JPS62141472A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS62141472A
JPS62141472A JP28225985A JP28225985A JPS62141472A JP S62141472 A JPS62141472 A JP S62141472A JP 28225985 A JP28225985 A JP 28225985A JP 28225985 A JP28225985 A JP 28225985A JP S62141472 A JPS62141472 A JP S62141472A
Authority
JP
Japan
Prior art keywords
temperature
control valve
refrigerant
fluid
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28225985A
Other languages
Japanese (ja)
Other versions
JPH0566501B2 (en
Inventor
石川 孝治
正美 今西
北 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28225985A priority Critical patent/JPS62141472A/en
Publication of JPS62141472A publication Critical patent/JPS62141472A/en
Publication of JPH0566501B2 publication Critical patent/JPH0566501B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は冷凍サイクルを形成する液冷媒径路に、電気
信号によって冷媒流量を制御する電気式冷媒流量制御弁
が設けられたヒートポンプ装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat pump device in which an electric refrigerant flow control valve that controls the refrigerant flow rate by an electric signal is provided in a liquid refrigerant path forming a refrigeration cycle. be.

[従来の技術] 冷媒ガスを吸入、圧縮して吐出する圧縮機、冷媒循環方
向を切換える四方弁、冷媒との間で熱交換を行なわせた
流体を利用する利用側熱交換器、および格別に利用する
ことのない流体と冷媒との間で熱交換を行なわせる非利
用側熱交換器等で冷凍サイクルが形成され、1台の装置
にて利用側流体の冷却および過熱のいずれにも任意に切
換えて使用し得るヒートポンプ装置では、省エネルギー
と併せて信頼性向上が追求され、冷媒流量制御手段とし
て従来から使用されていた機械式の膨張升や毛細管に代
わって最近では電気信−J−により緻密な制御を可能に
する電気式冷奴流:、:、制御ブ「が用いられるように
なってきた。
[Prior Art] A compressor that sucks in refrigerant gas, compresses it, and discharges it, a four-way valve that switches the refrigerant circulation direction, a user-side heat exchanger that uses a fluid that has undergone heat exchange with the refrigerant, and a special A refrigeration cycle is formed by a heat exchanger on the non-use side that exchanges heat between a fluid that is never used and a refrigerant, and a single device can optionally perform both cooling and superheating of the fluid on the use side. In heat pump devices that can be used interchangeably, improvements in reliability have been pursued in addition to energy savings, and in place of the conventionally used mechanical expansion cells and capillary tubes as refrigerant flow control means, more precisely Electric cold flow control systems have come into use that enable control.

第4図はかかる電気式流171制御ブ「によって冷奴流
量を制御する従来のヒートポンプ装置の全体構成図であ
り、図中(1)は冷奴ガスを吸入、圧縮して吐出する圧
縮機、(2)は圧縮a(1)から吐出された冷媒ガスの
流路を!、IJ換える四方5tとも呼ばれる切換弁、(
3)は圧縮機(1)より送給された冷奴ガスと利用側流
体との間で熱交換させる利用側熱交換器(以下?iに熱
交換器とJrう) 、 (4)は同じく圧縮m(1)か
ら送給された冷奴ガスと室外空気等、非利用側流体との
間で熱交換させる非利用側熱交換a(以下tドに熱交換
機と言う) 、 (5)は熱交換器(3)および(4)
を結ぶ冷奴径路に設けられ、高圧冷媒を低圧冷奴に変え
るように冷奴流j11−を調節する電気式冷媒流ら1制
御弁(以ドlltに流j1(制御弁と、tう) 、 (
5a)は流j11制御弁(5)を駆動して弁開度を決定
する電磁コイル、(8)は液冷媒とガス冷媒とを分離し
、ガス冷媒のみを圧縮機(1)に吸入させるアキュムレ
ータ、(7)は非利用側流体を熱交換器(4)に送給す
るファン、(21)、(22)。
FIG. 4 is an overall configuration diagram of a conventional heat pump device that controls the flow rate of cold tofu using such an electric flow 171 control block. ) is a switching valve, also called a four-way 5t, that switches the flow path of the refrigerant gas discharged from the compression a(1)!, IJ, (
3) is a user-side heat exchanger (hereinafter referred to as a heat exchanger) that exchanges heat between the cold gas sent from the compressor (1) and the user-side fluid, and (4) is also a compressor. Non-use side heat exchange a (hereinafter referred to as heat exchanger), which exchanges heat between cold gas sent from m(1) and non-use side fluid such as outdoor air, (5) is heat exchange Vessels (3) and (4)
An electric refrigerant flow control valve (hereinafter referred to as "control valve"), which is installed in the cold flow path connecting the high-pressure refrigerant to low-pressure cold flow, and adjusts the cold flow to change the high-pressure refrigerant into low-pressure refrigerant.
5a) is an electromagnetic coil that drives the flow j11 control valve (5) to determine the valve opening, and (8) is an accumulator that separates liquid refrigerant and gas refrigerant and causes only gas refrigerant to be sucked into the compressor (1). , (7) are fans (21), (22) that feed the unused fluid to the heat exchanger (4).

