JPH0566501B2 - - Google Patents

Info

Publication number
JPH0566501B2
JPH0566501B2 JP60282259A JP28225985A JPH0566501B2 JP H0566501 B2 JPH0566501 B2 JP H0566501B2 JP 60282259 A JP60282259 A JP 60282259A JP 28225985 A JP28225985 A JP 28225985A JP H0566501 B2 JPH0566501 B2 JP H0566501B2
Authority
JP
Japan
Prior art keywords
temperature
control valve
refrigerant
fluid
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60282259A
Other languages
Japanese (ja)
Other versions
JPS62141472A (en
Inventor
Koji Ishikawa
Masami Imanishi
Junichi Kita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28225985A priority Critical patent/JPS62141472A/en
Publication of JPS62141472A publication Critical patent/JPS62141472A/en
Publication of JPH0566501B2 publication Critical patent/JPH0566501B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は冷凍サイクルを形成する液冷媒経路
に、電気信号によつて冷媒流量を制御する電気式
冷媒流量制御弁が設けられたヒートポンプ装置に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat pump device in which an electric refrigerant flow control valve that controls the refrigerant flow rate by an electric signal is provided in a liquid refrigerant path forming a refrigeration cycle. It is something.

[従来の技術] 冷媒ガスを吸入、圧縮して吐出する圧縮機、冷
媒循環方向を切換える四方弁、冷媒との間で熱交
換を行なわせた流体を利用する利用側熱交換器、
および格別に利用することのない流体と冷媒との
間で熱交換を行なわせる非利用側熱交換器等で冷
凍サイクルが形成され、1台の装置にて利用側流
体の冷却および加熱のいずれにも任意に切換えて
使用し得るヒートポンプ装置では、省エネルギー
と併せて信頼性向上が追求され、冷媒流量制御手
段として従来から使用されていた機械式の膨張弁
や毛細管に代わつて最近では電気信号により緻密
な制御を可能にする電気式冷媒流量制御弁が用い
られるようになつてきた。
[Prior Art] A compressor that sucks in refrigerant gas, compresses it, and discharges it, a four-way valve that switches the refrigerant circulation direction, a user-side heat exchanger that uses a fluid that has undergone heat exchange with the refrigerant,
A refrigeration cycle is formed by a heat exchanger on the non-use side, etc., which exchanges heat between the refrigerant and a fluid that is not particularly used, and a single device can cool and heat the fluid on the use side. In heat pump devices, which can be used with arbitrary switching, energy saving and improved reliability are pursued, and in place of the mechanical expansion valves and capillary tubes traditionally used as refrigerant flow control means, precise electrical signals are now being used. Electric refrigerant flow control valves, which enable efficient control, have come into use.

第4図はかかる電気式流量制御弁によつて冷媒
流量を制御する従来のヒートポンプ装置の全体構
成図であり、図中1は冷媒ガスを吸入、圧縮して
吐出する圧縮機、2は圧縮機1から吐出された冷
媒ガスの流路を切換える四方弁とも呼ばれる切換
弁、3は圧縮機1より送給された冷媒ガスと利用
側流体との間で熱交換させる利用側熱交換器(以
下単に熱交換器と言う)、4は同じく圧縮機1か
ら送給された冷媒ガスと室外空気等、非利用側流
体との間で熱交換させる非利用側熱交換器(以下
単に熱交換器と言う)、5は熱交換器3および4
を結ぶ冷媒経路に設けられ、高圧冷媒を低圧冷媒
に変えるように冷媒流量を調節する電気式冷媒流
量制御弁(以下単に流量制御弁と言う)、5aは
流量制御弁5を駆動して弁開度を決定する電磁コ
イル、6は液冷媒とガス冷媒とを分離し、ガス冷
媒のみを圧縮機1に吸入させるアキユムレータ、
7は非利用側流体を熱交換器4に送給するフア
ン、21,22,23はそれぞれ冷媒配管に密着
固定された利用側冷媒温度検出装置、非利用側冷
媒温度検出装置および吸入冷媒温度検出装置(以
下これらを単に温度検出装置と言う)、24は温
度検出装置21,22,23の検出温度に基づ
き、温度差が一定の範囲に保たれるように流量制
御弁5の出力値すなわち冷媒流量を演算する制御
弁駆動出力値演算手段、25は制御弁駆動出力値
演算手段24の演算結果に基づき、制御弁出力値
に対応した電流を流量制御弁5の電磁コイル5a
に流して弁開度を調節する制御弁駆動出力手段で
ある。なお、冷媒送給径路の実線矢印は利用側流
体を加熱する加熱運転時の冷媒循環方向を、点線
矢印は利用側流体を冷却する冷却運転時の冷媒循
環方向をそれぞれ示している。
FIG. 4 is an overall configuration diagram of a conventional heat pump device that controls the flow rate of refrigerant using such an electric flow control valve. In the figure, 1 is a compressor that sucks in, compresses, and discharges refrigerant gas; 1 is a switching valve also called a four-way valve that switches the flow path of the refrigerant gas discharged from the compressor 1, and 3 is a user-side heat exchanger (hereinafter simply referred to as a four-way valve) that exchanges heat between the refrigerant gas delivered from the compressor 1 and the user-side fluid. 4 is a non-use side heat exchanger (hereinafter simply called a heat exchanger) that exchanges heat between the refrigerant gas sent from the compressor 1 and a non-use fluid such as outdoor air. ), 5 is heat exchanger 3 and 4
5a is an electric refrigerant flow control valve (hereinafter simply referred to as flow control valve) that is installed in the refrigerant path connecting the refrigerant and adjusts the refrigerant flow rate so as to change high-pressure refrigerant to low-pressure refrigerant. an electromagnetic coil that determines the temperature; 6 is an accumulator that separates liquid refrigerant and gas refrigerant and causes only the gas refrigerant to be sucked into the compressor 1;
7 is a fan for feeding the unused fluid to the heat exchanger 4; 21, 22, and 23 are a refrigerant temperature detection device on the usage side, a refrigerant temperature detection device on the unused side, and a suction refrigerant temperature detection device, which are closely fixed to the refrigerant pipes, respectively. A device (hereinafter referred to simply as a temperature detection device), 24 controls the output value of the flow rate control valve 5, that is, the refrigerant, so that the temperature difference is maintained within a certain range based on the detected temperatures of the temperature detection devices 21, 22, and 23. Control valve drive output value calculation means 25 calculates the flow rate, and 25 supplies a current corresponding to the control valve output value to the electromagnetic coil 5a of the flow rate control valve 5 based on the calculation result of the control valve drive output value calculation means 24.
This is a control valve drive output means that adjusts the valve opening degree by controlling the flow. Note that the solid arrows of the refrigerant feeding path indicate the refrigerant circulation direction during the heating operation to heat the user-side fluid, and the dotted line arrows indicate the refrigerant circulation direction during the cooling operation to cool the user-side fluid.

