JPS6214111B2 - - Google Patents

Info

Publication number
JPS6214111B2
JPS6214111B2 JP56158102A JP15810281A JPS6214111B2 JP S6214111 B2 JPS6214111 B2 JP S6214111B2 JP 56158102 A JP56158102 A JP 56158102A JP 15810281 A JP15810281 A JP 15810281A JP S6214111 B2 JPS6214111 B2 JP S6214111B2
Authority
JP
Japan
Prior art keywords
ethylene
protective material
vinyl acetate
adhesive sheet
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56158102A
Other languages
Japanese (ja)
Other versions
JPS5860579A (en
Inventor
Juichi Ishihara
Reiji Myamoto
Tetsujiro Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP56158102A priority Critical patent/JPS5860579A/en
Publication of JPS5860579A publication Critical patent/JPS5860579A/en
Publication of JPS6214111B2 publication Critical patent/JPS6214111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10697Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer being cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10559Shape of the cross-section
    • B32B17/10577Surface roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、太陽電池用充填接着材シートおよび
それを用いる接着方法に関する。更に詳しくは、
改善された接着性を示す太陽電池用充填接着材シ
ートおよびそれを用いる接着方法に関する。 近年、石油を主とする既存のエネルギー源の枯
渇が指摘され、代替エネルギー源の開発が必要と
なつてきており、この中で太陽光発電はクリーン
なエネルギー源として、また無尽蔵な太陽幅射エ
ネルギーを利用するものとして、それの早急な実
用化および普及化が望まれている。太陽光発電
は、太陽電池により太陽の幅射エネルギーを直接
電気エネルギーに変えるものであり、この機能は
半導体、一般にはシリコン半導体、セレン半導体
などの量子効果を利用することにより得られる。 ところで、シリコン半導体などは、直接外気に
さらされるとその機能が低下するので、外気から
の保護を目的として、例えばガラス、アクリル樹
脂、カーボネート樹脂などからなる上部透明保護
材およびガラス、ステンレススチール、アルミニ
ウム、プラスチツクなどからなる下部基板保護材
によつて保護される。この際、太陽光発電に利用
される高性能なシリコン半導体は、通常はウエハ
(薄膜小片)であるので、このウエハをインター
コネクターを用いて直列または並列に配列し、電
気的に結線、固定化する必要があり、こうした必
要性から充填接着材が一般に使用される。 この充填接着材に要求される物性としては、次
のようなものが挙げられる。 (1) シリコン半導体などのウエハが、熱膨張収縮
に基因する内部歪によつて破壊されるのを防ぐ
ために、エラストマー的特性を有していなけれ
ばならない。 (2) 太陽光が外部保護材、充填接着材、シリコン
半導体と順次透過して始めて発電が可能となる
訳であるから、この間に使用される充填接着材
は太陽光の光線透過率が高くなければならな
い。 (3) 外部保護材との接着性が良好でなければなら
ない。 (4) シリコン半導体などのウエハは起動力が小さ
く、このためウエハを直列または並列に連結す
ることにより有用な電圧が得られるので、連結
材料を腐食せずかつ絶縁耐圧が高くなければな
らない。 (5) 長期間にわたる屋外放置により、上記の各性
質に変化がないこと。 これらの特性を有するものとして、従来は加熱
架橋型の液状シリコン樹脂が使用されてきたが、
これは高価であり、塗布および接着の工程が長
く、自動化に不適であるなどの欠点があつた。こ
のため、最近では合せガラスで実績のあるポリビ
ニルプチラール樹脂のシートが利用され始めてい
るが、これも太陽電池用の充填接着材としては必
ずしも満足できるものとはいえない。即ち、ポリ
ビニルブチラールシートは、その表面にブロツキ
ング防止のためにでん粉や重炭酸ナトリウムが付
着されており、使用に先立つて、それを水洗除去
し、乾燥、調湿しなければならない。また、貼り
合せには、樹脂の流動性が悪いためオートクレー
ブを用いる必要があり、従つて工程時間が長く、
自動化にも適さない。更に、品質的には、吸水率
が高いため対湿度特性が悪く、長時間高湿度下に
放置されると失透現象を起し、光線透過率が低下
するばかりではなく、接着強度も著しく低下し、
上部透明保護材、下部基板保護材と太陽電池素子
との界面で剥離現象を起す。また、低温特性(柔
軟性)が必ずしもよくない。 こうした問題点のあるポリビニルブチラールシ
ートに代つて、エチレン―酢酸ビニル共重合体シ
ートが太陽電池モジユールの低コスト化の観点か
ら、最近検討され始めている。しかしながら、通
常用いられているエチレン―酢酸ビニル共重合体
では、太陽電池用の充填接着材として求められて
いる特性を満足させることができない。即ち、こ
の共重合体中の酢酸ビニル含量が増すと、透明
性、柔軟性などは向上するが、シートの成形性、
ブロツキング性などが悪化し、その両方の特性を
同時に満足させることが難かしく、また耐熱性、
耐光性も不十分である。更に、太陽電池モジユー
ルの信頼性を決定づける上部透明保護材および下
部基板保護材との耐久接着性も十分ではない。 本発明者らは、エチレン―酢酸ビニル共重合体
などのエチレン系共重合樹脂を用い、なお太陽電
池用充填接着材に求められる諸特性、特に保護材
との初期接着性および耐久接着性にすぐれ、かつ
貼り合せ過程の自動化および短縮化に適合した充
填接着材シートおよびそれを用いる接着方法を求
めて種々検討の結果、カツプリング剤および有機
過酸化物を含有するエチレン系共重合樹脂から成
形されたシートがかかる目的に十分適合し得るこ
とを見出し、ここに本発明を完成させた。 従つて、本発明は太陽電池用充填接着材シート
に係り、この充填接着材シートはカツプリング剤
および有機過酸化物を含有するエチレン系共重合
樹脂からなる。本発明はまた、太陽電池用保護材
と充填材との接着方法に係り、この保護材と充填
材との接着は、太陽電池素子をカツプリング剤お
よび有機過酸化物を含有するエチレン系共重合樹
脂からなる少くとも2枚の充填接着材シートで挾
み、更にその両側に上部透明保護材および下部基
板保護材を重ねた状態、あるいはカツプリング剤
および有機過酸化物を含有するエチレン系共重合
樹脂からなる充填接着材シートを中間層とし、い
ずれか一方の保護材の内向面上に太陽電池素子を
形成させた上部透明保護材および下部基板保護材
を前記中間層充填接着材シートの上下に重ねた状
態でのモジユール貼り合せ過程において、前記有
機過酸化物の分解温度以上に加熱することにより
行われる。 エチレン系共重合樹脂としては、光線透過率が
約80%以上、好ましくは約90%以上で、弾性モジ
ユラスが約1〜30MPa、好ましくは約3〜12MPa
のものが、適当な共重合樹脂として用いられる。
具体的には、例えばエチレンと酢酸ビニル、プロ
ピオン酸ビニルなどのビニルエステルとの共重合
体、エチレンとアクリル酸エチル、アクリル酸ブ
チル、メタクリル酸メチルなどの不飽和脂肪酸エ
ステルとの共重合体、エチレンとプロピレン、ブ
テン―1、4―メチルペンテン―1などのα―オ
レフインとの共重合体、更にはエチレン―ビニル
エステル―不飽和脂肪酸3元共重合体、エチレン
―不飽和脂肪酸エステル―不飽和脂肪酸3元共重
合体またはそれらの金属塩(アイオノマー樹脂)
などが用いられる。 これらのエチレン系共重合樹脂の中で、経済性
の点からみて最も好ましいものはエチレン―酢酸
ビニル共重合体であり、その場合共重合体中の酢
酸ビニル含量は約20〜40重量%、好ましくは約25
〜40重量%のものが適する。酢酸ビニル含量がこ
れより少ないと、光線透過率が低くなつてモジユ
ールの発電効率が小さくなり、また弾性モジユラ
スが高くなつて、発電素子が熱膨張収縮のため、
破損する危険性が増してくる。ただし、上部透明
保護材下面に形成させた太陽電池素子の下に充填
接着材シートを貼り合せる態様にあつては、その
部分の光線透過率は関係がないので、酢酸ビニル
含量が約20重量%以下のエチレン―酢酸ビニル共
重合体を用いることもできる。一方、これ以上に
酢酸ビニル含量が増すと、シートの押出成形性が
悪化すると共に、得られるシートのべたつきが増
してブロツキングし易くなる。 これらのエチレン系共重合樹脂中には、カツプ
リング剤および有機過酸化物を含有せしめる。 カツプリング剤としては、有機過酸化物の共存
下において、それらを含有するエチレン系共重合
樹脂を外部各保護材と加熱貼り合せる際、良好な
接着機能を有するものが用いられる。かかるカツ
プリング剤として、一般式RSiX3(ここで、Rは
ビニル基、アミノアルキル基、メタクリロキシア
ルキル基、アクリロキシアルキル基、メルカプト
アルキル基、エポキシ基の如き反応性有機基であ
り、Xはハロゲン原子、アルコキシ基、アセトキ
シ基の如き加水分解し得る基である)で示される
有機シラン化合物、一般式R′4-oSi(OOR″)o(こ
こで、R′はビニル基またはアルキル基であり、
R″は炭化水素基であり、nは1〜4の整数であ
る)で示される有機シラン過酸化物または一般式
ROTi(OYRZ)(ここで、Rはアル
キル基であり、Yはカルボキシル基、ホスフエー
ト基、ピロホスフエート基、ホスフアイト基また
はスルホニル基であり、Zは水素原子、アミノ
基、ヒドロキシル基、メルカプト基、アクリル基
またはメタクリル基である)で示される有機チタ
ネート化合物などを代表的な例としと挙げること
ができる。 これらのカツプリング剤については、前記の接
着機能に加えて、エチレン系共重合樹脂との混練
性および相溶性、臭気、耐光性、インターコネク
ターなどに対する非腐食性、コストなどに考慮を
払う必要がある。かかる観点からみて好ましいカ
ツプリング剤は、ビニルトリエトキシシラン、ビ
ニルトリス(β―メトキシエトキシ)シラン、γ
―メタクリロキシプロピルトリメトキシシラン、
ビニルトリアセトキシシラン、γ―グリシドキシ
プロピルトリメトキシシラン、γ―グリシドキシ
プロピルトリエトキシシラン、β―(3,4―エ
ポキシシクロヘキシル)エチルトリメトキシシラ
ンなどの不飽和基またはエポキシ基を有する有機
シラン化合物である。 カツプリング剤として有機シラン過酸化物を用
いる場合には、その分解温度(半減期が1時間で
ある温度)が約90〜190℃、好ましくは約120〜
160℃であるものが適している。かかる有機シラ
ン過酸化物として、CH3Si(OO―t―Bu)3
CH2―CHSi(OOR″)(ここで、R″は第3ブチル
基、クミル基、p―メンチル基である)などを例
示することができる。 これらのカツプリング剤は、エチレン系共重合
樹脂100重量部に対し、経済性および接着性の観
点から一般に約0.1〜10重量部、好ましくは約0.5
〜5重量部の割合で用いられる。そして、これと
有機過酸化物との組合せにより、エチレン系共重
合樹脂―外部各保護材間により強固にして実用上
有益な接着力を与える。即ち、カツプリング剤ま
たは有機過酸化物のみを用いた場合と比較して、
これらを組合せて用いた場合の方が明らかに接着
性が向上する。 この原因については十分に解明されていない
が、例えば不飽和基を有するシランカツプリング
剤を用いた場合、加熱貼り合せ時に有機過酸化物
が分解し、エチレン系共重合樹脂にラジカルを生
成させ、このポリマーラジカルの過半はエチレン
系共重合樹脂の架橋反応に関与するものとみられ
るが、残りの一部はシランカツプリング剤の不飽
和基と反応し、即ちカツプリング剤がエチレン系
共重合樹脂にグラフト化され、このグラフト化さ
れたカツプリング剤がエチレン系共重合樹脂―外
部各保護材間に存在して、より強固な接着の形成
に関与するものとも考えられる。 カツプリング剤として用いられる有機シラン過
酸化物も、併用される有機過酸化物と同様にエチ
レン系共重合樹脂を架橋化せしめる機能を有する
と考えられるが、その架橋効率は有機過酸化物の
それよりも劣り、コスト的にも不利であるので、
有機シラン過酸化物を有機過酸化物の代用とする
ことは好ましくなく、両者を併用することが好ま
しい。 カツプリング剤と併用される有機過酸化物(従
つて、有機シラン過酸化物は当然除外される)と
しては、押出機でシート成形する際の成形温度お
よびこの温度に維持される時間において実質的に
分解せず、しかもモジユール化過程でエチレン系
共重合樹脂の分解温度以下の温度で速かに分解す
るようなものが用いられる。一般には、約90〜
190℃、好ましくは約120〜160℃の分解温度(半
減期が1時間である温度)を有するものが用いら
れる。 かかる有機過酸化物としては、例えば第3ブチ
ルパーオキシイソプロピルカーボネート、第3ブ
チルパ―オキシアセテート、第3ブチルパ―オキ
シベンゾエート、ジクミルパ―オキサイド、2,
5―ジメチル―2,5―ビス(第3ブチルパ―オ
キシ)ヘキサン、ジ第3ブチルパ―オキサイド、
2,5―ジメチル―2,5―ビス(第3ブチルパ
―オキシ)ヘキシル―3、1,1―ビス(第3ブ
チルパ―オキシ)―3,3,5―トリメチルシク
ロヘキサン、1,1―ビス(第3ブチルパ―オキ
シ)シクロヘキサン、メチルエチルケトンパ―オ
キサイド、2,5―ジメチルヘキシル―2,5―
ビスパ―オキシベンゾエート、第3ブチルハイド
ロパ―オキサイド、p―メンタンハイドロパ―オ
キサイド、ベンゾイルパ―オキサイド、p―クロ
ルベンゾイルパ―オキサイド、第3ブチルパ―オ
キシイソブチレート、ヒドロキシヘプチルパ―オ
キサイド、シクロヘキサノンパ―オキサイドなど
が挙げられる。 これらの有機過酸化物は、太陽電池モジユール
の貼り合せ過程の際の加熱で、エチレン系共重合
樹脂が架橋化し、耐熱性を向上させ、かつカツプ
リング剤と充填接着材とが相互作用を生じ、接着
性の向上に寄与するのに必要な量だけ添加され
る。一般には、エチレン系共重合樹脂100重量部
に対し約0.1〜5重量部、好ましくは約0.5〜3重
量部の有機過酸化物が添加される。添加割合がこ
れより少ないと、透明性、耐熱性および充填接着
剤―外部各保護材間の接着性が十分ではない。 充填接着剤に対して、より厳しい耐光性が要求
される場合には、耐光安定剤を添加しておくこと
が好ましく、例えば2―ヒドロキシ―4―メトキ
シベンゾフエノン、2,2′―ジヒドロキシ―4―
メトキシベンゾフエノン、2―ヒドロキシ―4―
メトキシ―2′―カルボキシベンゾフエノン、2―
ヒドロキシ―4―n―オクトキシベンゾフエノン
などのベンゾフエノン系、2―(2′―ヒドロキシ
―3′,5′―ジ第3ブチルフエニル)ベンゾトリア
ゾール、2―(2′―ヒドロキシ―5―メチルフエ
ニル)ベンゾトリアゾール、2―(2′―ヒドロキ
シ―5―第3オクチルフエニル)ベンゾトリアゾ
ールなどのベンゾトリアゾール系、フエニルサリ
チレート、p―オクチルフエニルサリチレートな
どのサリチル酸エステル系、ニツケル錯塩系、ヒ
ンダードアミン系などが耐光安定剤として用いら
れる。これらの耐光安定剤はまた、ヒンダードフ
エノール系、ホスフアイト系などの酸化防止剤と
併用することによつて、そこに相乗効果が期待で
きる場合もある。 充填接着材として用いられるシートの成形は、
T―ダイ押出機などを用いる公知の方法によつて
行なうことができる。即ち、エチレン系共重合樹
脂、カツプリング剤、有機過酸化物および必要に
応じて添加される耐光安定剤を予めドライブレン
ドして押出機のホツパーから供給し、有機過酸化
物が実質的に分解しない成形温度でシート状に押
出し、好ましくはエンボス模様入り引取ロールを
通すことによつて成形が行われる。任意のエンボ
ス模様の形成は、シートのブロツキング防止およ
び太陽電池のモジユール化過程での脱気に対して
有効である。シートの厚みは特に規定されない
が、一般には約0.1〜1mm程度である。 また、カツプリング剤や有機過酸化物などが溶
液である場合あるいは溶液として用いられる場合
には、周知のベント機能を有する押出機を用い、
予め溶媒を除去したペレツトを調製し、その後上
記の工程を経るか、またはベント機能を有する押
出機の先端に直接T―ダイを設置して、ベント装
置により前記溶媒を除去しながら一度にシート化
する方法をとることもできる。 太陽電池のモジユール化は、次のようにして行
なうことができる。太陽電池素子がシリコン半導
体やセレン半導体ウエハーからなる場合には、こ
れらの太陽電池素子を少くとも2枚の充填接着材
シートで挾み、更に必要な場合にはその両側に必
要に応じて界面活性剤溶液や有機溶媒による洗浄