(23)はそれぞれ冷媒配管に密着固定された利用側冷
媒温度検出装置、非利用側冷媒温度検出装置および吸入
冷媒温度検出装置(以下これらを単に温度検出装置と言
う) 、 (24)は温度検出装置(21)、(22)
、(23)の検出温度に基づき、温度差が一定の範囲に
保たれるように流量制御弁(5)の出力値すなわち冷奴
流量を演算する制御弁駆動出力値演算手段、(25)は
制御弁駆動出力値演算手段(24)の演算結果に基づき
、制御弁出力値に対応した電流を流J1i制御ゴr(5
)の電磁コイル(5a)に流して弁開度を調節する制御
弁駆動出力手段である。なお、冷媒送給径路の実線矢印
は利用側流体を加熱する加熱運転時の冷奴循環方向を、
点線矢印は利用側流体を冷却する冷却運転時の冷奴循環
方向をそれぞれ示している。
(23) is a user-side refrigerant temperature detection device, a non-use-side refrigerant temperature detection device, and a suction refrigerant temperature detection device (hereinafter simply referred to as temperature detection devices), which are closely fixed to the refrigerant pipe, and (24) is a temperature detection device. Devices (21), (22)
, (23) is a control valve driving output value calculation means for calculating the output value of the flow rate control valve (5), that is, the flow rate of chilled tofu so that the temperature difference is maintained within a certain range, based on the detected temperature of (23); Based on the calculation result of the valve drive output value calculation means (24), a current corresponding to the control valve output value is caused to flow J1i control gor(5
) is a control valve drive output means that controls the valve opening degree by flowing it through the electromagnetic coil (5a) of the valve. In addition, the solid arrow on the refrigerant feed path indicates the direction of cold tofu circulation during heating operation to heat the fluid on the user side.
The dotted arrows each indicate the direction of circulation of the cold tofu during cooling operation to cool the fluid on the user side.

に記構成により、加熱運転時には圧縮機(1)から吐出
された高温高圧のガス冷奴は切換弁(2)を介して熱交
換器(3)に供給ごれ、利用側流体に放熱して加温を行
うと同時に液化する。この液化した冷奴は流量制御弁(
5)によって減圧され、低温低圧の気液混合冷奴となり
、次いで、熱交換器(0に流入してファン(7)によっ
て供給された非利用側流体から吸熱して気化する。この
ようにして気化したガス冷奴は切換弁(2)介してアキ
ュムレータ(6)に流入し、熱交換器(4)で気化しき
れずに残った液冷媒がここで分翔され、低圧のガス冷奴
のみが圧縮機(1)に吸入される。
With the configuration described in , during heating operation, the high temperature and high pressure cold gas discharged from the compressor (1) is supplied to the heat exchanger (3) via the switching valve (2), and heat is radiated to the fluid on the user side for heating. It liquefies at the same time it heats up. This liquefied cold tofu is stored at the flow control valve (
5) to become a low-temperature, low-pressure gas-liquid mixed cold mixture, which then flows into the heat exchanger (0) and absorbs heat from the unused fluid supplied by the fan (7) and vaporizes. The cooled gas flows into the accumulator (6) via the switching valve (2), and the remaining liquid refrigerant that has not been completely vaporized in the heat exchanger (4) is distributed here, and only the low-pressure gas coolant flows into the compressor. (1) is inhaled.

なお、加8運転時に非利用側流体としての空気の温度が
低い場合には、空気中の水分が熱交換器(4)に筒状に
付着し、着霜1i)が多くなると所定の熱交換性俺が得
られなくなる。そこで、短時間だけ切換弁(2)を切換
えて霜を除去する。いわゆる、除霜運転を行う。この除
霜運転時には圧縮機(1)から吐出された高温高圧のガ
ス冷奴は切換ブr(2)を介して熱交換器(4)に供給
され、これに伺着した霜に放熱して除霜を行うと同時に
液化する。以下、」−述した径路とは逆向きで冷奴が流
量制御弁(5)(このとき流量制御弁の開度は全開にな
っている)を通り、次いで、熱交換器(3)に流入して
利用側流体より吸熱して気化する。また、気化したガス
冷奴は切換弁(2)を介してアキュムレータ(6)に流
入し、続いて圧縮機(1)に吸入される。
In addition, when the temperature of the air as the non-use side fluid is low during the heating operation, moisture in the air adheres to the heat exchanger (4) in a cylindrical shape, and when frost formation 1i) increases, the specified heat exchange I can't get sex anymore. Therefore, the frost is removed by switching the switching valve (2) for a short period of time. Perform so-called defrosting operation. During this defrosting operation, the high-temperature, high-pressure cold gas discharged from the compressor (1) is supplied to the heat exchanger (4) via the switching valve r (2), and the frost that has arrived there is radiated and removed. It liquefies at the same time as frosting. Hereinafter, the cold tofu passes through the flow control valve (5) (at this time, the flow control valve is fully open) in the opposite direction to the path described above, and then flows into the heat exchanger (3). It absorbs heat from the user fluid and evaporates. Further, the vaporized gas coolant flows into the accumulator (6) via the switching valve (2), and is then sucked into the compressor (1).

一方、冷却運転時には上述した除霜運転時と全く同様に
、圧縮a(1)より吐出された高温高圧の冷奴ガスは熱
交換器(4)にて液化し、流量制御弁(5)で減圧され
、次いで、熱交換器(3)で利用側流体から吸熱して冷
却すると同時に気化し、切換弁(2)およびアキュムレ
ータ(6)を経て圧縮機(1)に戻る。
On the other hand, during the cooling operation, the high temperature and high pressure cold gas discharged from the compressor a (1) is liquefied in the heat exchanger (4), and the pressure is reduced by the flow rate control valve (5), just as in the defrosting operation described above. Next, the heat exchanger (3) absorbs heat from the utilization fluid, cools it and vaporizes it at the same time, and returns to the compressor (1) via the switching valve (2) and accumulator (6).

以」−のように必要に応じて加熱運転と冷却運転との切
換えを行うヒートポンプ装置においては、利用側流体温
度および非利用側流体温度が変化した場合でも、圧縮a
(1)に戻る冷奴が確実に気化するように流量制御弁(
5)の弁開度を調節して冷媒流!翳を調整する必要があ
る。
In a heat pump device that switches between heating operation and cooling operation as necessary, as shown in the following, even if the fluid temperature on the user side and the fluid temperature on the non-user side change, the compression a
Return to (1) The flow control valve (
5) Adjust the valve opening to improve the refrigerant flow! I need to adjust the shadow.

