JP2004020103A - Temperature control chiller - Google Patents

Temperature control chiller Download PDF

Info

Publication number
JP2004020103A
JP2004020103A JP2002177343A JP2002177343A JP2004020103A JP 2004020103 A JP2004020103 A JP 2004020103A JP 2002177343 A JP2002177343 A JP 2002177343A JP 2002177343 A JP2002177343 A JP 2002177343A JP 2004020103 A JP2004020103 A JP 2004020103A
Authority
JP
Japan
Prior art keywords
temperature control
temperature
circuit
compressor
chiller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002177343A
Other languages
Japanese (ja)
Other versions
JP2004020103A5 (en
Inventor
Kazuyoshi Shimoda
下田 一喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADD KK
Original Assignee
ADD KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADD KK filed Critical ADD KK
Priority to JP2002177343A priority Critical patent/JP2004020103A/en
Publication of JP2004020103A publication Critical patent/JP2004020103A/en
Publication of JP2004020103A5 publication Critical patent/JP2004020103A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a constant-temperature chiller for manufacturing equipment improving the stability of the temperature control while expanding the limit value of the temperature regulation and reducing the manufacturing cost and the operation cost by simplifying the device whole body. <P>SOLUTION: This constant-temperature chiller 1 for the manufacturing equipment comprises a circulating path 2 supplying the temperature control liquid, a heat exchanger 5, a compressor retaining temperature control liquid for the circulating path at a prescribed temperature via the heat exchanger, and a refrigeration circuit 3 comprising a condenser and a vaporizer. This chiller is formed by disposing a flow rate setting device 14 between the condenser 13 and the vaporizer which comprise the refrigeration circuit 2 and by disposing a branch circuit 16 having a flow regulating valve 15 between the compressor 12 and the vaporizer. An intake pressure regulating valve 17 is disposed between the vaporizer and the compressor 12 comprising the refrigeration circuit so as to regulate the refrigerant to be supplied to the compressor to a prescribed amount, and the flow regulating valve 15 is connected to a temperature controller 11 provided in the circulating path so as to interlockingly regulate the opening/closing of the flow regulating valve 15. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は温度制御チラーに関し、特に循環回路に対する温度制御を遅延させること無く実施すると共に全体を簡素な構成にすることで総合コストを低減させる温度制御チラーに関する。
【0002】
【従来の技術】
一般に言われるチラーは、温度制御液を供給する循環回路、熱交換器及び該熱交換器を介して循環回路の温度制御液を所定の温度に保っている圧縮機、凝縮器及び蒸発器から成る冷凍回路から構成されており、循環回路の循環液を所望の温度に設定すると同時にその設定温度を恒常的に維持するように温度制御している。
【0003】
チラーを使用している分野は多岐に亘っており、主な用途としては、半導体、液晶等の製造装置及びレーザー機器の冷却、加熱に使用される循環器であり、半導体及び液晶の製造装置の中でも主にエッチングプロセスやスパッタプロセス、CVDプロセスに使用されている。チラーは、この他にも、露光装置に使用するレーザーの発信管や半導体テスターの温度試験装置の冷却、工作機械のオイル冷却、射出成形器用の金型や恒温装置等の温度調整にも使用されており、さらには、水槽の水温制御にも使用されており、その対応分野は広範囲に及んでいる。