処理あるいはコロナ放電や化学薬品などによる表
面処理がなされた保護材、即ち上部透明保護材と
下部基板保護材とを重ねた状態で、真空にするこ
とにより脱気操作した後またはこれと同時に加熱
し、次いで加圧することにより接着させて貼り合
せる。この際、下部基板保護材、充填接着材シー
ト、太陽電池素子、充填接着材シートおよび上部
透明保護材を順次重ね合せまたは配列してモジユ
ールの貼り合せを行なうことが工業的には好まし
く、また太陽電池素子をカツプリング剤および有
機過酸化物を含有するエチレン系共重合樹脂から
なる少くとも2枚の充填接着材シートで予めラミ
ネート化し、上部透明保護材および下部基板保護
材と貼り合せてもよい。加熱は、最終的に充填接
着材シート中に添加されている有機過酸化物がほ
ぼ完全に分解する迄行なうことが望ましい。この
加熱処理によつて充填接着材は架橋され、充填接
着材と外部各保護材とは強固に接着され、太陽電
池素子が2枚の充填接着材シートでラミネート化
され、かつそれがその上部透明保護材と下部基板
保護材とに強固に貼り合された太陽電池モジユー
ルがそこに形成される。 ここで行われる加熱処理は、2段階に分けて行
なうことが望ましい。即ち、有機過酸化物が完全
に分解しない温度でかつモジユールがゆるやかに
接着する条件、例えば分解温度が140℃の有機過
酸化物では、140℃の真空ラミネーター内で約0.1
〜5分間仮接着を行なう工程と、この過酸化物が
ほぼ完全に分解する条件、例えば140℃、常温下
で約60〜200分間加熱する工程とを別々の工程で
おこなうことが工業的には有利である。その理由
は、次の如くである。 (1) 仮接着では、設備費の高価な真空ラミネータ
ーを必要とするので、このラミネーターを使用
する仮接着工程の生産能力を上げるには、接着
工程を仮接着工程とこのラミネーターを使用せ
ずに常圧下で加熱する工程の2段階に分けて行
なう方が有利であること。 (2) 真空ラミネーターで加熱と加圧とを継続する
と、充填接着材シートが融解流動し、それの一
部がパネルの端部から流れ出し、そのために太
陽電池素子の位置ずれによる素子の短絡や充填
接着材シート層の厚さが薄くなることによる太
陽電池素子またはインターコネクターと下部基
板保護材との間の絶縁(耐)電圧の低下を生ず
るが、2段階に分けて加熱することにより、こ
のような好ましくない現象を防止することがで
きること。 ところで、仮接着積層物は、一旦冷却してから
次の加熱工程に付することもできるが、作業上許
容される限り、冷却しない方が必要熱量が少なく
て済むので望ましい。 また、太陽電池素子がガラス、プラスチツク、
セラミツク、ステンレスなどの保護材上に形成さ
れている場合には、充填接着材シートを中間層と
し、いずれか一方の保護材の内向面(充填接着材
シート接触面)上に太陽電池素子を形成させた上
部透明保護材および下部基板保護材を前記中間層
充填接着材シートの上下に重ねた状態で、具体的
には下部基板保護材上面に形成させた太陽電池素
子の上に充填接着材シートおよび下部透明保護材
を、または上部透明保護材下面に形成させた太陽
電池素子の下に充填接着材シートおよび下部基板
保護材をそれぞれ順次重ねた状態で、これを前記
の場合と同様に真空下で加熱接着させると、太陽
電池素子を形成させた一方の保護材、充填接着材
シートおよび他方の保護材が強固に貼り合された
太陽電池モジユールがそこに形成される。 このようにして、本発明に係る充填接着材シー
トを用いる方法によつて接着し、形成された太陽
電池は、保護材と充填接着材との剥離強度が大き
く、湿度条件下における耐剥離性にすぐれている
などの良好な初期接着性および耐久接着性を示
し、また紫外線照射に対する変化が少なく、光線
透過率も良好であるなど、太陽電池モジユールに
求められる諸特性をいずれも十分に満足させ、ま
た自動化および短縮化された貼り合せを可能とす
るなどの効果を奏する。 次に、実施例について本発明を説明する。 実施例 1 エチレン―酢酸ビニル共重合体(三井ポリケミ
カル製品エバフレツクス250、酢酸ビニル含量28
重量%、メルトインデツクス15)100部(重量、
以下同じ)、第3ブチルパーオキシベンゾエート
1.5部、γ―メタクリロキシプロピルトリメトキ
シシラン1部、2―ヒドロキシ―4―n―オクチ
ルベンゾフエノン0.3部およびテトラキス―〔メ
チレン―3―(3′,5′―ジ第3ブチル―4′―ヒド
ロキシフエニル)プロピオネート〕メタン0.1部
をドライブレンドした混合物を、T―ダイ押出成
形機を用いて、樹脂温度95℃にてシート状に押出
し、エンボス模様入り引取ロールで引取ることに
よつて、シート両面にエンボス模様を付した厚さ
0.5mmのエンボスシートを成形した。 このエンボスシートを用いての太陽電池のモジ
ユール化を、次のようにして行なつた。 中性洗剤水溶液で表面を洗浄した後更に蒸留水
で洗浄し、風乾させた白板ガラス(厚さ3mm、
450mμにおける光線透過率91%)の上に前記エ
ンボスシートを置き、その上にインターコネクタ
ーを用いて複数個の太陽電池用シリコン半導体ウ
エハ(素子受光面積18cm2/個)を直列に配列し、
更に前記エンボスシートおよびポリフツ化ビニル
シート(米国デユポン社製品テドラー400BS
30WH)を順次重ね合せ、真空ラミネーターを用
いて、加熱温度110℃で溶融貼り合せを行つた
(仮接着)。この仮接着積層物を、更に常圧下に
150℃で30分間ホツトプレート上で加熱すること
によつて有機過酸化物を分解させ、エチレン―酢
酸ビニル共重合体を架橋させると共に、外部各保
護材とも強固に接着せしめたモジユールを作製し
た。この太陽電池モジユールの発電性能を測定す
ると、入射エネルギー100mW/cm2で短絡電流
370mA/18cm2、また電圧6V/18cm2の値が得られ
た。 実施例 2 実施例1においてそれぞれ用いられた白板ガラ
ス―エンボスシート―ポリフツ化ビニルシート積
層物を実施例1にならつて作製し、この積層物の
剥離強度を、引張試験機を用い、引張速度20cm/
分、温度23℃、相対湿度60%の条件件下で、T型
剥離させることによつて測定し、5試料の平均値
を算出した。後記表の結果に示される如く、エン
ボスシートと白板ガラスまたはポリフツ化ビニル
シートとの間には、良好な剥離強度がみられた。 実施例 3 実施例1においてそれぞれ用いられ白板ガラス
―エンボスシート―白板ガラス積層物を実施例1
にならつて作成し、この積層物について、UVメ
ーターを用い、波長500mμにおける光線透過率
を測定し、また紫外線照射器を用い、紫外線を連
続100時間照射してその外観を観察した。後記表
の結果に示される如く、光線透過率は良好であ
り、また紫外線照射による外観も良好であつた。 実施例 4 実施例1で作製されたモジユールについて、温
度サイクル試験および湿度サイクル試験をそれぞ
れ行なつた。温度サイクル試験では、高温(+90
℃)および低温(−40℃)で、各々4時間を1サ
イクルとし、これを20サイクル実施した後のモジ
ユールの外観を観察したところ、何らの異常も認
められなかつた。湿度サイクル試験では、90%相
湿度、40℃の雰囲気下に16時間、90℃相対湿度、
23℃の雰囲気下に6時間を1サイクルとし、これ
を20サイクル実施した後のモジユールの外観を観
察したところ、何ら異常はなかつた。 以上の実施例1〜4の結果から、本発明で用い
られているエチレン系共重合樹脂、カツプリング
剤および有機過酸化物を含有するシートは、太陽
電池用充填接着材シートとしてきわめて有用であ
ることが判る。 実施例 5 エチレン―酢酸ビニル共重合体(三井ポリケミ
カル製品エバフレツクス150、酢酸ビニル含量33
重量%、メルトインデツクス30)100部、2,5
―ジメチル―2,5―ビス(第3ブチルパーオキ
シ)ヘキサン1.5部、γ―メタクリロキシプロピ
ルトリメトキシシラン1部、2―ヒドロキシ―4
―n―オクチルベンゾフエノン0.3部、ビス
(2,2,6,6―テトラメチル―4―ピペリジ
ン)セバケート0.1部およびトリス(混合モノ・
ジノニルフエニル)ホスフアイト0.2部をドラト
ブレンドした混合物を用い、実施例1と同様にし
てエンボスシートを成形し、かつこのエンボスシ
ートを用いて太陽電池モジユールを作製した。 実施例 6 実施例5においてそれぞれ用いられた白板ガラ
ス―エンボスシート―ポリフツ化ビニルシート積
層物を実施例1にならつて作製し、この積層物の
剥離強度を実施例2と同様にして測定した。後記
表の結果に示される如く、エンボスシートと白板
ガラスまたはポリフツ化ビニルシートとの間に
は、良好な剥離強度がみられた。 実施例 7 実施例5においてそれぞれ用いられた白板ガラ
ス―エンボスシート―白板ガラス積層物を実施例
1にならつて作製し、この積層物について実施例
3と同様にして光線透過率の測定および紫外線照
射試験を行なつた。後記表の結果に示される如
く、光線透過率は良好であり、また紫外線照射に
よる外観も良好であつた。 実施例 8 実施例1において、γ―メタクリロキシプロピ
ルトリメトキシシランの代りにγ―グリシドキシ
プロピルトリメトキシシランの同量を用い、エン
ポスシートの成形およびこのエンボスシートを使
用した太陽電池モジユールの作製を行なつた。 実施例 9 実施例8においてそれぞれ用いられた白板ガラ
ス―エンボスシート―ポリフツ化ビニルシート積
層物を実施例1にならつて作製し、この積層物の
剥離強度を実施例2と同様にして測定し、その結
果を後記表に示した。 実施例 10 実施例1において、γ―メタクリロキシプロピ
ルトリメトキシシランの代りにγ―メルカプトプ
ロピルトリメトキシシランの同量を用い、エンボ
スシートの成形およびこのエンボスシートを使用
した太陽電池モジユールの作製を行なつた。 実施例 11 実施例10においてそれぞれ用いられた白板ガラ
ス―エンボスシート―ポリフツ化ビニルシート積
層物を実施例1にならつて作製し、この積層物の
剥離強度を実施例2と同様にして測定し、その結
果を後記表に示した。 実施例 12 実施例1において、γ―メタクリロキシプロピ
ルトリメトキシシラン1部の代りにCH2―CH―
Si―(OO―t―Bu)3の30重量%トルエン溶液
(信越シリコン製品X―12―530)3部を用い、こ
のシラン化合物溶液とエチレン―酢酸ビニル共重
合体とをブレンドし、ベント押出機を用いて樹脂
温度90℃にて押出し、トルエンを除去したペレツ
トを調製し、このペレツトに他の配合成分を加え
て、エンボスシートを成形した。また、このエン
ボスシートを用いて、太陽電池モジユールを作製
した。 実施例 13 実施例12においてそれぞれ用いられた白板ガラ
ス―エンボスシート―ポリフツ化ビニルシート積
層物を実施例1にならつて作製し、この積層物の
剥離強度を実施例2と同様にして測定し、その結
果を後記表に示した。 実施例 14 実施例1において、γ―メタクリロキシプロピ
ルトリメトキシシランの代りにビニルトリエトキ
シシランの同量を用い、エンボスシートの成形お
よびこのエンボスシートを使用した太陽電池モジ
ユールの作製を行なつた。 実施例 15 実施例14においてそれぞれ用いられた白板ガラ
ス―エンボスシート―ポリフツ化ビニルシート積
層物を実施例1にならつて作製し、この積層物の
剥離強度を実施例2と同様にして測定し、その結
果を後記表に示した。 比較例 1 実施例1において、γ―メタクリロキシプロピ
ルトリメトキシシランを用いずにエンボスシート
を成形した。このエンボスシートを用い、実施例
2と同様にして白板ガラス―エンボスシート―ポ
リフツ化ビニルシート積層物を作製し、この積層
物の剥離強度を実施例2と同様に測定した。後記
表の結果に示される如く、エンボスシートと白板
ガラスまたはポリフツ化ビニルシートとの間に
は、実用上十分な接着強度が得られなかつた。 比較例 2 実施例5において、2,5―ジメチル―2,5
―ビス(第3ブチルパ―オキシ)ヘキサンを用い
ずにエンボスシートを成形した。このエンボスシ
ートを用い、実施例2と同様にして白板ガラス―
エンボスシート―ポリフツ化ビニルシート積層物
を作製し、この積層物の剥離強度を実施例2と同
様に測定した。後記表の結果に示される如く、エ
ンボスシートと白板ガラスまたはポリフツ化ビニ
ルシートとの間には、実用上十分な接着強度が得
られなかつた。 以上の実施例2、6、9、11と比較例1、2と
の対比から、これらの積層物にあつては、カツプ
リング剤と有機過酸化物との反応が各層間の接着
に大きく寄与していることが判る。 比較例 3 実施例1において、酢酸ビニル含量が28重量の
ものの代りに45重量%のエチレン―酢酸ビニル共
重合体(三井ポリケミカル製品エバフレツクス
45X、メルトインデツクス80)を用いてエンボス
シートの成形を行なつたが、引取ロールへの粘着
が著しく、満足なエンボスシートを得ることがで
きなかつた。 比較例 4 実施例1において、酢酸ビニル含量が28重量%
のものの代りに14重量%のエチレン―酢酸ビニル
共重合体(三井ポリケミカル製品エバフレツクス
550、メルトインデツクス15)を用いてエンボス
シートの成形を行ない(ただし、樹脂温度110
℃)、このエンボスシートを用いて実施例3と同
様にて白板ガラス―エンボスシート―白板ガラス
積層物を作製し、この積層物について光線透過率
を測定し、その結果を後記表に示した。 以上の実施例1、3、5、7と比較例3、4と
の対比から、酢酸ビニル含量約20〜40重量%のエ
チレン―酢酸ビニル共重合体を用いることが好ま
しいことが判る。 比較例 5 実施例1において、エチレン―酢酸ビニル共重
合体のみを用いてエンボスシートの成形を行な
い、このエンボスシートを用いて実施例2と同様
にして白板ガラス―エンボスシート―ポリフツ化
ビニルシート積層物を作製し、この積層物の剥離
強度を実施例2と同様に測定した。後記表の結果
に示される如く、エンボスシートと白板ガラスま
たはポリフツ化ビニルシートとの間には、実用上
不十分な接着強度しか得られなかつた。 比較例 6 ブチラール樹脂シート(デユポン社製品ブタサ
イト)の表面に付着されているでん粉を水洗除去
し、乾燥、調湿したものを中間層として用い、オ
ートクレーブを用いて加圧下に、加熱温度160℃
で前記白板ガラスおよびポリフツ化ビニルシート
との溶融貼り合せを30分間行なつて積層物を作製
し、この積層物の剥離強度を実施例2と同様に測
定して、その結果を次の表に示した。
The present invention relates to a filled adhesive sheet for solar cells and an adhesion method using the same. For more details,
The present invention relates to a filled adhesive sheet for solar cells exhibiting improved adhesion and an adhesion method using the same. In recent years, it has been pointed out that existing energy sources, mainly oil, have been depleted, and the development of alternative energy sources has become necessary.In this context, solar power generation has been recognized as a clean energy source and as a source of inexhaustible solar radiation energy. There is a desire for its immediate practical application and widespread use. Photovoltaic power generation uses solar cells to directly convert the sun's radiant energy into electrical energy, and this function is obtained by utilizing the quantum effect of semiconductors, generally silicon semiconductors, selenium semiconductors, etc. By the way, the functionality of silicon semiconductors deteriorates when directly exposed to the outside air, so for the purpose of protection from the outside air, we use transparent upper protective materials made of glass, acrylic resin, carbonate resin, etc., and glass, stainless steel, and aluminum. , and is protected by a lower substrate protection material made of plastic or the like. At this time, the high-performance silicon semiconductors used for solar power generation are usually wafers (small thin film pieces), so these wafers