このため、例えば、加熱運転時には流量制御弁(5)を
通過した低圧の気液混合冷媒の温度を湿度検出装置(2
2)で検出する−・方、熱交換器(4)より流出したガ
ス冷奴温度を温1■検出装置(23)で検出し、制御ブ
j駆動出力イメl演算手段(24)が検出温度差を一定
の範囲に抑え得る出力(iffを演算し、制御弁駆動出
力手段(25)がこの出力値になるように電磁コイル(
5a)に流れる電流を変更してjt開度を調整していた
For this reason, for example, during heating operation, the temperature of the low-pressure gas-liquid mixed refrigerant that has passed through the flow control valve (5) is measured by the humidity detection device (2
2) The temperature of the cold gas flowing out from the heat exchanger (4) is detected by the temperature detection device (23), and the control valve drive output image calculation means (24) calculates the detected temperature difference. The output (if) that can suppress the output within a certain range is calculated, and the electromagnetic coil (
The jt opening degree was adjusted by changing the current flowing through 5a).

これは、つまり、流、jij:制御弁(5)を通過した
冷媒は低温低圧の気液混合冷媒となっており、完全な二
相状態であるため冷奴温度は冷媒圧力の飽和温度になっ
ている。また、熱交換器(4)に流入した冷媒は次第に
気化すると同時に圧力低ドを伴って熱交換器(4)の出
1−1に至る。従って、熱交換器(4)の圧力損失を仮
定すると共に、温度検出装置(23)で冷媒温度を検出
することにより、熱交換器(4)の出口での冷奴ガスの
過熱量を決定できることになり、温度検出装置(22)
、(23)で得られる温度差を一定の範囲に制御すれば
所定の過熱量を有する低圧のガス冷媒のみを圧縮機(1
)に吸入させ1−することに他ならない。
This means that the refrigerant that has passed through the control valve (5) is a low-temperature, low-pressure, gas-liquid mixed refrigerant, and is in a complete two-phase state, so the chilled cooper temperature is the saturation temperature of the refrigerant pressure. There is. Further, the refrigerant flowing into the heat exchanger (4) gradually vaporizes and reaches the outlet 1-1 of the heat exchanger (4) with a pressure drop. Therefore, by assuming the pressure loss of the heat exchanger (4) and detecting the refrigerant temperature with the temperature detection device (23), it is possible to determine the amount of superheat of the cold tofu gas at the outlet of the heat exchanger (4). Temperature detection device (22)
, by controlling the temperature difference obtained in (23) within a certain range, only the low-pressure gas refrigerant having a predetermined amount of superheat can be transferred to the compressor (1).
) is nothing more than 1- inhalation.

一方、冷却運転時には、熱交換器(3)が低圧側の蒸発
器となるので、温度検出装置(21)による検出温度と
、温度検出器(23)による検出温度との偏差が−・定
の範囲に保たれるように冷媒流量が制御される。
On the other hand, during cooling operation, the heat exchanger (3) serves as a low-pressure side evaporator, so the deviation between the temperature detected by the temperature detection device (21) and the temperature detected by the temperature detector (23) is -. The refrigerant flow rate is controlled to remain within the range.

[発明が解決しようとする問題点] 」−述した従来のヒートポンプ装置では、各部の冷奴温
度検出(fiに基づいて圧縮機(1)への吸入ガス冷媒
の過熱量を制御していたので、例えば、加熱匣転時にお
いて利用側流体温度が低い場合には高圧ハ二カが低くな
ると共に、温度検出装置(22)の検出温度が低下して
流量制御弁(5)の弁開度を必要以]二に小さくしてし
まう。この結果、圧縮機(1)の能力が大幅に低下する
という問題点があった。
[Problems to be Solved by the Invention] In the conventional heat pump device described above, the amount of superheating of the suction gas refrigerant to the compressor (1) was controlled based on the chill temperature detection (fi) of each part. For example, when the fluid temperature on the user side is low during heating box rotation, the high pressure honeycomb will be low, and the temperature detected by the temperature detection device (22) will be low, making it necessary to adjust the valve opening of the flow rate control valve (5). As a result, there was a problem in that the capacity of the compressor (1) was significantly reduced.

また、圧縮機(1)への吸入ガス冷媒の過熱量を制御し
ているために、利用側流体の温度が上昇し、反対に非利
用側流体の温度が低下した条件での高圧縮比運転におい
ては、圧縮機(1)より吐出されるガス冷媒の温度が異
常にli ilシ、圧縮機(1)内の潤滑油の炭化によ
る4テ!滑不良を起こしたり、圧縮機駆動電動機の過熱
による圧縮機の寿命および信頼性の低下を招いたりする
という問題点があった。
In addition, since the amount of superheating of the suction gas refrigerant to the compressor (1) is controlled, high compression ratio operation is possible under conditions where the temperature of the fluid on the user side increases and the temperature of the fluid on the non-user side decreases. In this case, the temperature of the gas refrigerant discharged from the compressor (1) became abnormally high, and the lubricating oil inside the compressor (1) was carbonized. There have been problems in that it causes slippage and overheats the compressor drive motor, reducing the lifespan and reliability of the compressor.

さらにまた、圧縮機(1)に吸入されるガス冷媒の検出
温度に応じて流jij、制御ブ「(5)のブr開度を調
整した場合には弁開度調節による冷奴の流!、i変化が
再びガス冷奴の温度変化をもたらすため、運転が安定し
難く、しかも流」、1制御弁(5)が頻繁に開閉動作す
るという問題点もあった。
Furthermore, depending on the detected temperature of the gas refrigerant sucked into the compressor (1), the flow jij is controlled, and if the opening of the control valve (5) is adjusted, the flow of chilled tofu is adjusted by adjusting the valve opening. Since the change in temperature causes a change in the temperature of the gas refrigerated tank again, the operation is difficult to stabilize, and there is also the problem that the first control valve (5) frequently opens and closes.

