明の第2の実施例における光集積回路の斜視図、第4
図は従来の光集積回路の断面図である。 5・・・・・・受光部、6・・・・・・発光部、7・・
・・・・光スイツチ部、8・・・・・・InP基板、9
・・・・・・L i!fboa薄膜、10・・・・・・
InP / InGaAsP系エピタキシャル層、11
・・・・・・τi拡散光導波路。 代理人の氏名弁理士 中 尾 敏 男 ほか1名第1図 (A> (B) I慣Nbんrエビタヘンマlし晋 第2図 (A) (C) 第2図 CD) (E)
FIG. 3 is a process diagram showing the manufacturing process of the same integrated circuit; FIG. 3 is a perspective view of an optical integrated circuit according to the second embodiment of the present invention;
The figure is a cross-sectional view of a conventional optical integrated circuit. 5... Light receiving section, 6... Light emitting section, 7...
....Optical switch part, 8...InP substrate, 9
・・・・・・L i! fboa thin film, 10...
InP/InGaAsP epitaxial layer, 11
......τi diffused optical waveguide. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 (A> (B) Figure 2 (A) (C) Figure 2 CD) (E)

Claims (6)

【特許請求の範囲】[Claims] (1)半導体基板上に、光導波路を含む誘電体結晶層と
、発光領域、受光領域の少なくとも一方の領域を含む半
導体エピタキシャル結晶層を有してなる光集積回路。
(1) An optical integrated circuit comprising, on a semiconductor substrate, a dielectric crystal layer including an optical waveguide and a semiconductor epitaxial crystal layer including at least one of a light emitting region and a light receiving region.
(2)光導波路と発光領域もしくは受光領域が同一光軸
上に存在する特許請求の範囲第1項記載の光集積回路。
(2) The optical integrated circuit according to claim 1, wherein the optical waveguide and the light emitting region or the light receiving region are on the same optical axis.
(3)半導体基板および半導体エピタキシャル層として
III−V族化合物半導体を用いる特許請求の範囲第1項
記載の光集積回路。
(3) As a semiconductor substrate and semiconductor epitaxial layer
The optical integrated circuit according to claim 1, which uses a III-V group compound semiconductor.
(4)誘電体結晶層としてLiNbO_3もしくはLi
Ta_2O_3を用いる特許請求の範囲第1項記載の光
集積回路。
(4) LiNbO_3 or Li as dielectric crystal layer
The optical integrated circuit according to claim 1, which uses Ta_2O_3.
(5)半導体基板上に誘電体結晶を搭載もしくは固着す
る工程と、前記誘電体結晶上に光導波路を形成する工程
と、一部の領域の前記誘電体結晶をエッチングにより除
去し前記半導体基板を露出させる工程と、前記露出させ
た領域の半導体基板上に半導体をエピタキシャル成長さ
せる工程を含んでなる光集積回路の製造方法。
(5) A step of mounting or fixing a dielectric crystal on a semiconductor substrate, a step of forming an optical waveguide on the dielectric crystal, and a step of removing the dielectric crystal in a part of the semiconductor substrate by etching. A method for manufacturing an optical integrated circuit, comprising the steps of: exposing the semiconductor substrate; and epitaxially growing a semiconductor on the exposed region of the semiconductor substrate.
(6)誘電体結晶の厚みより厚く半導体エピタキシャル
層を成長したのち、研磨により前記誘電体結晶表面と前
記半導体エピタキシャル層表面を同一の高さにし、前記
半導体エピタキシャル層を表面から5ミクロン以内でエ
ッチングしたのち、再度半導体エピタキシャル層を成長
させる特許請求の範囲第5項記載の光集積回路の製造方
法。
(6) After growing a semiconductor epitaxial layer thicker than the thickness of the dielectric crystal, the dielectric crystal surface and the semiconductor epitaxial layer surface are made to have the same height by polishing, and the semiconductor epitaxial layer is etched within 5 microns from the surface. 6. The method of manufacturing an optical integrated circuit according to claim 5, wherein the semiconductor epitaxial layer is then grown again.
JP60283336A 1985-12-16 1985-12-16 Optical integrated circuit and its production Pending JPS62141507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283336A JPS62141507A (en) 1985-12-16 1985-12-16 Optical integrated circuit and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283336A JPS62141507A (en) 1985-12-16 1985-12-16 Optical integrated circuit and its production