are arranged in series or parallel using interconnectors, electrically connected and fixed. Because of this need, filler adhesives are commonly used. The physical properties required of this filling adhesive include the following. (1) In order to prevent wafers such as silicon semiconductors from being destroyed by internal strain caused by thermal expansion and contraction, they must have elastomeric properties. (2) Power generation is possible only after sunlight passes through the external protective material, filling adhesive, and silicon semiconductor in order, so the filling adhesive used during this time must have high sunlight transmittance. Must be. (3) Must have good adhesion to external protective materials. (4) Wafers such as silicon semiconductors have a small starting force, so a useful voltage can be obtained by connecting wafers in series or in parallel, so the connecting material must not corrode and have high dielectric strength. (5) There is no change in each of the above properties after being left outdoors for a long period of time. Conventionally, heat-crosslinking liquid silicone resins have been used as having these properties, but
This had drawbacks such as being expensive, requiring long coating and bonding steps, and being unsuitable for automation. For this reason, sheets of polyvinyl petral resin, which has a proven track record for laminated glass, have recently begun to be used, but this is not necessarily satisfactory as a filler adhesive for solar cells. That is, a polyvinyl butyral sheet has starch or sodium bicarbonate attached to its surface to prevent blocking, and must be washed with water, dried, and conditioned before use. In addition, it is necessary to use an autoclave for bonding due to the poor fluidity of the resin, which requires a long process time.
Not suitable for automation. Furthermore, in terms of quality, due to its high water absorption rate, it has poor humidity characteristics, and if left in high humidity for a long time, it will cause devitrification, which not only reduces light transmittance but also significantly reduces adhesive strength. death,
A peeling phenomenon occurs at the interface between the upper transparent protective material, the lower substrate protective material, and the solar cell element. Furthermore, low-temperature properties (flexibility) are not necessarily good. In place of polyvinyl butyral sheets, which have these problems, ethylene-vinyl acetate copolymer sheets have recently begun to be considered from the perspective of reducing the cost of solar cell modules. However, the commonly used ethylene-vinyl acetate copolymer cannot satisfy the characteristics required as a filler adhesive for solar cells. That is, as the vinyl acetate content in this copolymer increases, transparency and flexibility improve, but sheet formability and
Blocking properties deteriorate, making it difficult to satisfy both properties at the same time, and heat resistance,
Light resistance is also insufficient. Furthermore, the durable adhesiveness with the upper transparent protective material and the lower substrate protective material, which determines the reliability of the solar cell module, is also insufficient. The present inventors used an ethylene-based copolymer resin such as ethylene-vinyl acetate copolymer to achieve various properties required for a filling adhesive for solar cells, especially excellent initial adhesion and durable adhesion with protective materials. As a result of various studies in search of a filled adhesive sheet suitable for automating and shortening the bonding process and a bonding method using the same, a sheet molded from an ethylene copolymer resin containing a coupling agent and an organic peroxide was developed. The present invention has been completed based on the discovery that a sheet is fully suitable for such purposes. Accordingly, the present invention relates to a filled adhesive sheet for solar cells, which is made of an ethylene copolymer resin containing a coupling agent and an organic peroxide. The present invention also relates to a method for adhering a protective material for a solar cell and a filler, and the adhesion between the protective material and the filler is performed by adhering the solar cell element to an ethylene copolymer resin containing a coupling agent and an organic peroxide. sandwiched between at least two filled adhesive sheets consisting of at least two filled adhesive sheets, with an upper transparent protective material and a lower substrate protective material layered on both sides, or an ethylene copolymer resin containing a coupling agent and an organic peroxide. An upper transparent protective material and a lower substrate protective material each having a solar cell element formed on the inward surface of one of the protective materials were stacked above and below the intermediate layer filled adhesive sheet. In the module bonding process in this state, heating is performed to a temperature higher than the decomposition temperature of the organic peroxide. The ethylene copolymer resin has a light transmittance of about 80% or more, preferably about 90% or more, and an elastic modulus of about 1 to 30 MPa, preferably about 3 to 12 MPa.
are used as suitable copolymer resins.
Specifically, for example, copolymers of ethylene and vinyl esters such as vinyl acetate and vinyl propionate, copolymers of ethylene and unsaturated fatty acid esters such as ethyl acrylate, butyl acrylate, and methyl methacrylate, and ethylene. and copolymers with α-olefins such as propylene, butene-1, and 4-methylpentene-1, as well as ethylene-vinyl ester-unsaturated fatty acid ternary copolymers, ethylene-unsaturated fatty acid ester-unsaturated fatty acid Tertiary copolymers or their metal salts (ionomer resins)
etc. are used. Among these ethylene-based copolymer resins, the most preferred one from an economic point of view is an ethylene-vinyl acetate copolymer, in which case the vinyl acetate content in the copolymer is about 20 to 40% by weight, preferably is about 25
~40% by weight is suitable. If the vinyl acetate content is less than this, the light transmittance will be low and the power generation efficiency of the module will be low, and the elastic modulus will be high and the power generation element will undergo thermal expansion and contraction.
The risk of damage increases. However, in the case where a filling adhesive sheet is pasted under the solar cell element formed on the lower surface of the upper transparent protective material, the light transmittance of that part is irrelevant, so the vinyl acetate content is approximately 20% by weight. The following ethylene-vinyl acetate copolymers can also be used. On the other hand, if the vinyl acetate content increases beyond this range, the extrusion moldability of the sheet will deteriorate, and the resulting sheet will become more sticky and prone to blocking. These ethylene copolymer resins contain a coupling agent and an organic peroxide. As the coupling agent, one is used that has a good adhesion function when the ethylene copolymer resin containing the organic peroxide is heat bonded to each external protective material in the coexistence of the organic peroxide. Such a coupling agent may have the general formula RSiX 3 (where R is a reactive organic group such as a vinyl group, an aminoalkyl group, a methacryloxyalkyl group, an acryloxyalkyl group, a mercaptoalkyl group, or an epoxy group, and X is a halogen group). an organosilane compound with the general formula R′ 4-o Si(OOR″) o (where R′ is a vinyl group or an alkyl group). can be,