この発明はかかる問題点を解決するためになされたもの
で、利用側流体および非利用側流体の温度が変動した場
合でも、圧縮機の運転状hjを良好に保ち得ると共に、
流−ji1制御ブ「が不必要に頻繁に開閉動作すること
を防ぎ得、これによって、装置全体の信頼性向上および
寿命の長大化を図り得るヒートポンプ装置の提供を目的
とする。
This invention was made to solve this problem, and even when the temperature of the fluid on the usage side and the fluid on the non-use side fluctuates, the operating condition hj of the compressor can be maintained in a good condition, and
It is an object of the present invention to provide a heat pump device that can prevent a flow-ji1 control block from opening and closing unnecessarily frequently, thereby improving the reliability and extending the life of the entire device.

[問題点を解決するための手段] この発明に係るヒートポンプ装置は、圧縮機吐出冷媒温
度、利用側流体の温度および非利用側流体の温度をそれ
ぞれ検出する第1、第2および第3の温度検出装置と、
第2、第3の温度検出装置の検出温度に基づき、1i、
量制御弁を基準開度にするための制御弁駆動出力基準値
を演算する第1の演算手段と、第2、第3の温度検出装
置の検出温度がそれぞれ所定の範囲を超えているか否か
を判定し、所定の範囲を超えているとき第1の温度検出
装置の検出温度に基づいて制御弁駆動出力補正値を演算
して制御弁駆動出力基準値を補正する第2の演算手段と
を備えている。
[Means for Solving the Problems] The heat pump device according to the present invention has first, second, and third temperatures for detecting the temperature of the compressor discharge refrigerant, the temperature of the fluid on the utilization side, and the temperature of the fluid on the non-utilization side, respectively. a detection device;
Based on the detected temperatures of the second and third temperature detection devices, 1i,
Whether or not the detected temperatures of the first calculation means for calculating a control valve drive output reference value for setting the quantity control valve to a reference opening degree, and the second and third temperature detection devices each exceed a predetermined range. a second calculation means for determining the temperature, and calculating a control valve drive output correction value based on the detected temperature of the first temperature detection device to correct the control valve drive output reference value when the temperature exceeds a predetermined range; We are prepared.

[作用] この発明においては、第2および第3の温度検出装置に
よって検出された利用側流体温度および非利用側流体温
度に基づいて第1の演算手段が演算した制御弁駆動出力
基準値を用いて流量制御弁の開度を制御し、利用側、非
利用側両方の流体温度変化に対して弁開度が極端に小さ
くなることを抑制することにより圧縮機の偉力低下を防
いでいる。
[Operation] In the present invention, the control valve drive output reference value calculated by the first calculation means based on the usage side fluid temperature and the non-use side fluid temperature detected by the second and third temperature detection devices is used. By controlling the opening degree of the flow rate control valve and suppressing the valve opening degree from becoming extremely small in response to changes in the fluid temperature on both the use side and the non-use side, a decrease in compressor power is prevented.

また、第1の温度検出装置によって検出された圧fi機
の吐出冷媒温度に基づいて第2の演算手段が制御弁駆動
出カッ1(準植を補正することにより、温度条件の広範
囲な変化に対して圧縮機吐出冷奴温度の異常過熱を防1
1−シている。
In addition, the second calculation means corrects the control valve drive output 1 (quasi-setting) based on the discharge refrigerant temperature of the pressure-fi machine detected by the first temperature detection device, so that it is possible to compensate for a wide range of changes in temperature conditions. To prevent abnormal overheating of the compressor discharge chilled temperature 1
1-I'm sitting.

さらにまた、利用側流体および非利用側流体の温度が所
定の温度範囲を超えているときのみ第2の演算手段が制
御弁駆動出力基?(li値を補正しているので、温度範
囲を1没定しないで補止することに比べて、流量制御弁
の開閉動作回数を大幅に減らすことができる。
Furthermore, only when the temperature of the utilization side fluid and the non-utilization side fluid exceeds a predetermined temperature range, does the second calculation means control the control valve drive output group? (Since the li value is corrected, the number of opening and closing operations of the flow rate control valve can be significantly reduced compared to correcting the temperature range without setting it once.

[実施例] 第1図はこの発明の一実施例の仝体構成図であり、図中
(1)〜(7)は0′54図に示した従来装置と全く同
一のものであり、これら以外の(11) 、(12) 
[Embodiment] Fig. 1 is a block diagram of an embodiment of the present invention. In the figure, (1) to (7) are completely the same as the conventional device shown in Fig. 0'54. Other than (11), (12)
.

(13)はそれぞれ利用側流体温度検出装置、非利用側
流体湿度検出装置、圧縮機の吐出冷奴温度検出装置(以
下中に温度検出装置と1−1′う) 、 (14)は温
度検出装置(11)および(12)の検出温度に基づき
、流量制御弁(5)の駆動出力基準値を演算する制御j
1駆駆動出力補正値演算段、(15)は温度検出装置(
11)、(12)、(13)の検出温度に基づき、流量
制御弁(5)の駆動出力補正値を演算する制御弁駆動出
力補正値演算手段、(16)は制御弁駆動出力値演算手
段(14)および制御弁駆動出力補正値演算手段(15
)によって演算された駆動出力値になるような電流を電
磁コイル(5a)に流して流量制御弁(5)の弁開度を
制御する制御弁駆動出力手段である。
(13) is a user-side fluid temperature detection device, a non-use-side fluid humidity detection device, a compressor discharge cold storage temperature detection device (hereinafter referred to as temperature detection device 1-1'), and (14) is a temperature detection device, respectively. Control j that calculates the drive output reference value of the flow control valve (5) based on the detected temperatures of (11) and (12)
1 drive drive output correction value calculation stage, (15) is a temperature detection device (
11), (12), and (13) are control valve drive output correction value calculation means for calculating the drive output correction value of the flow control valve (5) based on the detected temperatures; (16) is a control valve drive output value calculation means; (14) and control valve drive output correction value calculation means (15)
) is a control valve drive output means that controls the valve opening degree of the flow control valve (5) by passing a current through the electromagnetic coil (5a) such that the drive output value calculated by