【0004】
いずれの場合においても、チラーの温度管理は、極めて厳格に行われるものであって高精度な温度制御を要求されているために、一般的なチラーは、上記の機器に温度制御液を供給している循環液回路とこの循環液回路の循環液を冷却している冷凍サイクル回路及び循環液回路の循環液を温度管理するための加熱回路の組み合わせで構成されている。
【0005】
即ち、従来の例としては、図2に示すチラー20が一般的である。本例では、循環液回路21、冷凍サイクル回路22及び循環液を温度管理する加熱回路23を組み合わせることで構成されている。循環液回路21は、製造装置21−1に温度制御液を供給するために循環ポンプ21−2を備えており、温度制御液の供給量を管理するために圧力調整弁21−3が配置されている。
【0006】
本チラー20の温度管理は、冷凍サイクル回路22に設けた循環液タンク21−4内に配置した蒸発器24で循環液をその能力最大値まで冷却しておきながら、その後において、ヒーター25を使用することによって、この低温循環液を加熱するものであり、この加熱によって循環液を所定の温度に昇温制御しながら温度管理している。
【0007】
又、循環液を能力最大値まで冷却している蒸発器24は、冷凍サイクル回路22に配置されながら凝縮冷媒を蒸発させることで熱交換するものであり、冷凍サイクル回路22は、蒸発器24の他に冷媒を圧縮する圧縮機22−1、圧縮冷媒を凝縮する凝縮器22−2から構成されている。冷凍サイクル回路22には、凝縮冷媒を管理するために温度膨張弁22−3及びドライヤー22−4も配置されている。
【0008】
しかるに、本例のチラー20は、循環液回路21において最大の冷却を行いながら、ヒーター25の使用で加熱を行うために、以下の問題点を露呈しており装置全体を大容量にしていた。
【0009】
▲1▼ 温度制御時において遅延状態が発生して温度の安定性が悪い。
▲2▼ 循環回路の最大加熱領域が低く制限され、制御精度も悪くなっている。
▲3▼ ヒーターを入れるために循環液タンクが必要になる。
▲4▼ 使用する循環液が、循環液タンクを満たす分だけ大量になる。
▲5▼ チラー本体の消費電力が大きくなる。
【0010】
一方、図3に示すチラーの冷凍サイクル回路30は、冷媒を圧縮する圧縮機31と圧縮冷媒を凝縮する凝縮器32、圧縮冷媒の流通を制御しているON/OFF電磁弁33及びON/OFF電磁弁33を流通してくる凝縮冷媒を蒸発させる蒸発器34から構成されると共に、圧縮機31からの圧縮冷媒を分流弁35が設けられている分流回路36を通じて蒸発器34に直接供給しており、蒸発器34において、上記例と同様に表示していない循環回路の循環液と熱交換することでチラーを構成している。尚、37は、ドライヤーであり、凝縮冷媒を管理しながら蒸発器34に供給している。
【0011】
冷凍サイクル回路30の運転は、冷凍サイクル回路内の圧縮機31からの圧縮冷媒を凝縮器32で凝縮しながらON/OFF電磁弁33の開閉によって蒸発器34に供給したり、ON/OFF電磁弁33の開閉に連動させて反対に作動する分流弁35の開閉によって圧縮冷媒を蒸発器34に直接供給している。
【0012】
そして、冷凍サイクル回路30は、ON/OFF電磁弁33と分流弁35とを交互に開閉制御することによって、蒸発器33に直接供給する圧縮冷媒の供給量を調整することで循環液の温度を制御している。
【0013】
しかして、本冷凍サイクル回路30は以下のような問題点を抱えており、その改善が要望されている。
【0014】
▲1▼ ON/OFF電磁弁と分流弁との交互開閉で制御するので蒸発器の温度制御は安定性が悪い。
▲2▼ 分流弁の耐久性が悪い。
▲3▼  圧縮冷媒の循環が圧縮機の耐久性に悪影響を与える。
▲4▼ 冷凍サイクル回路の昇温可能範囲が20℃を限界にしている。
【0015】
以上のように、従来のチラーは、いずれの例にあっても温度制御液における温度調整が遅延等で安定性を悪くすると同時に、ヒーター等を要しているために機器の大きさや温度制御液の容量においても嵩張りを生じており、製造コストと運転コストを増大させていた。
【0016】
【発明が解決しようとする課題】
本発明は、チラーにおける上記のような現状に鑑みて提案するものであり、温度調整の限界値を拡大しながら温度制御の安定性を良くすると共に、装置全体を簡素にして製造コストと運転コストの低減を図ることができる温度制御チラーを提供している。
【0017】
【課題を解決するための手段】
本発明による温度制御チラーは、基本的に、温度制御液を供給する循環回路と熱交換器及び熱交換器を介して循環回路の温度制御液を所定の温度に保っている圧縮機、凝縮器及び蒸発器から成る冷凍回路で構成され、冷凍回路を構成する凝縮器と蒸発器との間に流量設定具を配置して圧縮機と蒸発器との間に流量調整弁を備えた分流回路を配置して成り、具体的には、吸入圧力調整弁を冷凍回路を構成する蒸発器と圧縮機との間に配置して、圧縮機に供給する冷媒を所定量に調整したり、流量調整弁を循環回路に設けた温度制御装置に接続して、温度制御装置で流量調整弁の開閉を連動的に調整することを特徴としている。
【0018】
これによって、本発明による温度制御チラーは、温度調整の限界値を拡大しながら温度制御の安定性を良くすると共に、装置全体を簡素にして製造コストと運転コストの低減している。
【0019】
【発明の実施の形態】
本発明による温度制御チラーは、温度制御液を供給する循環回路と熱交換器及び熱交換器を介して循環回路の温度制御液を所定の温度に保っている圧縮機、凝縮器及び蒸発器から成る冷凍回路で成る温度制御チラーにおいて、冷凍回路を構成する凝縮器と蒸発器との間に流量設定具を配置して圧縮機と蒸発器との間に流量調整弁を備えた分流回路を配置し、吸入圧力調整弁を冷凍回路を構成する蒸発器と圧縮機との間に配置すると共に、流量調整弁を循環回路に設けた温度制御装置に接続して流量調整弁の開閉を連動的に調整している。
【0020】
以下に、本発明による温度制御チラーに関する実施の形態を図面に基づいて詳細に説明する。
【0021】
図1は、本発明による温度制御チラーの実施形態を示す概要図であり、温度制御チラー1は、循環回路2と冷凍回路3とから構成されている。
【0022】
循環回路2は、半導体、液晶の製造装置及びレーザー機器等の製造装置4に対して熱交換器5によって温度調整された温度制御液を供給しており、温度制御液を循環させるための循環ポンプ6と循環液を補充するための循環液注入タンク7から構成されている。
【0023】
尚、圧力調整バルブ8は、製造装置2に対する温度制御液の循環を調整するために配置しているものであり、圧力計9及び温度センサー10は、後述の温度制御ユニット11に必要な制御信号を提供するために配置されている。