上記構成により、加熱運転時には圧縮機1から
吐出された高温高圧のガス冷媒は切換弁2を介し
て熱交換器3に供給され、利用側流体に放熱して
加温を行うと同時に液化する。この液化した冷媒
は流量制御弁5によつて減圧され、低温低圧の気
液混合冷媒となり、次いで、熱交換器4に流入し
てフアン7によつて供給された非利用側流体から
吸熱して気化する。このようにして気化したガス
冷媒は切換弁2介してアキユムレータ6に流入
し、熱交換器4で気化しきれずに残つた液冷媒が
ここで分離され、低圧のガス冷媒のみが圧縮機1
に吸入される。
With the above configuration, during heating operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is supplied to the heat exchanger 3 via the switching valve 2, and radiates heat to the user-side fluid to heat it and liquefy at the same time. This liquefied refrigerant is depressurized by the flow control valve 5 to become a low-temperature, low-pressure gas-liquid mixed refrigerant, and then flows into the heat exchanger 4 where it absorbs heat from the unused fluid supplied by the fan 7. Vaporize. The gas refrigerant vaporized in this way flows into the accumulator 6 via the switching valve 2, and the remaining liquid refrigerant that has not been completely vaporized in the heat exchanger 4 is separated here, and only the low-pressure gas refrigerant is transferred to the compressor 6.
is inhaled.

なお、加熱運転時に非利用側流体としての空気
の温度が低い場合には、空気中の水分が熱交換器
4に霜状に付着し、着霜量が多くなると所定の熱
交換性能が得られなくなる。そこで、短時間だけ
切換弁2を切換えて霜を除去する。いわゆる、除
霜運転を行う。この除霜運転時には圧縮機1から
吐出された高温高圧のガス冷媒は切換弁2を介し
て熱交換器4に供給され、これに付着した霜に放
熱して除霜を行うと同時に液化する。以下、上述
した径路とは逆向きで冷媒が流量制御弁5(この
とき流量制御弁の開度は全開になつている)を通
り、次いで、熱交換器3に流入して利用側流体よ
り吸熱して気化する。また、気化したガス冷媒は
切換弁2を介してアキユムレータ6に流入し、続
いて圧縮機1に吸入される。
In addition, when the temperature of the air as the non-use side fluid is low during heating operation, moisture in the air adheres to the heat exchanger 4 in the form of frost, and when the amount of frost increases, the predetermined heat exchange performance cannot be obtained. It disappears. Therefore, the frost is removed by switching the switching valve 2 for a short time. So-called defrosting operation is performed. During this defrosting operation, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is supplied to the heat exchanger 4 via the switching valve 2, and is liquefied at the same time as defrosting by dissipating heat to the frost attached thereto. Hereinafter, the refrigerant passes through the flow control valve 5 (at this time, the opening degree of the flow control valve is fully open) in the opposite direction to the above-mentioned path, and then flows into the heat exchanger 3, absorbing heat from the user-side fluid. and vaporize. Further, the vaporized gas refrigerant flows into the accumulator 6 via the switching valve 2 and is then sucked into the compressor 1.

一方、冷却運転時には上述した除霜運転時と全
く同様に、圧縮機1より吐出された高温高圧の冷
媒ガスは熱交換器4にて液化し、流量制御弁5で
減圧され、次いで、熱交換器3で利用側流体から
吸熱して冷却すると同時に気化し、切換弁2およ
びアキユムレータ6を経て圧縮機1に戻る。
On the other hand, during the cooling operation, the high temperature and high pressure refrigerant gas discharged from the compressor 1 is liquefied in the heat exchanger 4, is depressurized by the flow control valve 5, and is then heat exchanged, just as in the defrosting operation described above. The fluid is cooled and vaporized at the same time by absorbing heat from the usage fluid in the container 3, and returns to the compressor 1 via the switching valve 2 and the accumulator 6.

以上のように必要に応じて加熱運転と冷却運転
との切換えを行うヒートポンプ装置においては、
利用側流体温度および非利用側流体温度が変化し
た場合でも、圧縮機1に戻る冷媒が確実に気化す
るように流量制御弁5の弁開度を調節して冷媒流
量を調整する必要がある。
As described above, in a heat pump device that switches between heating operation and cooling operation as necessary,
Even when the usage side fluid temperature and the non-use side fluid temperature change, it is necessary to adjust the refrigerant flow rate by adjusting the valve opening degree of the flow rate control valve 5 so that the refrigerant returning to the compressor 1 is reliably vaporized.