第2図は第1図に示した実施例の主要部の詳細な構成を
示す回路図であり、図中(30)はCPU(31)、メ
モリ(32)、入力回路(33)および出力回路(34
)を有するマイクロコンピュータ、(35)はアナログ
量で入力される温度検出値をディジタル量に変換して入
力回路(33)に加えるA1口変換器、(3日)は出力
回路(34)の出力に応じたパルス数のパルス信号を電
磁コイル(5a)に加えるパルス発生器、(37)はヒ
ートポンプ装置の運転スイッチ、(38)はこのヒート
ポンプ装置を冷却運転と加熱運転とに切換える切換スイ
ッチ、(II)、(42)、(a3)は温度検出装置(
11)、(12) 、(13)にそれぞれ直列にして電
源に接続された抵抗、(44)、(45)は運転スイッ
チ(3?)、!il]換スイッチ(38)にそれぞれ直
列にして電源に接続された抵抗、(46)は制御装置本
体である。
FIG. 2 is a circuit diagram showing the detailed configuration of the main parts of the embodiment shown in FIG. (34
), (35) is an A1-port converter that converts the temperature detection value input as an analog quantity into a digital quantity and applies it to the input circuit (33), (3rd) is the output of the output circuit (34) (37) is an operation switch for the heat pump device; (38) is a changeover switch for switching the heat pump device between cooling operation and heating operation; II), (42), and (a3) are temperature detection devices (
Resistors connected to the power supply in series with 11), (12) and (13), respectively, (44) and (45) are operation switches (3?),! The resistors (46) are connected to the power supply in series with the il] conversion switches (38), respectively, and are the main body of the control device.

」−記のように構成されたヒートポンプ装置の冷凍サイ
クルの動作は従来装置と同様であるのでその説明を省略
し、主に、流+7i制御(r(5)の制御動作を、第3
図のフローチャー;・をも参照して以下に説明する。な
お、第3図のフローチャー1・は第2図に示すマイクロ
コンピュータ(30)のメモリ(32)に記憶されてい
るプログラムのうち、lAt1−制御弁(5)を制御す
る部分を示すものである。
Since the operation of the refrigeration cycle of the heat pump device configured as described above is the same as that of the conventional device, its explanation will be omitted.
The flowchart will be explained below with reference to the flowchart in the figure. Flowchart 1 in FIG. 3 shows the part of the program stored in the memory (32) of the microcomputer (30) shown in FIG. 2 that controls the lAt1-control valve (5). be.

先ず、運転スイッチ(37)が投入されると、切換スイ
ッチ(38)の状態を示す信−)が入力回路(33)に
入力されて圧縮機(1)の運転が開始されると、第3図
のステップ(50)からプログラムが実行される。ステ
ップ(50)では運転開始から時間をカウントし、30
秒経過するごとにステップ(51)の処理に進むが、こ
れ以外ではステップ(54)の処理に進む。このうち、
ステップ(51)では温度検出装置(11)、(12)
でそれぞれ得られた利用側流体温度ガ、非利用側流体温
度Taをそれぞれ読み込む。そして、ステップ(52)
 、 (53)では読み込んだ流体温庶子W、Taを基
にしてそれぞれ流量制御弁(5)の制御駆動出力基準4
(t Q i sおよび圧縮機吐出冷媒基準温度Tds
を演算する。一方、ステップ(54)では除霜運転中か
否かを判断し、除霜運転中であればステップ(64)の
処理へ進み、除霜運転中以外であればステップ(55)
の処理へ進む。
First, when the operation switch (37) is turned on, a signal indicating the state of the changeover switch (38) is input to the input circuit (33) and the compressor (1) starts operating. The program is executed from step (50) in the figure. In step (50), time is counted from the start of operation, and 30
The process proceeds to step (51) every second, but otherwise the process proceeds to step (54). this house,
In step (51), temperature detection devices (11) and (12)
The user-side fluid temperature Ga and the non-user-side fluid temperature Ta obtained respectively are read. And step (52)
, In (53), the control drive output standard 4 of the flow control valve (5) is determined based on the read fluid temperature converters W and Ta, respectively.
(t Q i s and compressor discharge refrigerant reference temperature Tds
Calculate. On the other hand, in step (54), it is determined whether or not the defrosting operation is in progress. If the defrosting operation is in progress, the process proceeds to step (64), and if the defrosting operation is not in progress, the process proceeds to step (55).
Proceed to processing.