【0024】
一方、冷凍回路3は、フロンガス等の冷媒を圧縮して高温化する圧縮機12とその出力である高温の圧縮冷媒を凝縮して液化するための凝縮器13及び液化された凝縮冷媒を気化させることで周囲の熱を奪う蒸発器から構成されており、蒸発器は、上記循環回路2の熱交換器5に配置されている。
【0025】
又、凝縮器13は、高温の圧縮冷媒をクーリングタワー水、工場内循環水、地下水等の冷却水を制水弁18及びストレーナー19によって管理しながら、供給されることで圧縮冷媒を冷却しながら液化している。凝縮冷媒は、循環回路2の循環液と熱交換することによって循環液を冷却しており、これによって、上記循環回路2の循環液を所望の温度制御液に変成している。
【0026】
本発明による温度制御チラー1では、上記の基幹構成に加えて、凝縮器13と熱交換器3における蒸発器との間に流量設定具14を配置しており、これと同時に、圧縮機12と熱交換器5に配置した蒸発器との間に流量調整弁15を備えた分流回路16を構成している。又、熱交換器3の蒸発器から帰還してくる圧縮機12の吸込側には、吸入圧力調整弁17を配置しており、圧縮機12に必要以上の圧力が加えられないように一定の圧力値に調整している。
【0027】
流量設定具14は、手動膨張弁等が適用可能であり、熱交換器3における蒸発器が所定の冷却能力を発揮できるように、凝縮器13からの液化された凝縮冷媒をドライヤー37で乾燥させながら蒸発器に供給する適切な量に調整している。
【0028】
従って、蒸発器が発揮する冷却能力が複数段階に区分されている場合には、流量設定具14も手動膨張弁によって複数段階に流量設定できるように切換可能な構造に形成されることになる。
【0029】
しかして、分流回路16に備えられた流量調整弁15は、圧縮機12からの高温状態にある圧縮冷媒を流量調整しながら蒸発器に直接供給しており、配置されている熱交換器5の蒸発器は、所定の冷却状態に設定されている状態にありながら、製造装置4に供給する循環液を昇温する必要が発生した場合に、圧縮冷媒の高温エネルギーを活用しながら循環液の温度調整を迅速に制御するものであり、製造装置4に対して供給する温度制御液の温度変更を迅速かつ高精度に達成しているものである。
【0030】
従って、温度制御液の温度変更は、製造装置4に供給されている必要最低量の循環液に対して適用されると共に、熱交換器5の設定温度を中心に調整を加えているので、温度変更に必要なエネルギーは最低で温度調整量も最小値にできるものである。
【0031】
尚、圧縮冷媒を熱交換器5の蒸発器に直接供給しているために、大量の圧縮冷媒が圧縮機12に吸い込まれると、圧縮機12が過負荷状態になることから、上述のように吸入圧力調整弁17を配置して一定の圧力値に調整してこれを回避している。
【0032】
さらに、本実施の形態では、流量調整弁15を温度制御ユニット11によって制御している。これによって、上述のように温度制御液を温度変更したい場合には、温度制御ユニット11を設定し直すと、温度制御液はその温度を迅速に変更できると共に、圧力計9及び温度センサー10からの信号によって温度制御ユニット11は、流量調整弁15を制御することで所望の設定値が高精度で維持されることになる。
【0033】
以上のように、本発明による温度制御チラーは、チラーの基幹回路に加えて冷凍回路を構成する凝縮器と蒸発器との間に流量設定具を配置し圧縮機と蒸発器との間に流量調整弁を備えた分流回路を配置しているので、循環液回路と冷凍サイクル回路のみで従来のチラーよりもその性能を上回っており、以下の機能を発揮することで温度制御の安定性を良くすると共に、装置全体を簡素にして製造コストと運転コストを低減している。
【0034】
▲1▼ 冷凍回路の圧縮冷媒を加熱源にし循環回路の加熱装置を不要にするので、消費電力を従来装置よりも30%以上削減することができる。
▲2▼ 循環回路の最大加熱領域を90℃まで拡大できる。
▲3▼ 圧縮冷媒の流量制御で温度設定範囲60℃〜−30℃の間において±0.2℃以内の温度安定性を確保できるので、温度制御性を向上できる。
▲4▼ 加熱装置を投入するタンクが不要になるので、装置を簡素化して使用する循環液量を少なくできる。
▲5▼ フロンガス等の冷媒を冷凍回路に限定できるので、循環回路の修理でフロンガス等を対象にする必要がない
【0035】
以上、本発明を実施の形態に基づいて詳細に説明してきたが、本発明による温度制御チラーは、上記実施の形態に何ら限定されるものでなく、その適用範囲や適用形態は自由であり、蒸発器、熱交換器、流量設定具、吸入圧力調整弁及び流量調整弁等に関して、本発明の趣旨を逸脱しない範囲において種々の変更が可能であることは当然のことである。
【0036】
【発明の効果】
本発明による温度制御チラーは、基本的に、温度制御液を供給する循環回路と熱交換器及び熱交換器を介して循環回路の温度制御液を所定の温度に保っている圧縮機、凝縮器及び蒸発器から成る冷凍回路から構成され、冷凍回路を構成する凝縮器と蒸発器との間に流量設定具を配置して圧縮機と蒸発器との間に流量調整弁を備えた分流回路を配置して成り、具体的には、吸入圧力調整弁を冷凍回路を構成する蒸発器と圧縮機との間に配置して、圧縮機に供給する冷媒を所定量に調整したり、流量調整弁を循環回路に設けた温度制御装置に接続して、温度制御装置で流量調整弁の開閉を連動的に調整することを特徴としているので、温度調整の限界値を拡大しながら温度制御の安定性を良くすると共に、装置全体を簡素にして製造コストと運転コストを低減できる効果を奏している。
【図面の簡単な説明】
【 図1】本発明による温度制御チラーの実施形態を示す概要図
【 図2】従来のチラーを示す概要図
【 図3】従来の他のチラーを示す概要図
【符号の説明】
1 チラー、 2 循環液回路、 3 冷凍回路、 4 製造装置、
5 熱交換器、 6 循環ポンプ、 7 循環液注入タンク、
8 圧力調整バルブ、 9 圧力計、 10 温度センサー、
11 温度制御ユニット、 12 圧縮機、 13 凝縮器、
14 流量設定具、 15 流量調整弁、 16 分流回路、
17 吸入圧力調整弁、 18 制水弁、 19 ストレーナー、
20 チラー、 21 循環液回路、 21−1 製造装置、
21−2 循環ポンプ、 21−3 圧力調整弁、
21−4 循環液タンク、 22、30 冷凍サイクル回路、
22−1 圧縮機、 22−2 凝縮器、 22−3 温度膨張弁、
22−4、37 ドライヤー、 23 加熱回路、 24、34 蒸発器、
25 ヒーター、 31 圧縮機、 32 凝縮器、