R″ is a hydrocarbon group, n is an integer from 1 to 4) or an organosilane peroxide represented by the general formula ROTi(OYRZ) 3 (where R is an alkyl group and Y is a carboxyl group) , a phosphate group, a pyrophosphate group, a phosphite group, or a sulfonyl group, and Z is a hydrogen atom, an amino group, a hydroxyl group, a mercapto group, an acrylic group, or a methacrylic group). In addition to the above-mentioned adhesion function, these coupling agents are characterized by their kneadability and compatibility with the ethylene copolymer resin, odor, light resistance, non-corrosion against interconnectors, cost, etc. From this point of view, preferred coupling agents include vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, and γ
-methacryloxypropyltrimethoxysilane,
Organic compounds with unsaturated groups or epoxy groups such as vinyltriacetoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. It is a silane compound. When an organosilane peroxide is used as a coupling agent, its decomposition temperature (temperature at which the half-life is 1 hour) is approximately 90 to 190°C, preferably approximately 120 to 190°C.
A temperature of 160℃ is suitable. Such organosilane peroxides include CH 3 Si(OO-t-Bu) 3 ,
Examples include CH 2 --CHSi(OOR'') (where R'' is a tertiary butyl group, a cumyl group, or a p-menthyl group). These coupling agents are generally used in an amount of about 0.1 to 10 parts by weight, preferably about 0.5 parts by weight, based on 100 parts by weight of the ethylene copolymer resin.
It is used in a proportion of ~5 parts by weight. The combination of this and the organic peroxide provides stronger adhesion between the ethylene copolymer resin and each external protective material, which is useful in practice. That is, compared to using only a coupling agent or an organic peroxide,
Adhesion is clearly improved when these are used in combination. The cause of this is not fully understood, but for example, when a silane coupling agent with an unsaturated group is used, the organic peroxide decomposes during heating and bonding, generating radicals in the ethylene copolymer resin. The majority of these polymer radicals appear to be involved in the crosslinking reaction of the ethylene copolymer resin, but the remaining part reacts with the unsaturated groups of the silane coupling agent, meaning that the coupling agent is grafted onto the ethylene copolymer resin. It is also believed that this grafted coupling agent exists between the ethylene copolymer resin and each external protective material and is involved in the formation of stronger adhesion. Organosilane peroxides used as coupling agents are also thought to have the function of crosslinking ethylene copolymer resins, similar to the organic peroxides used in combination, but their crosslinking efficiency is lower than that of organic peroxides. is also inferior and disadvantageous in terms of cost,
It is not preferable to use organic silane peroxide as a substitute for organic peroxide, and it is preferable to use both in combination. Organic peroxides used in combination with coupling agents (thus, organic silane peroxides are naturally excluded) must be A material that does not decompose but quickly decomposes at a temperature below the decomposition temperature of the ethylene copolymer resin during the modularization process is used. Generally, about 90~
Those having a decomposition temperature (temperature at which the half-life is 1 hour) of 190°C, preferably about 120-160°C are used. Examples of such organic peroxides include tert-butyl peroxyisopropyl carbonate, tert-butyl peroxy acetate, tert-butyl peroxybenzoate, dicumyl peroxide, 2,
5-dimethyl-2,5-bis(tert-butylperoxy)hexane, di-tert-butyl peroxide,
2,5-dimethyl-2,5-bis(tert-butylperoxy)hexyl-3,1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, tert-butylperoxy)cyclohexane, methyl ethyl ketone peroxide, 2,5-dimethylhexyl-2,5-
Bisperoxybenzoate, tert-butyl hydroperoxide, p-menthane hydroperoxide, benzoyl peroxide, p-chlorobenzoyl peroxide, tert-butyl peroxyisobutyrate, hydroxyheptyl peroxide, cyclohexanone peroxide - Examples include oxide. These organic peroxides crosslink the ethylene copolymer resin during heating during the bonding process of solar cell modules, improve heat resistance, and cause interaction between the coupling agent and the filling adhesive. It is added in an amount necessary to contribute to improved adhesion. Generally, about 0.1 to 5 parts by weight, preferably about 0.5 to 3 parts by weight, of organic peroxide is added to 100 parts by weight of the ethylene copolymer resin. If the addition ratio is less than this, transparency, heat resistance, and adhesion between the filling adhesive and each external protective material will not be sufficient. When stricter light resistance is required for the filled adhesive, it is preferable to add a light resistance stabilizer, such as 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy- 4-
Methoxybenzophenone, 2-hydroxy-4-
Methoxy-2'-carboxybenzophenone, 2-
Benzophenones such as hydroxy-4-n-octoxybenzophenone, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole, 2-(2'-hydroxy-5-methylphenyl) Benzotriazole types such as benzotriazole and 2-(2'-hydroxy-5-tertiary octylphenyl)benzotriazole, salicylic acid ester types such as phenyl salicylate and p-octylphenyl salicylate, and nickel complex salt types. , hindered amine type, etc. are used as light stabilizers. When these light stabilizers are used in combination with antioxidants such as hindered phenols and phosphites, a synergistic effect may be expected. The forming of the sheet used as a filling adhesive is
This can be carried out by a known method using a T-die extruder or the like. That is, the ethylene copolymer resin, coupling agent, organic peroxide, and optionally added light stabilizer are dry blended in advance and supplied from the hopper of the extruder, so that the organic peroxide does not substantially decompose. Molding is carried out by extrusion into a sheet at a molding temperature, preferably through an embossed take-off roll. Formation of an arbitrary embossed pattern is effective for preventing blocking of the sheet and for degassing during the modularization process of solar cells. Although the thickness of the sheet is not particularly limited, it is generally about 0.1 to 1 mm. In addition, if the coupling agent, organic peroxide, etc. are in the form of a solution or are used as a solution, an extruder with a well-known vent function is used.
Either prepare pellets from which the solvent has been removed in advance, and then go through the above steps, or install a T-die directly at the tip of an extruder with a vent function, and form the pellets into sheets at once while removing the solvent using the vent device. You can also take the following method. Modularization of solar cells can be carried out as follows. When solar cell elements are made of silicon semiconductor or selenium semiconductor wafers, these solar cell elements are sandwiched between at least two filled adhesive sheets, and if necessary, surface active material is applied to both sides of the sheets. A protective material that has been cleaned with a chemical solution or an organic solvent, or surface treated with corona discharge or chemicals, that is, an upper transparent protective material and a lower substrate protective material are layered and degassed by applying a vacuum. Afterwards or at the same time, it is heated and then pressurized to adhere and bond. At this time, it is industrially preferable to bond the module by sequentially overlapping or arranging the lower substrate protective material, the filling adhesive sheet, the solar cell element, the filling adhesive sheet, and the upper transparent protective material. The battery element may be laminated in advance with at least two filled adhesive sheets made of an ethylene copolymer resin containing a coupling agent and an organic peroxide, and bonded to the upper transparent protective material and the lower substrate protective material. Heating is preferably carried out until the organic peroxide added to the filled adhesive sheet is almost completely decomposed. Through this heat treatment, the filling adhesive is cross-linked, the filling adhesive and each external protective material are firmly adhered, and the solar cell element is laminated with two filling adhesive sheets, and the upper transparent A solar cell module is formed therein, which is firmly bonded to the protective material and the lower substrate protective material. The heat treatment performed here is preferably performed in two stages. In other words, under conditions where the organic peroxide does not completely decompose and the module adheres gently, for example, when the organic peroxide has a decomposition temperature of 140°C, the decomposition temperature is about 0.1 in a vacuum laminator at 140°C.