次に、ステップ(55)では利用側流体温度ガおよび非
利用側流体温度Taが予め設定した範囲内か、あるいは
、この設定範囲を超えて吐出冷媒温度補正すべきかを判
定し、設定範囲内にあればステップ(56)の処理に進
む。ステップ(5B)では運転開始から時間をカウント
し、4分刻みの時点か否かを判定し、4分刻みの時点に
なる毎にステップ(57)の処理を行う。このステップ
(57)では温度検出装置(13)で検出された圧縮機
吐出冷媒装置Tdを読み込み、ステップ(58)ではこ
の圧縮機吐出冷媒温度Tdと、上記ステップ(53)で
演算された圧縮機吐出冷奴ノ、(型温度T、1.と比較
し、 T++>T++、 +Aの時、すなわち、基準温
度TIIZ に比較して実際の温度TdがA ’C以−
1−高い場合にはステップ(59)の処理に進み、流量
制御ブ1(5)の制御弁駆動出力補正4riQicをC
だけ減少さぜる。ここで、Td< rd5+Aの関係に
あけば、ステップ(60)へ進み、圧縮機吐出冷奴基準
温度Tds よりさらに、B℃だけ低いか否か、すなわ
ち、T、、<’r、 −Bの時にはステップ(61)へ
進み、制御ブ「駆動出力補+Iニイfi Q r cを
Cだけ増加させてステップ(62)へ進む。また、ハ:
縮機吐出冷媒温度Tdが(Tds−n)と(T++、、
+A)との間に入っている場合にはステップ(60)の
処理を実行しないので制御ブ「駆動出力補正&t Q 
: cは変化しない。そして、ステップ(62)でQi
r を記憶し、ステップ(B3)ではステップ(52)
で111・られた制御ブ1駆動出力基準値Qis とス
テップ(62)で記憶した制御弁駆動出力補正(If’
! Q i cを加狼し、制御弁駆動出力値Q1を決定
すると、ステップ(66)でこの制御弁駆動出力値Q1
が、第2図に示す出力回路(34)に加え、パルス発生
器(36)が流j−1制御311弁(5)の電磁コイル
(5a)に流れる電流を制御する。なお、ステップ(5
5)で利用側流体温度TWおよび非利用側流体温度T、
が予め設定した範囲外の場合にはステップ(62)に進
むため圧縮機吐出冷媒温度Tdによる制御弁駆動出力値
1F値Qicは変化しない。このことは、加熱正転時で
利用側流体温度TWがそれほど高くない条件ドでは高圧
圧力が低く、圧縮機吐出冷奴温度Tdも高くならないの
で、制御弁駆動補正値Qicを加える必要がないことを
意味している。
Next, in step (55), it is determined whether the fluid temperature Ta on the user side and the fluid temperature Ta on the non-user side are within a preset range, or whether the discharge refrigerant temperature should be corrected to exceed the set range. If so, the process advances to step (56). In step (5B), time is counted from the start of operation, and it is determined whether or not it is every four minutes, and the process of step (57) is performed every four minutes. In this step (57), the compressor discharge refrigerant device Td detected by the temperature detection device (13) is read, and in step (58), this compressor discharge refrigerant temperature Td and the compressor discharge refrigerant temperature Td calculated in the above step (53) are read. (Compared with the mold temperature T, 1. When T++>T++, +A, that is, the actual temperature Td is higher than A'C compared to the reference temperature TIIZ.
1- If the value is higher, the process proceeds to step (59) and the control valve drive output correction 4riQic of the flow rate control block 1 (5) is set to C.
It only decreases. Here, if the relationship Td< rd5+A is satisfied, the process proceeds to step (60), and it is determined whether or not the compressor discharge cold storage standard temperature Tds is lower by B°C, that is, if T,<'r, -B. Proceed to step (61), increase the control block ``drive output supplement +I fi Q r c'' by C, and proceed to step (62).
Compressor discharge refrigerant temperature Td is (Tds-n) and (T++, ,
+A), the process of step (60) is not executed, so the control block "Drive output correction &t Q
: c does not change. Then, in step (62), Qi
r is memorized, and in step (B3) step (52)
The control valve 1 drive output reference value Qis obtained in step 111 and the control valve drive output correction (If'
! After controlling Q i c and determining the control valve drive output value Q1, this control valve drive output value Q1 is determined in step (66).
However, in addition to the output circuit (34) shown in FIG. 2, a pulse generator (36) controls the current flowing through the electromagnetic coil (5a) of the flow j-1 control 311 valve (5). In addition, step (5
5), the user side fluid temperature TW and the non-use side fluid temperature T,
If it is outside the preset range, the process proceeds to step (62), so the control valve drive output value 1F value Qic due to the compressor discharge refrigerant temperature Td does not change. This means that under the condition that the fluid temperature TW on the user side is not so high during normal heating and rotation, the high pressure is low and the compressor discharge cold temperature Td does not become high, so there is no need to add the control valve drive correction value Qic. It means.

−・方、スッテブ(58)で除霜運転中と判断された場
合にはステップ(64)へ進み、タイマカウントをリセ
ットし、ステップ(65)で制御弁駆動出力値Qinを
一定値りにする。除霜運転時には利用側流体温度TI1
.非利用側流体温度Taとは無関係に、例えば、流X1
1制御弁(5)の弁開度が最大になるように設定して除
霜時間を短くする。また、除霜運転時にはステップ(5
5)〜(63)の処理は実行されないため、除霜中の不
安定な圧縮機吐出冷媒温度Tdを読み込んで制御弁駆動
出力補正値Qicを書換えないようにしている。さらに
、除霜終了後4分間は、ステップ(56)の判断でステ
ップ(57)の処理に移ることはなく、除霜終r後の不
安定運転中に制御弁駆動出力補正値Qicの1”: m
えを回避している。
- On the other hand, if it is determined in step (58) that defrosting operation is in progress, proceed to step (64), reset the timer count, and set control valve drive output value Qin to a constant value in step (65). . During defrosting operation, the user fluid temperature TI1
.. For example, the flow X1 is independent of the unused fluid temperature Ta.
The defrosting time is shortened by setting the valve opening degree of the 1 control valve (5) to be maximum. Also, during defrosting operation, step (5)
Since the processes 5) to (63) are not executed, the unstable compressor discharge refrigerant temperature Td during defrosting is read and the control valve drive output correction value Qic is not rewritten. Furthermore, for 4 minutes after the end of defrosting, the judgment in step (56) does not proceed to the process in step (57), and during unstable operation after the end of defrosting, the control valve drive output correction value Qic is 1" : m
Avoiding problems.