33 ON/OFF電磁弁、 35 分流弁、 36 分流回路、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a temperature control chiller, and more particularly to a temperature control chiller that performs temperature control for a circulation circuit without delay and reduces overall cost by simplifying the entire configuration.
[0002]
[Prior art]
A chiller generally referred to includes a circulation circuit that supplies a temperature control liquid, a heat exchanger, and a compressor, a condenser, and an evaporator that maintain the temperature control liquid in the circulation circuit at a predetermined temperature through the heat exchanger. The refrigeration circuit is configured to set the circulating fluid in the circulating circuit to a desired temperature and to control the temperature so that the set temperature is constantly maintained.
[0003]
The fields where chillers are used are wide-ranging. The main applications are circulators used for cooling and heating semiconductor and liquid crystal manufacturing equipment and laser equipment, and for semiconductor and liquid crystal manufacturing equipment. Among them, it is mainly used for an etching process, a sputtering process, and a CVD process. Chiller is also used for cooling laser transmitter tubes used for exposure equipment and temperature test equipment for semiconductor testers, oil cooling for machine tools, and temperature control for molds and constant temperature equipment for injection molding equipment. It is also used for controlling the temperature of water in water tanks, and its field of application is wide-ranging.
[0004]
In any case, the temperature control of the chiller is extremely strict and requires high-precision temperature control, so a general chiller supplies a temperature control liquid to the above-mentioned equipment. And a refrigeration cycle circuit for cooling the circulating fluid in the circulating fluid circuit and a heating circuit for controlling the temperature of the circulating fluid in the circulating fluid circuit.
[0005]
That is, as a conventional example, a chiller 20 shown in FIG. 2 is generally used. In this example, the circulating fluid circuit 21, the refrigeration cycle circuit 22, and the heating circuit 23 for controlling the temperature of the circulating fluid are combined. The circulating fluid circuit 21 includes a circulating pump 21-2 for supplying a temperature control fluid to the manufacturing apparatus 21-1, and a pressure regulating valve 21-3 is disposed for managing a supply amount of the temperature control fluid. ing.
[0006]
The temperature of the chiller 20 is controlled by evaporating the circulating liquid to the maximum capacity with an evaporator 24 disposed in a circulating liquid tank 21-4 provided in a refrigeration cycle circuit 22 and then using a heater 25. By doing so, the low-temperature circulating liquid is heated, and the temperature is controlled while controlling the temperature of the circulating liquid to a predetermined temperature by this heating.