このため、例えば、加熱運転時には流量制御弁
5を通過した低圧の気液混合冷媒の温度を温度検
出装置22で検出する一方、熱交換器4より流出
したガス冷媒温度を温度検出装置23で検出し、
制御弁駆動出力演算手段24が検出温度差を一定
の範囲に抑え得る出力値を演算し、制御弁駆動出
力手段25がこの出力値になるように電磁コイル
5aに流れる電流を変更して弁開度を調整してい
た。
For this reason, for example, during heating operation, the temperature of the low-pressure gas-liquid mixed refrigerant that has passed through the flow control valve 5 is detected by the temperature detection device 22, while the temperature of the gas refrigerant flowing out from the heat exchanger 4 is detected by the temperature detection device 23. death,
The control valve drive output calculation means 24 calculates an output value that can suppress the detected temperature difference within a certain range, and the control valve drive output means 25 changes the current flowing through the electromagnetic coil 5a so that the detected temperature difference is within a certain range, and opens the valve. I was adjusting the level.

これは、つまり、流量制御弁5を通過した冷媒
は低温低圧の気液混合冷媒となつており、完全な
二相状態であるため冷媒温度は冷媒圧力の飽和温
度になつている。また、熱交換器4に流入した冷
媒は次第に気化すると同時に圧力低下を伴つて熱
交換器4の出口に至る。従つて、熱交換器4の圧
力損失を仮定すると共に、温度検出装置23で冷
媒温度を検出することにより、熱交換器4の出口
での冷媒ガスの過熱量を決定できることになり、
温度検出装置22,23で得られる温度差を一定
の範囲に制御すれば所定の過熱量を有する低圧ガ
ス冷媒のみを圧縮機1に吸入させ得ることに他な
らない。
This means that the refrigerant that has passed through the flow rate control valve 5 is a low-temperature, low-pressure gas-liquid mixed refrigerant, and is in a complete two-phase state, so the refrigerant temperature has reached the saturation temperature of the refrigerant pressure. Further, the refrigerant flowing into the heat exchanger 4 gradually vaporizes and reaches the outlet of the heat exchanger 4 with a pressure drop. Therefore, by assuming the pressure loss of the heat exchanger 4 and detecting the refrigerant temperature with the temperature detection device 23, the amount of superheating of the refrigerant gas at the outlet of the heat exchanger 4 can be determined.
If the temperature difference obtained by the temperature detection devices 22 and 23 is controlled within a certain range, only the low-pressure gas refrigerant having a predetermined amount of superheat can be drawn into the compressor 1.

一方、冷却運転時には、熱交換器3が低圧側の
蒸発器となるので、温度検出装置21による検出
温度と、温度検出器23による検出温度との偏差
が一定の範囲に保たれるように冷媒流量が制御さ
れる。
On the other hand, during cooling operation, the heat exchanger 3 serves as a low-pressure side evaporator, so the refrigerant is heated so that the deviation between the temperature detected by the temperature detection device 21 and the temperature detected by the temperature detector 23 is kept within a certain range. Flow rate is controlled.

[発明が解決しようとする問題点] 上述した従来のヒートポンプ装置では、各部の
冷媒温度検出値に基づいて圧縮機1への吸入ガス
冷媒の過熱量を制御していたので、例えば、加熱
運転時において利用側流体温度が低い場合には高
圧圧力が低くなると共に、温度検出装置22の検
出温度が低下して流量制御弁5の弁開度を必要以
上に小さくしてしまう。この結果、圧縮機1の能
力が大幅に低下するという問題点があつた。
[Problems to be Solved by the Invention] In the conventional heat pump device described above, the amount of superheating of the suction gas refrigerant to the compressor 1 is controlled based on the refrigerant temperature detection value of each part. When the user-side fluid temperature is low, the high pressure becomes low and the temperature detected by the temperature detection device 22 decreases, making the valve opening of the flow rate control valve 5 smaller than necessary. As a result, there was a problem in that the capacity of the compressor 1 was significantly reduced.

また、圧縮機1への吸入ガス冷媒の過熱量を制
御しているために、利用側流体の温度が上昇し、
反対に非利用側流体の温度が低下した条件での高
圧縮比運転においては、圧縮機1より吐出される
ガス冷媒の温度が異常に上昇し、圧縮機1内の潤
滑油の炭化による潤滑不良を起こしたり、圧縮機
駆動電動機の過熱による圧縮機の寿命および信頼
性の低下を招いたりするという問題点があつた。
In addition, since the amount of superheating of the suction gas refrigerant to the compressor 1 is controlled, the temperature of the fluid on the user side increases,
On the other hand, in high compression ratio operation under conditions where the temperature of the unused fluid has decreased, the temperature of the gas refrigerant discharged from the compressor 1 will rise abnormally, resulting in poor lubrication due to carbonization of the lubricating oil in the compressor 1. There have been problems in that the compressor's life and reliability may be reduced due to overheating of the compressor drive motor.

さらにまた、圧縮機1に吸入されるガス冷媒の
検出温度に応じて流量制御弁5の弁開度を調整し
た場合には弁開度調節による冷媒の流量変化が再
びガス冷媒の温度変化をもたらすため、運転が安
定し難く、しかも流量制御弁5が頻繁に開閉動作
するという問題点もあつた。
Furthermore, when the valve opening degree of the flow rate control valve 5 is adjusted according to the detected temperature of the gas refrigerant sucked into the compressor 1, the change in the flow rate of the refrigerant due to the adjustment of the valve opening degree brings about a change in the temperature of the gas refrigerant again. Therefore, there was a problem that the operation was difficult to stabilize, and the flow rate control valve 5 frequently opened and closed.