ところで、ステップ(50)のI! 俺は、1−述した
除霜終了後の不安定運転域での誤った111正を防1.
にするだけでなく、運転開始直後の不安定運転域での補
正をも防止している。また、制御弁駆動出力基準値Qi
sは30秒ごとに書換えているのに対して、圧縮機吐出
冷奴温度Tdによる制御弁駆動出力補正値Qicを4分
iσに書換えているのは、流!11制御弁(5)の不必
要な開閉動作を行なわせないようにするためのものであ
る。すなわち、流z11.制御弁(5)の変化に対して
相当の時間遅れをもって圧縮機吐出冷媒温度Tdが変化
するので、この遅れ時間を見込んで補正間隔を長くし、
これによって頻繁な補正動作を避けると同時に、短時間
にて運転状態に到達するようにしている。
By the way, step (50) I! I would like to prevent the erroneous call to 111 in the unstable operation range after the defrosting is completed as described in 1-1.
This not only prevents correction in the unstable operation range immediately after the start of operation. In addition, control valve drive output reference value Qi
s is rewritten every 30 seconds, whereas the control valve drive output correction value Qic based on the compressor discharge cold temperature Td is rewritten to 4 minutes iσ because of the flow! This is to prevent unnecessary opening/closing operations of the control valve (5). That is, the flow z11. Since the compressor discharge refrigerant temperature Td changes with a considerable time delay in response to a change in the control valve (5), the correction interval is lengthened in consideration of this delay time.
This avoids frequent correction operations and at the same time allows the operating state to be reached in a short time.

なお、制御弁駆動用カッ、(半値Qisの演算周期およ
び制御弁駆動出力補正値Qicの演算周期はそれそれ上
述した30秒および4分に限定されるものではなく、加
熱、冷却負荷に応じて適切に決めればよいものであるけ
れども、前者に比して後者の周期を格段に大きく決める
ことによって流量制御弁が不必要に頻繁に開閉動作する
ことを防ぐことができる。
Note that the calculation cycle of the control valve drive cap (half-value Qis) and the calculation cycle of the control valve drive output correction value Qic are not limited to the above-mentioned 30 seconds and 4 minutes, but may vary depending on the heating and cooling loads. Although it may be determined appropriately, by setting the latter cycle much larger than the former, it is possible to prevent the flow rate control valve from opening and closing unnecessarily frequently.

[発明の効果] 以上の説明によって明らかなようにこの発明によれば、
検出された利用側流体温度および非利用側流体温度にノ
、にづいて第1の演算手段が制御弁駆動出力基準値を演
算しているので利用側または非利用側流体の温度変化に
対して圧縮機を適切に応答させ得、圧縮機の運転状態を
常に良好に保つことができる。
[Effect of the invention] As is clear from the above explanation, according to the present invention,
Since the first calculation means calculates the control valve drive output reference value based on the detected usage-side fluid temperature and non-use-side fluid temperature, the control valve drive output reference value is calculated based on the detected usage-side fluid temperature and non-use-side fluid temperature. The compressor can be made to respond appropriately, and the operating condition of the compressor can always be maintained in good condition.

また、検出された圧縮機の吐出冷媒温度に基づいて第2
の演算手段が制御弁駆動出力基準値を補iE している
ので、圧縮機吐出冷媒温度の異常過熱を防1にし得、さ
らに、何らかの理由により液バック運転した場合でも、
吐出冷媒温度の異常低下を検出して正常な運転に戻し得
るので、ヒートポンプの信頼性を大牝1に向1−させる
ことができる。
In addition, a second
Since the calculation means compensates for the control valve driving output reference value, abnormal overheating of the compressor discharge refrigerant temperature can be prevented. Furthermore, even if liquid back operation is performed for some reason,
Since it is possible to detect an abnormal drop in the discharge refrigerant temperature and return to normal operation, the reliability of the heat pump can be improved.

さらにまた、利用側流体および非利用側波体の温度が所
定の範囲を超えているときのみ制御弁駆動出力基4−1
値を補正しているので、流111制御弁の頻繁な開閉動
作を抑制して信頼性の向1−および寿命の長大化を図る
ことができる。
Furthermore, only when the temperature of the user side fluid and the non-use side wave body exceeds a predetermined range, the control valve drive output group 4-1
Since the value is corrected, frequent opening and closing operations of the flow control valve 111 can be suppressed to improve reliability and extend life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の全体構成図、第2図は同
実施例の主要部の詳細な構成を示す回路図、第3図は同
実施例の動作を説明するためのフローチャート、第4図
は従来のヒートポンプ装置の全体構成図である。 図において、 (1)は圧縮機、      (2)は切換弁、(3)
は利用側熱交換器、 (4)は非利用側熱交換器、 (5)は電気式流Jii制御弁。 (5a)は電磁コイル、 (8)はアキュムレータ、 (11)は利用側泣体温度検出装置、 (12)は非利用側流体温度検出装置、(13)は吐出
冷媒温度検出装置である。 なお、各図中、同一符号は同−又は相当部分を示す。 代  理  人   大  岩  増  雄花4図 昭和  年  月  日 2、発明の名称 ヒートポンプ装置 3、補正をする者 代表者 志 岐 守 哉 4、代理人 5、補正の対象 6、補正の内容 (1)明細書第2頁第18行の「過熱」という記載を「
加熱」と補1)−する。 (2) I!II細Ni第3頁第15行の「熱交換機(
以下中に熱交換機と;7う)、」 という記載を「熱交
換器(以F中に熱交換器と;−↑う)、」と補正f゛る
。 (3)明細、1:第15頁第6行の「の関係にあけば、
」という記載を「の関係にあれば、」と補正する。 (4)明細書第16頁第10行の「スッテプ(59)J
 という記載を「ステップ(59)」と補正する。 (5)明細書第17頁第17行の[短期間にて運転状態
に」という記・1を、を「短期間にて安定連転状F)に
」と補止する。 以  −1−
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIG. 2 is a circuit diagram showing the detailed configuration of the main part of the embodiment, and FIG. 3 is a flowchart for explaining the operation of the embodiment. FIG. 4 is an overall configuration diagram of a conventional heat pump device. In the figure, (1) is the compressor, (2) is the switching valve, (3)
is a heat exchanger on the use side, (4) is a heat exchanger on the non-use side, and (5) is an electric flow Jii control valve. (5a) is an electromagnetic coil, (8) is an accumulator, (11) is a user-side body temperature detection device, (12) is a non-use-side fluid temperature detection device, and (13) is a discharge refrigerant temperature detection device. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa Yuka 4 Figures 1939, Month, Day 2, Name of invention Heat pump device 3, Representative Moriya Shiki 4, Agent 5, Subject of amendment 6, Contents of amendment (1) Details The description "overheating" on page 2, line 18 of the book was changed to "
"Heating" and Supplement 1)-. (2) I! "Heat exchanger (
The description “Hereinafter referred to as heat exchanger; (3) Specification, 1: Page 15, line 6, ``In the relationship,
'' should be amended to read ``if there is a relationship between.'' (4) "Step (59) J" on page 16, line 10 of the specification
The description "Step (59)" will be corrected. (5) On page 17, line 17 of the specification, the statement 1 that says "becomes in an operating state in a short period of time" is supplemented with "in a stable continuous state F) in a short period of time." -1-