[0007]
The evaporator 24, which cools the circulating liquid to the maximum capacity, exchanges heat by evaporating the condensed refrigerant while being disposed in the refrigeration cycle circuit 22. In addition, the compressor 22-1 includes a compressor 22-1 for compressing the refrigerant and a condenser 22-2 for condensing the compressed refrigerant. The refrigeration cycle circuit 22 is also provided with a temperature expansion valve 22-3 and a dryer 22-4 for managing the condensed refrigerant.
[0008]
However, the chiller 20 of the present example has the following problems because the heating is performed by using the heater 25 while performing the maximum cooling in the circulating fluid circuit 21, and the entire apparatus has a large capacity.
[0009]
{Circle around (1)} Delayed state occurs during temperature control, resulting in poor temperature stability.
{Circle around (2)} The maximum heating region of the circulation circuit is limited to a low value, and the control accuracy is poor.
{Circle around (3)} A circulating fluid tank is required to insert the heater.
{Circle around (4)} The amount of circulating fluid used is large enough to fill the circulating fluid tank.
(5) The power consumption of the chiller body increases.
[0010]
On the other hand, the refrigeration cycle circuit 30 of the chiller shown in FIG. 3 includes a compressor 31 for compressing the refrigerant, a condenser 32 for condensing the compressed refrigerant, an ON / OFF solenoid valve 33 for controlling the flow of the compressed refrigerant, and ON / OFF. The evaporator 34 is constituted by an evaporator 34 for evaporating the condensed refrigerant flowing through the electromagnetic valve 33, and directly supplies the compressed refrigerant from the compressor 31 to the evaporator 34 through a diversion circuit 36 provided with a diversion valve 35. In the evaporator 34, a chiller is formed by exchanging heat with circulating fluid in a circulation circuit not shown in the same manner as in the above example. A dryer 37 supplies the condensed refrigerant to the evaporator 34 while managing the condensed refrigerant.
[0011]
The operation of the refrigeration cycle circuit 30 is performed by supplying the compressed refrigerant from the compressor 31 in the refrigeration cycle circuit to the evaporator 34 by opening and closing the ON / OFF solenoid valve 33 while condensing the compressed refrigerant in the condenser 32, The compressed refrigerant is directly supplied to the evaporator 34 by opening and closing a flow dividing valve 35 which operates in reverse with the opening and closing of the opening 33.
[0012]
Then, the refrigeration cycle circuit 30 controls the ON / OFF solenoid valve 33 and the flow dividing valve 35 alternately to open and close, thereby adjusting the supply amount of the compressed refrigerant directly supplied to the evaporator 33 to reduce the temperature of the circulating liquid. Controlling.
[0013]
Thus, the refrigeration cycle circuit 30 has the following problems, and improvement thereof is demanded.
[0014]
{Circle around (1)} Since the control is performed by alternately opening and closing the ON / OFF solenoid valve and the flow dividing valve, the temperature control of the evaporator is not stable.
(2) The durability of the diversion valve is poor.
(3) The circulation of the compressed refrigerant adversely affects the durability of the compressor.
{Circle around (4)} The range in which the temperature of the refrigeration cycle can be raised is limited to 20 ° C.
[0015]
As described above, in any of the conventional chillers, the temperature control in the temperature control liquid deteriorates stability due to delay or the like, and at the same time, the size of the equipment and the temperature control liquid are reduced due to the necessity of a heater and the like. In addition, bulkiness has been caused even in the capacity of, and the manufacturing cost and the operating cost have been increased.
[0016]
[Problems to be solved by the invention]
The present invention is proposed in view of the above-mentioned current situation in chillers, and improves the stability of temperature control while expanding the limit value of temperature adjustment, and simplifies the entire apparatus to reduce manufacturing costs and operating costs. The temperature control chiller which can aim at reduction of is provided.
[0017]
[Means for Solving the Problems]
The temperature control chiller according to the present invention basically includes a circulation circuit for supplying a temperature control liquid, a heat exchanger, and a compressor and a condenser for maintaining the temperature control liquid in the circulation circuit at a predetermined temperature via the heat exchanger. And a refrigeration circuit comprising an evaporator, a flow setting circuit is provided between the condenser and the evaporator constituting the refrigeration circuit, and a flow dividing circuit having a flow control valve between the compressor and the evaporator is provided. Specifically, a suction pressure control valve is disposed between an evaporator and a compressor constituting a refrigeration circuit to adjust a refrigerant supplied to the compressor to a predetermined amount, or to adjust a flow rate of a refrigerant. Is connected to a temperature control device provided in the circulation circuit, and the opening and closing of the flow control valve is interlockedly adjusted by the temperature control device.
[0018]
Thereby, the temperature control chiller according to the present invention improves the stability of the temperature control while expanding the limit value of the temperature adjustment, and simplifies the entire apparatus to reduce the manufacturing cost and the operation cost.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The temperature control chiller according to the present invention includes a circulation circuit that supplies a temperature control liquid, a heat exchanger, and a compressor, a condenser, and an evaporator that maintain the temperature control liquid in the circulation circuit at a predetermined temperature via the heat exchanger. In a temperature control chiller comprising a refrigeration circuit, a flow setting device is disposed between a condenser and an evaporator constituting a refrigeration circuit, and a flow dividing circuit having a flow control valve is disposed between the compressor and the evaporator. Then, the suction pressure regulating valve is arranged between the evaporator and the compressor constituting the refrigeration circuit, and the flow regulating valve is connected to the temperature control device provided in the circulation circuit to open and close the flow regulating valve in an interlocked manner. I am adjusting.