この発明はかかる問題点を解決するためになさ
れたもので、利用側流体および非利用側流体の温
度が変動した場合でも、圧縮機の運転状態を良好
に保ち得ると共に、流量制御弁が不必要に頻繁に
開閉動作することを防ぎ得、これによつて、装置
全体の信頼性向上および寿命の長大化を図り得る
ヒートポンプ装置の提供を目的とする。
This invention was made to solve these problems, and it is possible to maintain a good operating condition of the compressor even when the temperature of the fluid on the user side and the fluid on the non-user side fluctuates, and there is no need for a flow control valve. The purpose of the present invention is to provide a heat pump device that can prevent frequent opening and closing operations, thereby improving the reliability and extending the life of the entire device.

[問題点を解決するための手段] この発明に係るヒートポンプ装置は、圧縮機と
共に冷凍サイクルを形成、冷媒および利用側流体
間で熱交換する第1の熱交換器と、冷媒および非
利用側流体間で熱交換する第2の熱交換器とを結
ぶ経路に、液冷媒流量を制御する流量制御弁が設
けられたヒートポンプ装置において、前記圧縮機
の吐出冷媒温度を検出する第1の温度検出装置
と、前記利用側流体の温度を検出する第2の温度
検出装置と、前記非利用側流体の温度を検出する
第3の温度検出装置と、前記第2および第3の温
度検出装置の検出温度に基づき、前記流量制御弁
を基準開度にするための制御弁駆動出力基準値及
び前記圧縮機の吐出冷媒基準温度を同時に演算す
る第1の演算手段と、前記第2および第3の温度
検出装置の検出温度がそれぞれ予め設定した温度
範囲内にあるとき前記第1の温度検出装置の検出
温度と前記圧縮機の吐出冷媒基準温度の差に基づ
き、制御弁駆動出力補正値を演算して前記制御弁
駆動出力基準値を補正する第2の演算手段とを備
え、補正された制御弁駆動出力基準値によつて前
記流量制御弁の開度を制御するものである。
[Means for Solving the Problems] A heat pump device according to the present invention includes a first heat exchanger that forms a refrigeration cycle together with a compressor and exchanges heat between a refrigerant and a fluid on a user side, and a first heat exchanger that exchanges heat between a refrigerant and a fluid on a non-user side. A first temperature detection device that detects the temperature of the refrigerant discharged from the compressor in a heat pump device in which a flow rate control valve that controls the flow rate of liquid refrigerant is provided in a path connecting the second heat exchanger that exchanges heat therebetween. a second temperature detection device that detects the temperature of the fluid on the usage side; a third temperature detection device that detects the temperature of the fluid on the non-use side; and temperatures detected by the second and third temperature detection devices. a first calculating means for simultaneously calculating a control valve drive output reference value and a discharge refrigerant reference temperature of the compressor for setting the flow rate control valve to a reference opening degree, and the second and third temperature detection means; When the detected temperature of each device is within a preset temperature range, a control valve drive output correction value is calculated based on the difference between the detected temperature of the first temperature detection device and the discharge refrigerant reference temperature of the compressor, and the control valve drive output correction value is calculated. and second calculation means for correcting the control valve drive output reference value, and controls the opening degree of the flow rate control valve based on the corrected control valve drive output reference value.

[作用] この発明におけるヒートポンプ装置は、利用側
および非利用側流体の温度が変動した場合でも、
圧縮機の運転状態を良好に保ち得ると共に、流量
制御弁が不必要に頻繁に開閉動作することを防ぐ
ことができる。
[Function] The heat pump device according to the present invention can operate even when the temperature of the fluid on the user side and the non-user side changes.
The operating condition of the compressor can be maintained in good condition, and the flow control valve can be prevented from opening and closing unnecessarily frequently.

また、第1の温度検出装置によつて検出された
圧縮機の吐出冷媒温度に基づいて第2の演算手段
が制御弁駆動出力基準値を補正することにより、
温度条件の広範囲な変化に対して圧縮機吐出冷媒
温度の異常過熱を防止している。
Further, the second calculation means corrects the control valve drive output reference value based on the discharge refrigerant temperature of the compressor detected by the first temperature detection device.
This prevents abnormal overheating of the refrigerant temperature discharged from the compressor even under a wide range of changes in temperature conditions.

さらにまた、利用側流体および非利用側流体の
温度が予め設定された温度範囲内にあるときのみ
第2の演算手段が制御弁駆動出力基準値を補正し
ているので、温度範囲を設定しないで補正するこ
とに比べて、流量制御弁の開閉動作回数を大幅に
減らすことできる。
Furthermore, since the second calculation means corrects the control valve drive output reference value only when the temperature of the fluid on the user side and the fluid on the non-user side is within a preset temperature range, there is no need to set a temperature range. Compared to correction, the number of opening and closing operations of the flow control valve can be significantly reduced.

[実施例] 第1図はこの発明の一実施例の全体構成図であ
り、図中1〜7は第4図に示した従来装置と全く
同一のものであり、これら以外の11,12,1
3はそれぞれ利用側流体温度検出装置、非利用側
流体温度検出装置、圧縮機の吐出冷媒温度検出装
置(以下単に温度検出装置と言う)、14は温度
検出装置11および12の検出温度に基づき、流
量制御弁5の駆動出力基準値を演算する制御弁駆
動出力基準値演算手段、15は温度検出装置1
1,12,13の検出温度に基づき、流量制御弁
5の駆動出力補正値を演算する制御弁駆動出力補
正値演算手段、16は制御弁駆動出力基準値演算
手段14および制御弁駆動出力補正値演算手段1
5によつて演算された駆動出力値になるような電
流を電磁コイル5aに流して流量制御弁5の弁開
度を制御する制御弁駆動出力手段である。
[Embodiment] Fig. 1 is an overall configuration diagram of an embodiment of the present invention, in which numerals 1 to 7 are exactly the same as the conventional device shown in Fig. 4, and 11, 12, 1
3 is a utilization side fluid temperature detection device, an unused side fluid temperature detection device, a compressor discharge refrigerant temperature detection device (hereinafter simply referred to as temperature detection device), and 14 is based on the detected temperature of temperature detection devices 11 and 12, Control valve drive output reference value calculation means for calculating the drive output reference value of the flow control valve 5; 15 is a temperature detection device 1;
Control valve drive output correction value calculation means 16 calculates a drive output correction value of the flow control valve 5 based on the detected temperatures of 1, 12, and 13; 16 is a control valve drive output reference value calculation means 14 and a control valve drive output correction value Arithmetic means 1
5 is a control valve drive output means that controls the valve opening degree of the flow rate control valve 5 by causing a current to flow through the electromagnetic coil 5a such that the drive output value calculated by 5 is obtained.