Claims (1)

【特許請求の範囲】[Claims] 圧縮機と共に冷凍サイクルを形成し、冷奴および利用側
流体間で熱交換する第1の熱交換器と、冷媒および非利
用側流体間で熱交換する第2の熱交換器とを結ぶ径路に
、液冷媒流量を制御する流量制御弁が設けられたヒート
ポンプ装置において、前記圧縮機の吐出冷媒温度を検出
する第1の温度検出装置と、前記利用側流体の温度を検
出する第2の温度検出装置と、前記非利用側流体の温度
を検出する第3の温度検出装置と、前記第2および第3
の温度検出装置の検出温度に基づき、前記流量制御弁を
基準開度にするための制御弁駆動出力基準値を演算する
第1の演算手段と、前記第2および第3の温度検出装置
の検出温度がそれぞれ所定の範囲を超えているか否かを
判定し、所定の範囲を超えているとき前記第1の温度検
出装置の検出温度に基づき制御弁駆動出力補正値を演算
して前記制御弁駆動出力基準値を補正する第2の演算手
段とを備え、補正された制御弁駆動出力基準値によって
前記流量制御弁の開度を制御することを特徴とするヒー
トポンプ装置。
A path that connects a first heat exchanger that forms a refrigeration cycle with the compressor and exchanges heat between the refrigerant and the fluid on the user side, and a second heat exchanger that exchanges heat between the refrigerant and the fluid on the non-user side, In a heat pump device equipped with a flow rate control valve that controls the flow rate of liquid refrigerant, a first temperature detection device that detects the temperature of the refrigerant discharged from the compressor, and a second temperature detection device that detects the temperature of the usage-side fluid. and a third temperature detection device for detecting the temperature of the unused fluid, and the second and third temperature detection devices.
a first calculation means for calculating a control valve drive output reference value for setting the flow control valve to a reference opening degree based on the temperature detected by the temperature detection device; and detection by the second and third temperature detection devices. It is determined whether each temperature exceeds a predetermined range, and when the temperature exceeds the predetermined range, a control valve drive output correction value is calculated based on the temperature detected by the first temperature detection device, and the control valve is driven. a second calculation means for correcting an output reference value, and controlling the opening degree of the flow rate control valve based on the corrected control valve drive output reference value.
JP28225985A 1985-12-13 1985-12-13 Heat pump device Granted JPS62141472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28225985A JPS62141472A (en) 1985-12-13 1985-12-13 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28225985A JPS62141472A (en) 1985-12-13 1985-12-13 Heat pump device

Publications (2)

Publication Number Publication Date
JPS62141472A true JPS62141472A (en) 1987-06-24
JPH0566501B2 JPH0566501B2 (en) 1993-09-21

Family

ID=17650120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28225985A Granted JPS62141472A (en) 1985-12-13 1985-12-13 Heat pump device

Country Status (1)

Country Link
JP (1) JPS62141472A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680672A (en) * 1979-12-05 1981-07-02 Matsushita Electric Ind Co Ltd Controller for temperature of air conditioner
JPS60194260A (en) * 1984-03-15 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680672A (en) * 1979-12-05 1981-07-02 Matsushita Electric Ind Co Ltd Controller for temperature of air conditioner
JPS60194260A (en) * 1984-03-15 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve

Also Published As

Publication number Publication date
JPH0566501B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
CN107860103B (en) Control method and device of multi-split system and system with control device
US8261561B2 (en) Free-cooling capacity control for air conditioning systems
TW200523514A (en) Refrigerator
CN109458747B (en) Air conditioner external unit, air conditioner and method for adjusting refrigerant in air conditioner
JP2000274859A (en) Refrigerator
JP3267187B2 (en) Heat pump water heater
US20210270504A1 (en) Refrigeration device and related operating method
JP2003148820A (en) Refrigerant circuit
JP3668750B2 (en) Air conditioner
JPS62141472A (en) Heat pump device
JP2003106610A (en) Refrigeration unit
JPH06323639A (en) Method for controlling chilled water supplying device
JP2004020103A (en) Temperature control chiller
JP2501811B2 (en) Refrigeration equipment
JPS62141470A (en) Heat pump device
JPH07218003A (en) Control system for refrigerator
JPH0914802A (en) Air conditioner
JP2002277138A (en) Temperature adjusting device for thermal medium fluid
JPH0563699B2 (en)
CN115164302B (en) Air conditioning system
JP2004205116A (en) Cold/hot water generator and its control method
WO2024058136A1 (en) Two-stage cascade refrigeration cycle device, and two-stage cascade refrigeration cycle device control method
JPS63306377A (en) Defrostation controller for heat pump type air conditioner
JPS6383556A (en) Refrigeration cycle
JP2719456B2 (en) Air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term