[0020]
Hereinafter, embodiments of a temperature control chiller according to the present invention will be described in detail with reference to the drawings.
[0021]
FIG. 1 is a schematic diagram illustrating an embodiment of a temperature control chiller according to the present invention. The temperature control chiller 1 includes a circulation circuit 2 and a refrigeration circuit 3.
[0022]
The circulation circuit 2 supplies a temperature control liquid whose temperature is adjusted by the heat exchanger 5 to a manufacturing apparatus 4 such as a semiconductor, liquid crystal manufacturing apparatus, and a laser apparatus, and a circulation pump for circulating the temperature control liquid. 6 and a circulating fluid injection tank 7 for replenishing the circulating fluid.
[0023]
The pressure adjusting valve 8 is arranged for adjusting the circulation of the temperature control liquid to the manufacturing apparatus 2. The pressure gauge 9 and the temperature sensor 10 control signals necessary for a temperature control unit 11 described later. Are arranged to provide.
[0024]
On the other hand, the refrigeration circuit 3 compresses a refrigerant such as chlorofluorocarbon gas into a high-temperature refrigerant, a condenser 13 for condensing and liquefying a high-temperature compressed refrigerant output from the compressor 12, and vaporizes the liquefied condensed refrigerant. Thus, the evaporator is arranged in the heat exchanger 5 of the circulation circuit 2.
[0025]
The condenser 13 is supplied with cooling water such as cooling tower water, circulating water in the factory, and underground water by the water control valve 18 and the strainer 19 while cooling the high-temperature compressed refrigerant to liquefy it while cooling the compressed refrigerant. are doing. The condensed refrigerant cools the circulating liquid by exchanging heat with the circulating liquid in the circulation circuit 2, thereby converting the circulating liquid in the circulation circuit 2 into a desired temperature control liquid.
[0026]
In the temperature control chiller 1 according to the present invention, in addition to the above basic configuration, a flow rate setting device 14 is arranged between the condenser 13 and the evaporator in the heat exchanger 3, and at the same time, the compressor 12 and the A flow dividing circuit 16 including a flow control valve 15 is provided between the evaporator and the evaporator disposed in the heat exchanger 5. Further, on the suction side of the compressor 12 returning from the evaporator of the heat exchanger 3, a suction pressure adjusting valve 17 is arranged, and a constant pressure is set so that excessive pressure is not applied to the compressor 12. Adjusted to pressure value.
[0027]
The flow rate setting device 14 can be a manual expansion valve or the like. The liquefied condensed refrigerant from the condenser 13 is dried by a dryer 37 so that the evaporator in the heat exchanger 3 can exhibit a predetermined cooling capacity. While adjusting to the appropriate amount to be supplied to the evaporator.
[0028]
Therefore, when the cooling capacity exhibited by the evaporator is divided into a plurality of stages, the flow rate setting member 14 is also formed in a structure that can be switched so that the flow rate can be set in a plurality of stages by the manual expansion valve.
[0029]
Thus, the flow control valve 15 provided in the flow dividing circuit 16 directly supplies the high-temperature compressed refrigerant from the compressor 12 to the evaporator while adjusting the flow rate. When the evaporator needs to raise the temperature of the circulating fluid to be supplied to the manufacturing apparatus 4 while being set to a predetermined cooling state, the temperature of the circulating fluid is increased while utilizing the high-temperature energy of the compressed refrigerant. The adjustment is quickly controlled, and the temperature of the temperature control liquid supplied to the manufacturing apparatus 4 is quickly and accurately changed.
[0030]
Therefore, the temperature change of the temperature control liquid is applied to the minimum required amount of the circulating liquid supplied to the manufacturing apparatus 4 and is adjusted around the set temperature of the heat exchanger 5. The energy required for the change is minimum and the amount of temperature adjustment can be minimized.
[0031]
Since the compressed refrigerant is directly supplied to the evaporator of the heat exchanger 5, when a large amount of the compressed refrigerant is sucked into the compressor 12, the compressor 12 is overloaded, so as described above. This is avoided by disposing a suction pressure adjusting valve 17 to adjust the pressure to a constant value.
[0032]
Further, in the present embodiment, the flow control valve 15 is controlled by the temperature control unit 11. Accordingly, when the temperature of the temperature control liquid is to be changed as described above, when the temperature control unit 11 is reset, the temperature of the temperature control liquid can be rapidly changed, and the temperature control liquid from the pressure gauge 9 and the temperature sensor 10 can be changed. By controlling the flow control valve 15 with the signal, the temperature control unit 11 maintains a desired set value with high accuracy.