Industrially, it is possible to carry out the temporary bonding process for ~5 minutes and the heating process under conditions such that the peroxide is almost completely decomposed, such as heating at 140°C for about 60 to 200 minutes at room temperature, in separate processes. It's advantageous. The reason is as follows. (1) Temporary bonding requires an expensive vacuum laminator, so in order to increase the production capacity of the temporary bonding process that uses this laminator, it is possible to replace the temporary bonding process with the temporary bonding process without using this laminator. It is advantageous to carry out the process in two stages: heating under normal pressure. (2) When heating and pressurizing are continued in a vacuum laminator, the filling adhesive sheet melts and flows, and some of it flows out from the edge of the panel, resulting in short circuits and filling of the solar cell elements due to misalignment. As the thickness of the adhesive sheet layer becomes thinner, the insulation (withstanding) voltage between the solar cell element or interconnector and the lower substrate protection material decreases, but this can be avoided by heating in two stages. be able to prevent undesirable phenomena such as Incidentally, the temporarily bonded laminate can be once cooled and then subjected to the next heating step, but as long as work permits, it is preferable not to cool it because the amount of heat required is smaller. In addition, solar cell elements are made of glass, plastic,
When formed on a protective material such as ceramic or stainless steel, a filled adhesive sheet is used as an intermediate layer, and a solar cell element is formed on the inward facing surface (contact surface of the filled adhesive sheet) of one of the protective materials. With the upper transparent protective material and the lower substrate protective material layered on top and bottom of the intermediate layer filling adhesive sheet, specifically, the filling adhesive sheet is placed on top of the solar cell element formed on the upper surface of the lower substrate protective material. Then, with the filling adhesive sheet and the lower substrate protective material sequentially stacked under the lower transparent protective material or the solar cell element formed on the lower surface of the upper transparent protective material, this is placed under vacuum in the same manner as in the above case. When heat bonding is performed, a solar cell module is formed in which one protective material on which a solar cell element is formed, a filling adhesive sheet, and the other protective material are firmly bonded together. In this way, the solar cell formed by bonding by the method using the filling adhesive sheet according to the present invention has a high peel strength between the protective material and the filling adhesive, and has good peeling resistance under humid conditions. It fully satisfies all the properties required for solar cell modules, such as excellent initial adhesion and durable adhesion, little change in response to UV irradiation, and good light transmittance. It also has the effect of enabling automated and shortened bonding. Next, the present invention will be explained with reference to examples. Example 1 Ethylene-vinyl acetate copolymer (Mitsui Polychemical product Evaflex 250, vinyl acetate content 28
Weight%, melt index 15) 100 parts (weight,
(same below), tertiary butyl peroxybenzoate
1.5 parts, 1 part of γ-methacryloxypropyltrimethoxysilane, 0.3 parts of 2-hydroxy-4-n-octylbenzophenone, and tetrakis-[methylene-3-(3',5'-di-tert-butyl-4') -Hydroxyphenyl)propionate] A mixture prepared by dry blending 0.1 part of methane was extruded into a sheet at a resin temperature of 95°C using a T-die extrusion molding machine, and the sheet was taken off with an embossed pattern take-up roll. , thickness with embossed patterns on both sides of the sheet
A 0.5 mm embossed sheet was molded. Modularization of solar cells using this embossed sheet was carried out as follows. After washing the surface with a neutral detergent aqueous solution, washing with distilled water and air drying the white plate glass (thickness: 3 mm,
The embossed sheet is placed on the embossed sheet (light transmittance of 91% at 450 mμ), and a plurality of silicon semiconductor wafers for solar cells (element light-receiving area 18 cm 2 / piece) are arranged in series on it using an interconnector,
In addition, the embossed sheet and polyvinyl vinyl sheet (Tedlar 400BS, manufactured by DuPont, USA)
30WH) were stacked one on top of the other and melted and bonded using a vacuum laminator at a heating temperature of 110°C (temporary bonding). This temporary adhesive laminate is further placed under normal pressure.
By heating on a hot plate at 150°C for 30 minutes, the organic peroxide was decomposed, the ethylene-vinyl acetate copolymer was crosslinked, and a module was produced that was firmly adhered to each external protective material. When measuring the power generation performance of this solar cell module, the short - circuit current was
A value of 370 mA/18 cm 2 and a voltage of 6 V/18 cm 2 were obtained. Example 2 The white glass-embossed sheet-polyfluorinated vinyl sheet laminates used in Example 1 were prepared in the same manner as in Example 1, and the peel strength of the laminates was measured using a tensile tester at a tensile speed of 20 cm. /
The measurement was performed by T-peeling under the conditions of 23° C., 60% relative humidity, and the average value of 5 samples was calculated. As shown in the results in the table below, good peel strength was observed between the embossed sheet and the white glass or polyfluorinated vinyl sheet. Example 3 The white glass-embossed sheet-white glass laminate used in Example 1 was prepared in Example 1.
The laminate was prepared using a UV meter to measure the light transmittance at a wavelength of 500 mμ, and an ultraviolet irradiator was used to continuously irradiate it with ultraviolet light for 100 hours and observe its appearance. As shown in the results in the table below, the light transmittance was good and the appearance when irradiated with ultraviolet rays was also good. Example 4 The module produced in Example 1 was subjected to a temperature cycle test and a humidity cycle test. In the temperature cycle test, high temperature (+90
When the appearance of the module was observed after 20 cycles of 4 hours each at low temperature (-40°C) and low temperature (-40°C), no abnormality was observed. Humidity cycle test: 90% phase humidity, 16 hours under 40℃ atmosphere, 90℃ relative humidity,