尚、ここで、流量制御弁5は制御弁駆動出力基
準値演算手段14による基準値が大きな値に変化
した場合は制御弁開度を閉方向に動作し、小さな
値に変化した場合は制御弁開度は開方向に動作
し、また基準値が零の場合は制御弁開度は全開と
なるように動作する。
Here, the flow control valve 5 operates the control valve opening in the closing direction when the reference value determined by the control valve drive output reference value calculation means 14 changes to a large value, and operates the control valve opening in the closing direction when the reference value changes to a small value. The opening degree operates in the opening direction, and when the reference value is zero, the control valve opening degree operates so as to be fully open.

第2図は第1図に示した実施例の主要部の詳細
な構成を示す回路図であり、図中30はCPU3
1、メモリ32、入力回路33および出力回路3
4を有するマイクロコンピユータ、35はアナロ
グ量で入力される温度検出値をデイジタル量に変
換して入力回路33に加えるA/D変換器、36
は出力回路34の出力に応じたパルス数のパルス
信号を電磁コイル5aに加えるパルス発生器、3
7はヒートポンプ装置の運転スイツチ、38はこ
のヒートポンプ装置を冷却運転と加熱運転とに切
換える切換スイツチ、41,42,43は温度検
出装置11,12,13にそれぞれ直列にして電
源に接続された抵抗、44,45は運転スイツチ
37、切換スイツチ38にそれぞれ直列にして電
源に接続された抵抗、46は制御装置本体であ
る。
FIG. 2 is a circuit diagram showing the detailed configuration of the main parts of the embodiment shown in FIG.
1, memory 32, input circuit 33 and output circuit 3
4, an A/D converter 35 that converts the temperature detection value input as an analog quantity into a digital quantity and applies it to the input circuit 33;
3 is a pulse generator that applies a pulse signal of the number of pulses corresponding to the output of the output circuit 34 to the electromagnetic coil 5a;
7 is an operation switch for the heat pump device, 38 is a changeover switch for switching the heat pump device between cooling operation and heating operation, and 41, 42, and 43 are resistors connected to the power source in series with the temperature detection devices 11, 12, and 13, respectively. , 44 and 45 are resistors connected in series with the operation switch 37 and the changeover switch 38, respectively, and connected to a power source, and 46 is the main body of the control device.

上記のように構成されたヒートポンプ装置の冷
凍サイクルの動作は従来装置と同様であるのでそ
の説明を省略し、主に、流量制御弁5の制御動作
を、第3図のフローチヤートをも参照して以下に
説明する。なお、第3図のフローチヤートは第2
図に示すマイクロコンピユータ30のメモリ32
に記憶されているプログラムのうち、流量制御弁
5を制御する部分を示すものである。
The operation of the refrigeration cycle of the heat pump device configured as described above is the same as that of the conventional device, so a description thereof will be omitted, and the control operation of the flow rate control valve 5 will be mainly explained with reference to the flowchart in FIG. This will be explained below. Note that the flowchart in Figure 3 is based on the second flowchart.
Memory 32 of the microcomputer 30 shown in the figure
This shows the portion of the program stored in the program that controls the flow rate control valve 5.

先ず、運転スイツチ37が投入されると、切換
スイツチ38の状態を示す信号が入力回路33に
入力されて圧縮機1の運転が開始されると、第3
図のステツプ50からプログラムが実行される。ス
テツプ50では運転開始から時間をカウントし、30
秒経過するごとにステツプ51の処理に進むが、こ
れ以外ではステツプ54の処理に進む。このうち、
ステツプ51では温度検出装置11,12でそれぞ
れ得られた利用側流体温度Tw、非利用側流体温
度Taをそれぞれ読み込む。そして、ステツプ52,
53では読み込んだ流体温度Tw,Taを基にして
それぞれ流量制御弁5の制御駆動出力基準値Qis
および圧縮機吐出冷媒基準温度Tdsを演算する。
一方、ステツプ54では除霜運転中か否かを判断
し、除霜運転中であればステツプ64の処理へ進
み、除霜運転中以外であればステツプ55の処理へ
進む。
First, when the operation switch 37 is turned on, a signal indicating the state of the changeover switch 38 is input to the input circuit 33 and the operation of the compressor 1 is started.
The program is executed from step 50 in the figure. In step 50, the time is counted from the start of operation, and 30
Each time the second elapses, the process proceeds to step 51; otherwise, the process proceeds to step 54. this house,
In step 51, the utilization side fluid temperature Tw and the non-utilization side fluid temperature Ta obtained by the temperature detection devices 11 and 12, respectively, are read. And step 52,
53, the control drive output reference value Qis of the flow control valve 5 is determined based on the read fluid temperatures Tw and Ta.
and calculate the compressor discharge refrigerant reference temperature Tds.
On the other hand, in step 54, it is determined whether or not the defrosting operation is in progress. If the defrosting operation is in progress, the process proceeds to step 64, and if the defrosting operation is not in progress, the process proceeds to step 55.