[0033]
As described above, in the temperature control chiller according to the present invention, the flow rate setting device is disposed between the condenser and the evaporator constituting the refrigeration circuit in addition to the main circuit of the chiller, and the flow rate is set between the compressor and the evaporator. Since a shunt circuit equipped with a regulating valve is arranged, the circulating fluid circuit and the refrigeration cycle circuit alone exceed the performance of the conventional chiller, and exhibit the following functions to improve the stability of temperature control. In addition, the manufacturing cost and the operating cost are reduced by simplifying the entire apparatus.
[0034]
{Circle around (1)} Since the compressed refrigerant of the refrigeration circuit is used as a heating source and a heating device for the circulation circuit is not required, power consumption can be reduced by 30% or more as compared with the conventional device.
(2) The maximum heating area of the circulation circuit can be expanded to 90 ° C.
{Circle around (3)} By controlling the flow rate of the compressed refrigerant, the temperature stability within ± 0.2 ° C. can be secured within the temperature setting range of 60 ° C. to −30 ° C., so that the temperature controllability can be improved.
{Circle around (4)} Since a tank for charging the heating device is not required, the device can be simplified and the amount of circulating fluid used can be reduced.
(5) Since the refrigerant such as Freon gas can be limited to the refrigeration circuit, there is no need to target Freon gas or the like in repairing the circulation circuit.
As described above, the present invention has been described in detail based on the embodiment, but the temperature control chiller according to the present invention is not limited to the above embodiment at all, and its application range and application form are free, Naturally, various changes can be made to the evaporator, the heat exchanger, the flow setting device, the suction pressure adjusting valve, the flow adjusting valve, and the like without departing from the spirit of the present invention.
[0036]
【The invention's effect】
The temperature control chiller according to the present invention basically includes a circulation circuit for supplying a temperature control liquid, a heat exchanger, and a compressor and a condenser for maintaining the temperature control liquid in the circulation circuit at a predetermined temperature via the heat exchanger. And a refrigeration circuit comprising an evaporator, a flow setting circuit is provided between the condenser and the evaporator constituting the refrigeration circuit, and a flow dividing circuit having a flow control valve between the compressor and the evaporator. Specifically, a suction pressure control valve is disposed between an evaporator and a compressor constituting a refrigeration circuit to adjust a refrigerant supplied to the compressor to a predetermined amount, or to adjust a flow rate of a refrigerant. Is connected to the temperature control device provided in the circulation circuit, and the opening and closing of the flow control valve is interlockingly adjusted by the temperature control device. And the overall equipment is simplified to reduce manufacturing costs and operation. And exhibit the effect of reducing the strike.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a temperature control chiller according to the present invention. FIG. 2 is a schematic diagram showing a conventional chiller. FIG. 3 is a schematic diagram showing another conventional chiller.
1 chiller, 2 circulating fluid circuit, 3 refrigeration circuit, 4 manufacturing equipment,
5 heat exchanger, 6 circulation pump, 7 circulating fluid injection tank,
8 pressure regulating valve, 9 pressure gauge, 10 temperature sensor,
11 temperature control unit, 12 compressor, 13 condenser,
14 flow setting device, 15 flow regulating valve, 16 branch circuit,
17 suction pressure regulating valve, 18 water control valve, 19 strainer,
20 chiller, 21 circulating fluid circuit, 21-1 manufacturing equipment,
21-2 circulation pump, 21-3 pressure regulating valve,
21-4 circulating fluid tank, 22, 30 refrigeration cycle circuit,
22-1 compressor, 22-2 condenser, 22-3 temperature expansion valve,
22-4, 37 dryer, 23 heating circuit, 24, 34 evaporator,
25 heater, 31 compressor, 32 condenser,
33 ON / OFF solenoid valve, 35 branch valve, 36 branch circuit,

Claims (3)

温度制御液を供給する循環回路、熱交換器及び該熱交換器を介して循環回路の温度制御液を所定の温度に保っている圧縮機、凝縮器及び蒸発器から成る冷凍回路で成る温度制御チラーであって、該冷凍回路における凝縮器と蒸発器との間に流量設定具を配置して圧縮機と蒸発器との間に流量調整弁を備えた分流回路を配置することを特徴とする温度制御チラー。Temperature control comprising a circulation circuit for supplying a temperature control liquid, a heat exchanger, and a refrigerating circuit comprising a compressor, a condenser and an evaporator for maintaining the temperature control liquid in the circulation circuit at a predetermined temperature via the heat exchanger. A chiller, wherein a flow setting device is disposed between a condenser and an evaporator in the refrigeration circuit, and a flow dividing circuit having a flow control valve is disposed between the compressor and the evaporator. Temperature control chiller. 吸入圧力調整弁が、冷凍回路を構成する蒸発器と圧縮機との間に配置されて成り、圧縮機に供給する冷媒を所定量に調整することを特徴とする請求項1に記載の温度制御チラー。2. The temperature control according to claim 1, wherein the suction pressure adjusting valve is arranged between the evaporator and the compressor constituting the refrigeration circuit, and adjusts a refrigerant supplied to the compressor to a predetermined amount. Chiller. 流量調整弁が、循環回路に設けた温度制御装置に接続されて成り、該温度制御装置で流量調整弁の開閉を連動的に調整することを特徴とする請求項1又は2に記載の温度制御チラー。The temperature control according to claim 1 or 2, wherein the flow control valve is connected to a temperature control device provided in the circulation circuit, and the temperature control device adjusts the opening and closing of the flow control valve in an interlocking manner. Chiller.