Publications (1)

Publication Number Publication Date
JPS62141507A true JPS62141507A (en) 1987-06-25

Family

ID=17664154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283336A Pending JPS62141507A (en) 1985-12-16 1985-12-16 Optical integrated circuit and its production

Country Status (1)

Country Link
JP (1) JPS62141507A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660444A1 (en) * 1990-03-27 1991-10-04 Commissariat Energie Atomique INTEGRATED MULTI - CHANNEL OPTICAL SWITCHING SYSTEM AND SWITCHING MANUFACTURING METHOD.
EP0957546A2 (en) * 1998-05-11 1999-11-17 Nec Corporation solid-state laser device and solid-state laser amplifier provided therewith
JP2006133723A (en) * 2004-10-08 2006-05-25 Sony Corp Light guide module and optoelectric hybrid device, and their manufacturing method
JP2007503130A (en) * 2003-05-29 2007-02-15 アプライド マテリアルズ インコーポレイテッド Impurity-based waveguide detectors
EP2266171A1 (en) * 2008-03-18 2010-12-29 Alcatel-Lucent USA Inc. Self-calibrating integrated photonic circuit and method of control thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660444A1 (en) * 1990-03-27 1991-10-04 Commissariat Energie Atomique INTEGRATED MULTI - CHANNEL OPTICAL SWITCHING SYSTEM AND SWITCHING MANUFACTURING METHOD.
US5078514A (en) * 1990-03-27 1992-01-07 Commissariat A L'energie Atomique Switch and system for switching integrated optical multichannels and switch production method
EP0957546A2 (en) * 1998-05-11 1999-11-17 Nec Corporation solid-state laser device and solid-state laser amplifier provided therewith
EP0957546A3 (en) * 1998-05-11 2001-04-04 Nec Corporation solid-state laser device and solid-state laser amplifier provided therewith
US6628692B2 (en) 1998-05-11 2003-09-30 Nec Corporation Solid-state laser device and solid-state laser amplifier provided therewith
JP2007503130A (en) * 2003-05-29 2007-02-15 アプライド マテリアルズ インコーポレイテッド Impurity-based waveguide detectors
JP2006133723A (en) * 2004-10-08 2006-05-25 Sony Corp Light guide module and optoelectric hybrid device, and their manufacturing method
EP2266171A1 (en) * 2008-03-18 2010-12-29 Alcatel-Lucent USA Inc. Self-calibrating integrated photonic circuit and method of control thereof

Similar Documents

Publication Publication Date Title
JP3133396B2 (en) Optical branch waveguide
US20070297475A1 (en) Semiconductor optical device and optical transmission module
KR20040013000A (en) Laser diode chip with waveguide
JP3058077B2 (en) Semiconductor light emitting and receiving device
CN102834990A (en) Optical semiconductor integrated element and manufacturing method of the same
US4589117A (en) Butt-jointed built-in semiconductor laser
US6088378A (en) Ring cavity type surface emitting semiconductor laser and fabrication method thereof
JPH0774396A (en) Semiconductor light device
KR100582114B1 (en) A method of fabricating a semiconductor device and a semiconductor optical device
WO2019151044A1 (en) Optical semiconductor element and optical module
JPS62141507A (en) Optical integrated circuit and its production
KR100369329B1 (en) Fabrication method of defectless and anti-reflection spot size converted optical devices
US5570385A (en) Semiconductor laser and method for manufacturing the same
JPS6089990A (en) Optical integrated circuit
KR100634217B1 (en) Electro-optic semiconductor devices and method for making the same
JPS60788A (en) Optical integrated circuit and manufacture thereof
Kluge et al. Flip-chip-integrated silicon nitride ECL at 640nm with relaxed alignment tolerances
Lammert et al. Dual-channel strained-layer in GaAs-GaAs-AlGaAs WDM source with integrated coupler by selective-area MOCVD
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
JPH11121787A (en) Integrated photoelement and manufacture thereof
JPH0462194B2 (en)
JPS60176289A (en) Optical integrated circuit
KR100248430B1 (en) Structure and fabrication method of passive-waveguide integrated laser diode
JPS63164379A (en) Photo output device
JPS63305328A (en) Optical gate matrix switch