次に、ステツプ55では利用側流体温度Twおよ
び非利用側流体温度Taが予め設定した範囲内か、
判定し、設定範囲内にあればステツプ56の処理に
進む。ステツプ56では運転開始から時間をカウン
トし、4分刻みの時点か否かを判定し、4分刻み
の時点になる毎にステツプ57の処理を行う。この
ステツプ57では温度検出装置13で検出された圧
縮機吐出冷媒装置Tdを読み込み、ステツプ58で
はこの圧縮機吐出冷媒温度Tdと、上記ステツプ
53で演算された圧縮機吐出冷媒基準温度Tdsと比
較し、Td>Tds+Aの時、すなわち、基準温度
Tdsに比較して実際の温度TdがA℃以上高い場
合にはステツプ59の処理に進み、流量制御弁5の
制御弁駆動出力補正値QicをCだけ減少させる。
ここで、Td<Tds+Aの関係にあれば、ステツ
プ60へ進み、圧縮機吐出冷媒基準温度Tdsよりさ
らに、B℃だけ低いか否か、すなわち、Td<
Tds−Bの時にはステツプ61へ進み、制御弁駆動
出力補正値QicをCだけ増加させてステツプ62へ
進む。また、圧縮機吐出冷媒温度Tdが(Tds−
B)と(Tds+A)との間に入つている場合には
ステツプ60の処理を実行しないので制御弁駆動出
力補正値Qicは変化しない。そして、ステツプ62
でQicを記憶し、ステツプ63ではステツプ52で得
られた制御弁駆動出力基準値Qisとステツプ62で
記憶した制御弁駆動出力補正値Qicを加算し、制
御弁駆動出力値Qiを決定すると、ステツプ66で
この制御弁駆動出力値Qiが、第2図に示す出力
回路34に加え、パルス発生器36が流量制御弁
5の電磁コイル5aに流れる電流を制御する。な
お、ステツプ55で利用側流体温度Twおよび非利
用側流体温度Taが予め設定した範囲外の場合に
はステツプ62に進むため圧縮機吐出冷媒温度Td
による制御弁駆動出力補正値Qicは変化しない。
このことは、加熱運転時で利用側流体温度Twが
それほど高くない条件下では高圧圧力が低く、圧
縮機吐出冷媒温度Tdも高くならないので、制御
弁駆動補正値Qicを加える必要がないことを意味
している。
Next, in step 55, it is determined whether the fluid temperature Tw on the user side and the fluid temperature Ta on the non-user side are within the preset range.
It is determined, and if it is within the set range, the process proceeds to step 56. In step 56, time is counted from the start of operation, and it is determined whether or not the time is in 4-minute increments, and the process in step 57 is performed every time in 4-minute increments. In this step 57, the compressor discharge refrigerant device Td detected by the temperature detection device 13 is read, and in step 58, this compressor discharge refrigerant temperature Td and the above step are read.
53, and when Td>Tds+A, that is, the reference temperature
If the actual temperature Td is higher than Tds by A° C. or more, the process proceeds to step 59, where the control valve driving output correction value Qic of the flow rate control valve 5 is decreased by C.
Here, if the relationship is Td<Tds+A, proceed to step 60, and check whether or not the compressor discharge refrigerant reference temperature Tds is lower by B°C, that is, Td<
When Tds-B, the process proceeds to step 61, where the control valve drive output correction value Qic is increased by C, and the process proceeds to step 62. Also, the compressor discharge refrigerant temperature Td is (Tds−
B) and (Tds+A), the process of step 60 is not executed and the control valve drive output correction value Qic does not change. And step 62
In step 63, the control valve drive output reference value Qis obtained in step 52 and the control valve drive output correction value Qic stored in step 62 are added to determine the control valve drive output value Qi. At 66, this control valve drive output value Qi is added to the output circuit 34 shown in FIG. Note that if the fluid temperature Tw on the user side and the fluid temperature Ta on the non-user side are outside the preset range in step 55, the process proceeds to step 62, so the compressor discharge refrigerant temperature Td is
The control valve drive output correction value Qic does not change.
This means that when the user fluid temperature Tw is not so high during heating operation, the high pressure is low and the compressor discharge refrigerant temperature Td does not become high, so there is no need to add the control valve drive correction value Qic. are doing.

一方、ステツプ54で除霜運転中と判断された場
合にはステツプ64へ進み、タイマカウントをリセ
ツトし、ステツプ65で制御弁駆動出力値Qiを一
定値Dにする。除霜運転時には利用側流体温度
Tw、非利用側流体温度Taとは無関係に、例え
ば、流量制御弁5の弁開度が最大になるように設
定して除霜時間を短くする。また、除霜運転時に
はステツプ55〜63の処理は実行されないため、除
霜中の不安定な圧縮機吐出冷媒温度Tdを読み込
んで制御弁駆動出力補正値Qicを書換えないよう
にしている。さらに、除霜終了後4分間は、ステ
ツプ56の判断でステツプ57の処理に移ることはな
く、除霜終了後の不安定運転中に制御弁駆動出力
補正値Qicの書換えを回避している。
On the other hand, if it is determined in step 54 that the defrosting operation is in progress, the process proceeds to step 64, where the timer count is reset, and the control valve drive output value Qi is set to a constant value D in step 65. During defrosting operation, the fluid temperature on the user side
For example, the defrosting time is shortened by setting the valve opening of the flow rate control valve 5 to be maximum, regardless of Tw and the unused fluid temperature Ta. Furthermore, since the processes in steps 55 to 63 are not executed during defrosting operation, the control valve drive output correction value Qic is not rewritten by reading the unstable compressor discharge refrigerant temperature Td during defrosting. Further, for 4 minutes after the end of defrosting, the judgment at step 56 does not proceed to the processing at step 57, thereby avoiding rewriting of the control valve drive output correction value Qic during unstable operation after the end of defrosting.