When the appearance of the module was observed after 20 cycles of 6 hours per cycle in an atmosphere at 23°C, no abnormality was found. From the results of Examples 1 to 4 above, the sheet containing the ethylene copolymer resin, coupling agent, and organic peroxide used in the present invention is extremely useful as a filling adhesive sheet for solar cells. I understand. Example 5 Ethylene-vinyl acetate copolymer (Mitsui Polychemical product Evaflex 150, vinyl acetate content 33
Weight%, melt index 30) 100 parts, 2,5
-Dimethyl-2,5-bis(tert-butylperoxy)hexane 1.5 parts, γ-methacryloxypropyltrimethoxysilane 1 part, 2-hydroxy-4
-0.3 part of n-octylbenzophenone, 0.1 part of bis(2,2,6,6-tetramethyl-4-piperidine) sebacate and tris (mixed mono-
An embossed sheet was formed in the same manner as in Example 1 using a mixture obtained by doratoblending 0.2 parts of dinonyl phenyl) phosphite, and a solar cell module was produced using this embossed sheet. Example 6 The white glass-embossed sheet-polyfluorinated vinyl sheet laminates used in Example 5 were prepared in the same manner as in Example 1, and the peel strength of the laminates was measured in the same manner as in Example 2. As shown in the results in the table below, good peel strength was observed between the embossed sheet and the white glass or polyfluorinated vinyl sheet. Example 7 The white glass-embossed sheet-white glass laminates used in Example 5 were produced in the same manner as in Example 1, and the laminates were measured for light transmittance and irradiated with ultraviolet rays in the same manner as in Example 3. I conducted a test. As shown in the results in the table below, the light transmittance was good and the appearance when irradiated with ultraviolet rays was also good. Example 8 In Example 1, the same amount of γ-glycidoxypropyltrimethoxysilane was used instead of γ-methacryloxypropyltrimethoxysilane, and an embossed sheet was formed and a solar cell module was produced using this embossed sheet. I did this. Example 9 The white glass-embossed sheet-polyfluorinated vinyl sheet laminates used in Example 8 were produced in the same manner as in Example 1, and the peel strength of this laminate was measured in the same manner as in Example 2. The results are shown in the table below. Example 10 In Example 1, the same amount of γ-mercaptopropyltrimethoxysilane was used instead of γ-methacryloxypropyltrimethoxysilane, and an embossed sheet was formed and a solar cell module was produced using this embossed sheet. Summer. Example 11 The white glass-embossed sheet-polyfluorinated vinyl sheet laminate used in Example 10 was produced in the same manner as in Example 1, and the peel strength of this laminate was measured in the same manner as in Example 2. The results are shown in the table below. Example 12 In Example 1, CH 2 -CH- was substituted for 1 part of γ-methacryloxypropyltrimethoxysilane.
Using 3 parts of a 30% by weight toluene solution of Si-(OO-t-Bu) 3 (Shin-Etsu Silicon Products X-12-530), this silane compound solution and ethylene-vinyl acetate copolymer were blended and vent extruded. A pellet was prepared by extruding the resin at a resin temperature of 90° C. using a machine to remove toluene, and other ingredients were added to the pellet to form an embossed sheet. A solar cell module was also produced using this embossed sheet. Example 13 The white glass-embossed sheet-polyfluorinated vinyl sheet laminates used in Example 12 were produced in the same manner as in Example 1, and the peel strength of this laminate was measured in the same manner as in Example 2. The results are shown in the table below. Example 14 In Example 1, the same amount of vinyltriethoxysilane was used in place of γ-methacryloxypropyltrimethoxysilane, and an embossed sheet was formed and a solar cell module was produced using this embossed sheet. Example 15 The white glass-embossed sheet-polyfluorinated vinyl sheet laminates used in Example 14 were produced in the same manner as in Example 1, and the peel strength of this laminate was measured in the same manner as in Example 2. The results are shown in the table below. Comparative Example 1 In Example 1, an embossed sheet was molded without using γ-methacryloxypropyltrimethoxysilane. Using this embossed sheet, a white plate glass-embossed sheet-polyfluorinated vinyl sheet laminate was prepared in the same manner as in Example 2, and the peel strength of this laminate was measured in the same manner as in Example 2. As shown in the results in the table below, practically sufficient adhesive strength could not be obtained between the embossed sheet and the white glass or polyfluorinated vinyl sheet. Comparative Example 2 In Example 5, 2,5-dimethyl-2,5
- An embossed sheet was molded without using bis(tert-butylperoxy)hexane. Using this embossed sheet, white plate glass was prepared in the same manner as in Example 2.
An embossed sheet-polyfluorinated vinyl sheet laminate was prepared, and the peel strength of this laminate was measured in the same manner as in Example 2. As shown in the results in the table below, practically sufficient adhesive strength could not be obtained between the embossed sheet and the white glass or polyfluorinated vinyl sheet. From the comparison of Examples 2, 6, 9, and 11 and Comparative Examples 1 and 2 above, it can be seen that in these laminates, the reaction between the coupling agent and the organic peroxide greatly contributes to the adhesion between each layer. It can be seen that Comparative Example 3 In Example 1, an ethylene-vinyl acetate copolymer with a vinyl acetate content of 45% by weight (Evaflex, a Mitsui Polychemical product) was used instead of the vinyl acetate copolymer with a vinyl acetate content of 28% by weight.
45X, melt index 80) was used to form an embossed sheet, but the adhesion to the take-up roll was significant and it was not possible to obtain a satisfactory embossed sheet. Comparative Example 4 In Example 1, the vinyl acetate content was 28% by weight.
14% by weight ethylene-vinyl acetate copolymer (Mitsui Polychemical product Evaflex) instead of
550, melt index 15) to form an embossed sheet (however, the resin temperature is 110
C), using this embossed sheet, a white plate glass-embossed sheet-white plate glass laminate was produced in the same manner as in Example 3, and the light transmittance of this laminate was measured, and the results are shown in the table below. From the comparison of Examples 1, 3, 5, and 7 and Comparative Examples 3 and 4 above, it is clear that it is preferable to use an ethylene-vinyl acetate copolymer having a vinyl acetate content of about 20 to 40% by weight. Comparative Example 5 In Example 1, an embossed sheet was formed using only the ethylene-vinyl acetate copolymer, and this embossed sheet was used to laminate white glass, embossed sheet, and polyvinyl fluoride sheet in the same manner as in Example 2. A product was prepared, and the peel strength of this laminate was measured in the same manner as in Example 2. As shown in the results in the table below, practically insufficient adhesive strength was obtained between the embossed sheet and the white glass or polyfluorinated vinyl sheet. Comparative Example 6 Starch adhering to the surface of a butyral resin sheet (DuPont product Butasite) was washed with water to remove it, dried, and the humidity conditioned, then used as the intermediate layer and heated at 160°C under pressure using an autoclave.
A laminate was prepared by melt-bonding the white glass and the polyvinyl fluoride sheet for 30 minutes, and the peel strength of this laminate was measured in the same manner as in Example 2. The results are shown in the table below. Indicated.