JP2002177343A 2002-06-18 2002-06-18 Temperature control chiller Pending JP2004020103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177343A JP2004020103A (en) 2002-06-18 2002-06-18 Temperature control chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177343A JP2004020103A (en) 2002-06-18 2002-06-18 Temperature control chiller

Publications (2)

Publication Number Publication Date
JP2004020103A true JP2004020103A (en) 2004-01-22
JP2004020103A5 JP2004020103A5 (en) 2005-10-20

Family

ID=31175404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177343A Pending JP2004020103A (en) 2002-06-18 2002-06-18 Temperature control chiller

Country Status (1)

Country Link
JP (1) JP2004020103A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014298A (en) * 2007-07-06 2009-01-22 Miura Co Ltd Refrigerator and chiller using the same
JP4712910B1 (en) * 2010-12-28 2011-06-29 株式会社朝日工業社 Precision air conditioner
CN109128121A (en) * 2018-10-30 2019-01-04 苏州奥天诚机械有限公司 Cooling structure for liquid metal solidification
CN111397257A (en) * 2020-03-25 2020-07-10 北京京仪自动化装备技术有限公司 Temperature control device and method
CN115289705A (en) * 2022-06-23 2022-11-04 北京京仪自动化装备技术股份有限公司 Temperature control system and temperature control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014298A (en) * 2007-07-06 2009-01-22 Miura Co Ltd Refrigerator and chiller using the same
JP4712910B1 (en) * 2010-12-28 2011-06-29 株式会社朝日工業社 Precision air conditioner
WO2012090511A1 (en) * 2010-12-28 2012-07-05 株式会社朝日工業社 Precise air conditioning device
JP2012137271A (en) * 2010-12-28 2012-07-19 Asahi Kogyosha Co Ltd Precise air conditioning device
CN102803858A (en) * 2010-12-28 2012-11-28 株式会社朝日工业社 Precise air conditioning device
KR101272088B1 (en) * 2010-12-28 2013-06-07 가부시키가이샤 아사히 코교샤 Accurate Air Conditioner
CN102803858B (en) * 2010-12-28 2015-07-01 株式会社朝日工业社 Precise air conditioning device
CN109128121A (en) * 2018-10-30 2019-01-04 苏州奥天诚机械有限公司 Cooling structure for liquid metal solidification
CN111397257A (en) * 2020-03-25 2020-07-10 北京京仪自动化装备技术有限公司 Temperature control device and method
CN115289705A (en) * 2022-06-23 2022-11-04 北京京仪自动化装备技术股份有限公司 Temperature control system and temperature control method
CN115289705B (en) * 2022-06-23 2024-03-15 北京京仪自动化装备技术股份有限公司 Temperature control system and temperature control method

Similar Documents

Publication Publication Date Title
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
CN106016458B (en) Air conditioner and its mode switch control method
CN105371545B (en) The refrigerant circulation amount adjustment method of air conditioner and its refrigeration system
KR101460222B1 (en) Thermal control system and method
JP3102651U (en) Refrigerator refrigerator with two evaporators
US20150059373A1 (en) Superheat and sub-cooling control of refrigeration system
WO2013088590A1 (en) Outdoor unit and air-conditioning device
CN107655246A (en) It is a kind of effectively to prevent from being vented too low double electronic expansion-valve control system and method
CN107152817B (en) Air conditioner, the cooling system of air conditioner and control method
JP2005003322A (en) Refrigeration unit
CN107490090B (en) Air conditioner
KR102372489B1 (en) Air conditioning device using vapor injection cycle and method for controlling thereof
JP2000304374A (en) Engine heat pump
WO2021223530A1 (en) Control method for inverter air conditioner
US20040103676A1 (en) Method for controlling cooling/heating of heat pump system
CN213089944U (en) Constant temperature refrigerating plant
CN103335440A (en) Secondary throttling middle complete cooling double-working-condition refrigeration system
JP2004020103A (en) Temperature control chiller
JP3668750B2 (en) Air conditioner
KR200281266Y1 (en) Heat pump system
KR20130026685A (en) Air conditioner and control method thereof
CN104075486A (en) Apparatus for dual heat pump
KR200246301Y1 (en) Refrigerator suppling hot and cold water
KR20100120323A (en) Chiller system
US20080190123A1 (en) Refrigerator Having Multi-Cycle Refrigeration System And Control Method Thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040407

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081111