ところで、ステツプ56の機能は、上述した除霜
終了後の不安定運転域での誤つた補正を防止する
だけでなく、運転開始直後の不安定運転域での補
正をも防止している。また、制御弁駆動出力基準
値Qicは30秒ごとに書換えているのに対して、圧
縮機吐出冷媒温度Tdによる制御弁駆動出力補正
値Qicを4分毎に書換えているのは、流量制御弁
5の不必要な開閉動作を行なわせないようにする
ためのものである。すなわち、流量制御弁5の変
化に対して相当の時間遅れをもつて圧縮機吐出冷
媒温度Tdが変化するので、この遅れ時間を見込
んで補正間隔を長くし、これによつて頻繁な補正
動作を避けると同時に、短時間にて安定運転状態
に到達するようにしている。
By the way, the function of step 56 not only prevents erroneous correction in the unstable operation range after the end of defrosting, but also prevents correction in the unstable operation range immediately after the start of operation. Furthermore, while the control valve drive output reference value Qic is rewritten every 30 seconds, the control valve drive output correction value Qic based on the compressor discharge refrigerant temperature Td is rewritten every 4 minutes because the flow rate control valve This is to prevent unnecessary opening/closing operations as shown in step 5. That is, since the compressor discharge refrigerant temperature Td changes with a considerable time delay in response to a change in the flow rate control valve 5, the correction interval is lengthened in consideration of this delay time, thereby making it possible to perform frequent correction operations. At the same time, we aim to reach a stable operating state in a short period of time.

なお、制御弁駆動出力基準値Qisの演算周期お
よび制御弁駆動出力補正値Qicの演算周期はそれ
ぞれ上述した30秒および4分に限定されるもので
はなく、加熱、冷却負荷に応じて適切に決めれば
よいものであるけれども、前者に比して後者の周
期を格段に大きく決めることによつて流量制御弁
が不必要に頻繁に開閉動作することを防ぐことが
できる。
Note that the calculation cycle of the control valve drive output reference value Qis and the calculation cycle of the control valve drive output correction value Qic are not limited to the above-mentioned 30 seconds and 4 minutes, respectively, but can be determined appropriately according to the heating and cooling loads. However, by setting the latter cycle much larger than the former, it is possible to prevent the flow rate control valve from opening and closing unnecessarily frequently.