【表】【table】

【表】 実施例 16 白板ガラス基板上に形成させた太陽電池素子の
上に、実施例1で得られたエンボスシートおよび
ポリフツ化ビニルシートを順次重ね、実施例1と
同様にしてモジユールの貼り合せを行なつた。 得られた太陽電池モジユールについて、実施例
4と同様にして、温度サイクル試験および湿度サ
イクル試験を行なつた。温度サイクル試験では20
サイクル、また湿度サイクル試験では20サイクル
実施した後のモジユールの外観を観察したとこ
ろ、いずれも何ら異常はなかつた。
[Table] Example 16 The embossed sheet and polyfluorinated vinyl sheet obtained in Example 1 were sequentially stacked on top of the solar cell element formed on the white glass substrate, and the module was laminated in the same manner as in Example 1. I did this. The obtained solar cell module was subjected to a temperature cycle test and a humidity cycle test in the same manner as in Example 4. 20 in temperature cycle test
When the appearance of the module was observed after 20 cycles and humidity cycle tests, no abnormalities were found in any of them.

Claims (1)

【特許請求の範囲】 1 カツプリング剤および有機過酸化物を含有す
るエチレン系共重合樹脂からなる太陽電池用充填
接着材シート。 2 カツプリング剤として有機シラン化合物、有
機シラン過酸化物または有機チタネート化合物が
用いられた特許請求の範囲第1項記載の充填接着
材シート。 3 約90〜190℃の分解温度を有する有機過酸化
物が用いられた特許請求の範囲第1項記載の充填
接着材シート。 4 エチレン系共重合樹脂として酢酸ビニル含量
が約40重量%以下のエチレン―酢酸ビニル共重合
体が用いられた特許請求の範囲第1項記載の充填
接着材シート。 5 エチレン系共重合樹脂として酢酸ビニル含量
が約20〜40重量%のエチレン―酢酸ビニル共重合
体が用いられた特許請求の範囲第1項記載の充填
接着材シート。 6 太陽電池素子をカツプリング剤および有機過
酸化物を含有するエチレン系共重合樹脂からなる
少くとも2枚の充填接着材シートで挾み、更にそ
の両側に上部透明保護材および下部基板保護材を
重ねた状態でのモジユール貼り合せ過程におい
て、前記有機過酸化物の分解温度以上に加熱する
ことを特徴とする太陽電池用保護材と充填材との
接着方法。 7 下部基板保護材、充填接着材シート、太陽電
池素子、充填接着材シートおよび上部透明保護材
を順次重ね合せまたは配列し、モジユールの貼り
合せを行なう特許請求の範囲第6項記載の接着方
法。 8 カツプリング剤として有機シラン化合物、有
機シラン過酸化物または有機チタネート化合物が
用いられる特許請求の範囲第6項記載の接着方
法。 9 約90〜190℃の分解温度を有する有機過酸化
物が用いられる特許請求の範囲第6項記載の接着
方法。 10 充填接着材シートに成形されるエチレン系
共重合樹脂として酢酸ビニル含量が約20〜40重量
%のエチレン―酢酸ビニル共重合体が用いられる
特許請求の範囲第6項記載の接着方法。 11 太陽電池素子を少くとも2枚の充填接着材
シートで予めラミネート化し、上部透明保護材お
よび下部基板保護材と貼り合せる特許請求の範囲
第6項記載の接着方法。 12 カツプリング剤および有機過酸化物を含有
するエチレン系共重合樹脂からなる充填接着材シ
ートを中間層とし、いずれか一方の保護材の内向
面上に太陽電池素子を形成させた上部透明保護材
および下部基板保護材を前記中間層充填接着材シ
ートの上下に重ねた状態でのモジユール貼り合せ
過程において、前記有機過酸化物の分解温度以上
に加熱することを特徴とする太陽電池用保護材と
充填材との接着方法。 13 カツプリング剤として有機シラン化合物、
有機シラン過酸化物または有機チタネート化合物
が用いられる特許請求の範囲第12項記載の接着
方法。 14 約90〜190℃の分解温度を有する有機過酸
化物が用いられる特許請求の範囲第12項記載の
接着方法。 15 下部基板保護材上面に形成させた太陽電池
素子の上に貼り合せる充填接着材シートに成形さ
れるエチレン系共重合樹脂として、酢酸ビニル含
量が約20〜40重量%のエチレン―酢酸ビニル共重
合体が用いられる特許請求の範囲第12項記載の
接着方法。 16 上部透明保護材下面に形成させた太陽電池
素子の下に貼り合せる充填接着材シートに成形さ
れるエチレン系共重合樹脂として、酢酸ビニル含
量が約40重量%以下のエチレン―酢酸ビニル共重
合体が用いられる特許請求の範囲第12項記載の
接着方法。
[Scope of Claims] 1. A filled adhesive sheet for solar cells comprising an ethylene copolymer resin containing a coupling agent and an organic peroxide. 2. The filled adhesive sheet according to claim 1, wherein an organic silane compound, an organic silane peroxide, or an organic titanate compound is used as a coupling agent. 3. The filled adhesive sheet according to claim 1, wherein an organic peroxide having a decomposition temperature of about 90 to 190°C is used. 4. The filled adhesive sheet according to claim 1, wherein an ethylene-vinyl acetate copolymer having a vinyl acetate content of about 40% by weight or less is used as the ethylene-based copolymer resin. 5. The filled adhesive sheet according to claim 1, wherein an ethylene-vinyl acetate copolymer having a vinyl acetate content of about 20 to 40% by weight is used as the ethylene-based copolymer resin. 6. A solar cell element is sandwiched between at least two filled adhesive sheets made of an ethylene copolymer resin containing a coupling agent and an organic peroxide, and an upper transparent protective material and a lower substrate protective material are layered on both sides. 1. A method for adhering a solar cell protective material and a filler, the method comprising heating the organic peroxide to a temperature higher than the decomposition temperature of the organic peroxide in the module bonding process in a state in which the organic peroxide is decomposed. 7. The bonding method according to claim 6, wherein the lower substrate protective material, the filling adhesive sheet, the solar cell element, the filling adhesive sheet, and the upper transparent protective material are sequentially stacked or arranged to bond the module. 8. The bonding method according to claim 6, wherein an organic silane compound, an organic silane peroxide, or an organic titanate compound is used as the coupling agent. 9. The bonding method according to claim 6, wherein an organic peroxide having a decomposition temperature of about 90 to 190°C is used. 10. The bonding method according to claim 6, wherein an ethylene-vinyl acetate copolymer having a vinyl acetate content of about 20 to 40% by weight is used as the ethylene copolymer resin molded into the filled adhesive sheet. 11. The bonding method according to claim 6, wherein the solar cell element is laminated in advance with at least two filled adhesive sheets and bonded to the upper transparent protective material and the lower substrate protective material. 12 An upper transparent protective material with a filled adhesive sheet made of an ethylene copolymer resin containing a coupling agent and an organic peroxide as an intermediate layer, and a solar cell element formed on the inner surface of one of the protective materials; A solar cell protective material and filling, characterized in that the lower substrate protective material is heated above the decomposition temperature of the organic peroxide in a module bonding process in which the lower substrate protective material is stacked on top and bottom of the intermediate layer filling adhesive sheet. How to bond with materials. 13 Organosilane compound as a coupling agent,
13. The bonding method according to claim 12, wherein an organic silane peroxide or an organic titanate compound is used. 14. The bonding method according to claim 12, wherein an organic peroxide having a decomposition temperature of about 90 to 190°C is used. 15 Ethylene-vinyl acetate copolymer resin with a vinyl acetate content of about 20 to 40% by weight is used as an ethylene-based copolymer resin to be formed into a filling adhesive sheet to be bonded onto the solar cell element formed on the upper surface of the lower substrate protection material. 13. The bonding method according to claim 12, wherein coalescence is used. 16 Ethylene-vinyl acetate copolymer with a vinyl acetate content of about 40% by weight or less as an ethylene-based copolymer resin molded into a filling adhesive sheet to be bonded under the solar cell element formed on the lower surface of the upper transparent protective material. 13. The bonding method according to claim 12, wherein:
JP56158102A 1981-10-06 1981-10-06 Filled adhesive sheet for solar battery and bonding method using the same Granted JPS5860579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158102A JPS5860579A (en) 1981-10-06 1981-10-06 Filled adhesive sheet for solar battery and bonding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158102A JPS5860579A (en) 1981-10-06 1981-10-06 Filled adhesive sheet for solar battery and bonding method using the same