[発明の効果] 以上のように、この発明によれば、圧縮機と共
に冷凍サイクルを形成し、冷媒および利用側流体
間で熱交換する第1の熱交換器と、冷媒および非
利用側流体間で熱交換する第2の熱交換器とを結
ぶ経路に、液冷媒流量を制御する流量制御弁が設
けられたヒートポンプ装置において、前記圧縮機
の吐出冷媒温度を検出する第1の温度検出装置
と、前記利用側流体の温度を検出する第2の温度
検出装置と、前記非利用側流体の温度を検出する
第3の温度検出装置と、前記第2および第3の温
度検出装置の検出温度に基づき、前記流量制御弁
を基準開度にするための制御弁駆動出力基準値及
び前記圧縮機の吐出冷媒基準温度を同時に演算す
る第1の演算手段と、前記第2および第3の温度
検出装置の検出温度がそれぞれ予め設定した温度
範囲内にあるとき前記第1の温度検出装置の検出
温度と前記圧縮機の吐出冷媒基準温度の差に基づ
き、制御弁駆動出力補正値を演算して前記制御弁
駆動出力基準値を補正する第2の演算手段とを備
え、補正された制御弁駆動出力基準値によつて前
記流量制御弁の開度を制御する構成にしたので、
的確な補正が可能となり、利用側および非利用側
流体の温度が変動した場合でも、圧縮機の運転状
態を良好に保ち得ると共に、流量制御弁が不必要
に頻繁に開閉動作することを防ぐことができる。
[Effects of the Invention] As described above, according to the present invention, the first heat exchanger forms a refrigeration cycle together with the compressor and exchanges heat between the refrigerant and the fluid on the utilization side, and the first heat exchanger that exchanges heat between the refrigerant and the fluid on the non-utilization side. In the heat pump device, a flow rate control valve for controlling the flow rate of liquid refrigerant is provided in a path connecting the second heat exchanger with which the heat exchanger exchanges heat. , a second temperature detection device that detects the temperature of the fluid on the utilization side, a third temperature detection device that detects the temperature of the fluid on the non-utilization side, and a temperature detected by the second and third temperature detection devices; a first calculation means for simultaneously calculating a control valve drive output reference value and a discharge refrigerant reference temperature of the compressor for setting the flow rate control valve to a reference opening degree based on the first calculation means; and the second and third temperature detection devices. When the detected temperatures of the first temperature detection device and the discharge refrigerant reference temperature of the compressor are within respective preset temperature ranges, a control valve drive output correction value is calculated based on the difference between the temperature detected by the first temperature detection device and the reference temperature of the refrigerant discharged from the compressor. and a second calculation means for correcting the valve drive output reference value, and the opening degree of the flow rate control valve is controlled by the corrected control valve drive output reference value.
To enable accurate correction, to maintain a good operating condition of the compressor even when the temperature of the fluid on the user side and the non-user side fluctuates, and to prevent the flow control valve from opening and closing unnecessarily frequently. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の全体構成図、第
2図は同実施例の主要部の詳細な構成を示す回路
図、第3図は同実施例の動作を説明するためのフ
ローチヤート、第4図は従来のヒートポンプ装置
の全体構成図である。 図において、1は圧縮機、2は切換弁、3は利
用側熱交換器、4は非利用側熱交換器、5は電気
式流量制御弁、5aは電磁コイル、6はアキユム
レータ、11は利用側流体温度検出装置、12は
非利用側流体温度検出装置、13は吐出冷媒温度
検出装置である。なお、各部中、同一符号は同一
又は相当部分を示す。
Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2 is a circuit diagram showing the detailed configuration of the main part of the embodiment, and Fig. 3 is a flowchart for explaining the operation of the embodiment. , FIG. 4 is an overall configuration diagram of a conventional heat pump device. In the figure, 1 is a compressor, 2 is a switching valve, 3 is a heat exchanger on the use side, 4 is a heat exchanger on the non-use side, 5 is an electric flow control valve, 5a is an electromagnetic coil, 6 is an accumulator, and 11 is a use side heat exchanger. 12 is a side fluid temperature detection device, 13 is a discharge refrigerant temperature detection device. In each part, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機と共に冷凍サイクルを形成し、冷媒お
よび利用側流体間で熱交換する第1の熱交換器
と、冷媒および非利用側流体間で熱交換する第2
の熱交換器とを結ぶ経路に、液冷媒流量を制御す
る流量制御弁が設けられたヒートポンプ装置にお
いて、前記圧縮機の吐出冷媒温度を検出する第1
の温度検出装置と、前記利用側流体の温度を検出
する第2の温度検出装置と、前記非利用側流体の
温度を検出する第3の温度検出装置と、前記第2
および第3の温度検出装置の検出温度に基づき、
前記流量制御弁を基準開度にするための制御弁駆
動出力基準値及び前記圧縮機の吐出冷媒基準温度
を同時に演算する第1の演算手段と、前記第2お
よび第3の温度検出装置の検出温度がそれぞれ予
め設定した温度範囲内にあるとき前記第1の温度
検出装置の検出温度と前記圧縮機の吐出冷媒基準
温度の差に基づき、制御弁駆動出力補正値を演算
して前記制御弁駆動出力基準値を補正する第2の
演算手段とを備え、補正された制御弁駆動出力基
準値によつて前記流量制御弁の開度を制御するこ
とを特徴とするヒートポンプ装置。
1 A first heat exchanger that forms a refrigeration cycle with the compressor and exchanges heat between the refrigerant and the fluid on the user side, and a second heat exchanger that exchanges heat between the refrigerant and the fluid on the non-user side.
In the heat pump device, a flow control valve for controlling the flow rate of liquid refrigerant is provided in a path connecting the heat exchanger to the heat exchanger.
a second temperature detection device for detecting the temperature of the fluid on the usage side, a third temperature detection device for detecting the temperature of the fluid on the non-utilization side, and a second temperature detection device for detecting the temperature of the fluid on the non-utilization side;
and based on the detected temperature of the third temperature detection device,
a first calculation means for simultaneously calculating a control valve drive output reference value for setting the flow control valve to a reference opening degree and a discharge refrigerant reference temperature of the compressor; and detection by the second and third temperature detection devices. When the temperature is within a preset temperature range, a control valve drive output correction value is calculated based on the difference between the temperature detected by the first temperature detection device and the reference temperature of the refrigerant discharged from the compressor, and the control valve is driven. a second calculation means for correcting an output reference value, and controlling the opening degree of the flow rate control valve based on the corrected control valve drive output reference value.
JP28225985A 1985-12-13 1985-12-13 Heat pump device Granted JPS62141472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28225985A JPS62141472A (en) 1985-12-13 1985-12-13 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28225985A JPS62141472A (en) 1985-12-13 1985-12-13 Heat pump device

Publications (2)

Publication Number Publication Date
JPS62141472A JPS62141472A (en) 1987-06-24
JPH0566501B2 true JPH0566501B2 (en) 1993-09-21

Family

ID=17650120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28225985A Granted JPS62141472A (en) 1985-12-13 1985-12-13 Heat pump device

Country Status (1)

Country Link
JP (1) JPS62141472A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680672A (en) * 1979-12-05 1981-07-02 Matsushita Electric Ind Co Ltd Controller for temperature of air conditioner
JPS60194260A (en) * 1984-03-15 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680672A (en) * 1979-12-05 1981-07-02 Matsushita Electric Ind Co Ltd Controller for temperature of air conditioner
JPS60194260A (en) * 1984-03-15 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight

Also Published As

Publication number Publication date
JPS62141472A (en) 1987-06-24

Similar Documents

Publication Publication Date Title
USRE43998E1 (en) Refrigeration/air conditioning equipment
CN105371545B (en) The refrigerant circulation amount adjustment method of air conditioner and its refrigeration system
TW200523514A (en) Refrigerator
CN111750486B (en) Control method and device for preventing indoor unit from freezing and air conditioner
CN102734969B (en) The hot-water central heating system of freezing cycle device and this freezing cycle device of outfit
JP2002054836A (en) Indoor multi-air conditioner
CN109458747B (en) Air conditioner external unit, air conditioner and method for adjusting refrigerant in air conditioner
EP3199889B1 (en) Air conditioner
US20060179858A1 (en) Refrigerator
JP3267187B2 (en) Heat pump water heater
KR101296064B1 (en) Air conditioner and control method thereof
JP4363483B2 (en) Refrigeration equipment
JP3668750B2 (en) Air conditioner
JP2003269809A (en) Cooling device and thermostatic device
CN111148949A (en) Refrigerating device
JP2003106610A (en) Refrigeration unit
JPH04340046A (en) Operation control device of air conditioner
JPH0566501B2 (en)
JPH0563699B2 (en)
KR20190055961A (en) Air conditioner and the method controlling the same
JPH10185343A (en) Refrigerating equipment
CN113970227A (en) Three-system refrigerator and control method
JPS62141470A (en) Heat pump device
JP2004020103A (en) Temperature control chiller
CN115164302B (en) Air conditioning system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term