Publications (2)

Publication Number Publication Date
JPS5860579A JPS5860579A (en) 1983-04-11
JPS6214111B2 true JPS6214111B2 (en) 1987-03-31

Family

ID=15664341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158102A Granted JPS5860579A (en) 1981-10-06 1981-10-06 Filled adhesive sheet for solar battery and bonding method using the same

Country Status (1)

Country Link
JP (1) JPS5860579A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120952A (en) * 2006-11-14 2008-05-29 Du Pont Mitsui Polychem Co Ltd Crosslinkable ethylene copolymer composition, sheet for sealing solar cell element comprising the copolymer composition, and solar cell module using the sheet
DE112008003860T5 (en) 2008-05-12 2011-07-21 Du Pont-Mitsui Polychemicals Co., Ltd. Crosslinkable ethylene copolymer composition, encapsulant sheet for a solar cell element composed thereof, and solar cell module using the sheet sheet
DE112010000780T5 (en) 2009-02-17 2012-07-26 Du Pont-Mitsui Polychemnicals Co., Ltd. Film for a solar cell encapsulant and solar cell module
DE112011101642T5 (en) 2010-05-13 2013-03-21 Du Pont-Mitsui Polychemicals Co., Ltd. MULTILAYER MATERIAL, SOLAR CELL ENCLOSURE, INTERMEDIATE LAYER FOR SAFETY GLASS (COMPOSITE GLASS), SOLAR CELL MODULE AND SAFETY GLASS (COMPOSITE GLASS)
JP2013155238A (en) * 2012-01-27 2013-08-15 Bridgestone Corp Composition for forming sealing film for solar cell
JP2014156367A (en) * 2013-02-14 2014-08-28 Tokyo Ohka Kogyo Co Ltd Glass substrate flattening material, flattened glass substrate and method for producing flattened glass substrate
JP2015046509A (en) * 2013-08-28 2015-03-12 シーアイ化成株式会社 Seal material for solar cell module and solar cell module

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580109B2 (en) * 1985-04-24 1997-02-12 株式会社ブリヂストン Adhesive composition and method for bonding metal plate with the composition
JPH0753782B2 (en) * 1985-12-23 1995-06-07 株式会社ブリヂストン Transparent film and laminate having the film
JPS6419780A (en) * 1987-07-15 1989-01-23 Bridgestone Corp Solar battery sealing film
WO2001061763A1 (en) * 2000-02-18 2001-08-23 Bridgestone Corporation Sealing film for solar cell and method for manufacturing solar cell
JP4336442B2 (en) 2000-05-23 2009-09-30 キヤノン株式会社 Solar cell module
US7521515B2 (en) 2003-06-03 2009-04-21 Dai Nippon Printing Co., Ltd. Filler layer for solar cell module and solar cell module using same
CN100481524C (en) * 2003-09-10 2009-04-22 大日本印刷株式会社 Encapsulant layer for solar battery assembly and solar battery assembly
JP4779074B2 (en) * 2003-10-03 2011-09-21 三井・デュポンポリケミカル株式会社 Sheet for solar cell encapsulant
US20070259998A1 (en) * 2004-06-08 2007-11-08 Bridgestone Corporation Resin Film
CN102414838B (en) 2009-04-30 2015-05-06 三菱树脂株式会社 Sheet for solar cell, and solar cell module
JP5406593B2 (en) * 2009-05-21 2014-02-05 株式会社ブリヂストン Method for producing ethylene-unsaturated ester copolymer film for forming laminate
CA2759849A1 (en) 2009-07-17 2011-01-20 Mitsubishi Plastics, Inc. Solar cell sealing material and solar cell module produced using the same
JP5219293B2 (en) * 2009-09-30 2013-06-26 旭化成イーマテリアルズ株式会社 Resin sealing sheet
KR102011615B1 (en) 2010-07-28 2019-08-16 다이니폰 인사츠 가부시키가이샤 Solar cell sealing material, and solar cell module prepared by using same
WO2012073971A1 (en) 2010-11-30 2012-06-07 三菱樹脂株式会社 Laminate for solar cell and solar cell module produced using same
JP5778441B2 (en) 2011-02-22 2015-09-16 株式会社ブリヂストン Solar cell sealing film and solar cell using the same
CN102952518A (en) * 2012-05-28 2013-03-06 文仁光 Double-component liquid silica gel for packaging solar battery piece as well as preparation method and application method thereof
JP2014067969A (en) * 2012-09-27 2014-04-17 C I Kasei Co Ltd Encapsulation material for solar cell module and solar cell module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078287A (en) * 1973-09-14 1975-06-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078287A (en) * 1973-09-14 1975-06-26

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120952A (en) * 2006-11-14 2008-05-29 Du Pont Mitsui Polychem Co Ltd Crosslinkable ethylene copolymer composition, sheet for sealing solar cell element comprising the copolymer composition, and solar cell module using the sheet
DE112008003860T5 (en) 2008-05-12 2011-07-21 Du Pont-Mitsui Polychemicals Co., Ltd. Crosslinkable ethylene copolymer composition, encapsulant sheet for a solar cell element composed thereof, and solar cell module using the sheet sheet
DE112010000780T5 (en) 2009-02-17 2012-07-26 Du Pont-Mitsui Polychemnicals Co., Ltd. Film for a solar cell encapsulant and solar cell module
DE112011101642T5 (en) 2010-05-13 2013-03-21 Du Pont-Mitsui Polychemicals Co., Ltd. MULTILAYER MATERIAL, SOLAR CELL ENCLOSURE, INTERMEDIATE LAYER FOR SAFETY GLASS (COMPOSITE GLASS), SOLAR CELL MODULE AND SAFETY GLASS (COMPOSITE GLASS)
JP2013155238A (en) * 2012-01-27 2013-08-15 Bridgestone Corp Composition for forming sealing film for solar cell
JP2014156367A (en) * 2013-02-14 2014-08-28 Tokyo Ohka Kogyo Co Ltd Glass substrate flattening material, flattened glass substrate and method for producing flattened glass substrate
JP2015046509A (en) * 2013-08-28 2015-03-12 シーアイ化成株式会社 Seal material for solar cell module and solar cell module

Also Published As

Publication number Publication date
JPS5860579A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
JPS6214111B2 (en)
JP4034382B2 (en) Protection sheet for solar cell module
TWI501410B (en) Electronic device module comprising polyolefin copolymer
JP4437349B2 (en) Solar cell sealing material and solar cell module
JPS629232B2 (en)
JPH0152428B2 (en)
EP0145928B1 (en) Resin from saponified ethylene-vinyl acetate copolymers, production and use thereof
WO2001032772A1 (en) Sealing composition and sealing method
JP3454585B2 (en) Encapsulation materials for solar cells
WO2014100301A1 (en) Cross-linked polymers and their use in photovoltaic modules
JP2000186114A (en) Sealing compound for solar cell and solar cell module
JPH11317475A (en) Encapsulating material resin for semiconductor and semiconductor element
JP4437348B2 (en) Solar cell sealing material and solar cell module
KR20120052360A (en) Cross-linkable encapsulants for photovoltaic cells
KR20130093105A (en) Cross-linkable ionomeric encapsulants for photovoltaic cells
JP2013539422A (en) Multilayer structure comprising a fluorinated copolymer resin layer and an ethylene terpolymer layer
JPH0240709B2 (en)
JP3510646B2 (en) Adhesive sheet for solar cells
JP5099819B2 (en) Method for collecting solar cell module members
JP3510645B2 (en) Adhesive sheet for solar cells
JP4977111B2 (en) Method for separating and collecting solar cell modules
JP4086353B2 (en) LAMINATE MANUFACTURING METHOD AND SOLAR CELL MODULE MANUFACTURING METHOD
JP2012138467A (en) Solar battery sealing material, and solar battery module using the same
JP2011119475A (en) Method of manufacturing solar cell module
JPS60226589A (en) Sealing composition and sealing using the same