JPS6214089B2 - - Google Patents

Info

Publication number
JPS6214089B2
JPS6214089B2 JP56033676A JP3367681A JPS6214089B2 JP S6214089 B2 JPS6214089 B2 JP S6214089B2 JP 56033676 A JP56033676 A JP 56033676A JP 3367681 A JP3367681 A JP 3367681A JP S6214089 B2 JPS6214089 B2 JP S6214089B2
Authority
JP
Japan
Prior art keywords
scale
boundary
line
lines
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56033676A
Other languages
Japanese (ja)
Other versions
JPS57148347A (en
Inventor
Hitoshi Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP56033676A priority Critical patent/JPS57148347A/en
Publication of JPS57148347A publication Critical patent/JPS57148347A/en
Publication of JPS6214089B2 publication Critical patent/JPS6214089B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration

Description

【発明の詳細な説明】 本発明は隣合つて露光される二露光領域を測定
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring two exposed areas that are exposed next to each other.

電子線露光装置を用いて例えば第1図に示すよ
うなチツプ1を露光しようとする場合、装置によ
り一度に露光できる領域(フイールド)より、1
チツプが大きい場合、チツプパターンをフイール
ドF1,F2,F3,F4等のフイールド単位に
分割し、1フイールドを露光する毎にステージを
動かして隣のフイールドを露光することの繰り返
しにより露光をしている。
For example, when attempting to expose a chip 1 as shown in FIG. 1 using an electron beam exposure device, one
When the chip is large, the chip pattern is divided into field units such as fields F1, F2, F3, F4, etc., and each time one field is exposed, the stage is moved and the next field is exposed. .

この場合、隣合つたフイールド間の接続精度は
パターン作成において重大な要素となるため、従
来よりこの接続精度の測定が行なわれていた。
In this case, since the connection accuracy between adjacent fields is an important factor in pattern creation, measurement of this connection accuracy has conventionally been carried out.

さて、接続精度には隣合つたフイールド間の境
界に平行な方向の接続精度と境界に垂直な方向の
接続精度とがある。
Now, connection accuracy includes connection accuracy in a direction parallel to the boundary between adjacent fields and connection accuracy in a direction perpendicular to the boundary.

従来の接続精度測定方法においては第2図aに
示すようにフイールド間の境界2に平行な方向の
接続精度は以下のようにして測定している。即ち
境界2の左側のフイールドFLの右端に例えば1
μmの線幅を有する主尺目盛線3を5μmのピツ
チで描画する。この時中央の線Cは識別し易いよ
うに他の線より長く描画する。次にステージを動
かして右側のフイールドFRの左端に例えば4.9μ
mのピツチで副尺目盛線4をその中央の線CSが
主尺目盛線3の中央の線Cと同じ位置になるよう
に描画する。描画終了後、描画されたパターンを
光学顕微鏡等の拡大像を観察する手段によつて観
察する。境界2に平行な方向の接続精度が極めて
高ければ、中央の線C,CSが合うが、接続がず
れているとずれ量に応じて中央の線から離れた主
尺目盛線、副尺目盛線同志が合い、この合つた線
の位置により接続精度を読み取るようにしてい
る。例えば、中央の線からY方向に向つて2本目
の線同志が合つていれば、右側のフイールドが左
側のフイールドに対して0.2μmY方向へずれてい
ると測定できる。
In the conventional connection accuracy measuring method, as shown in FIG. 2a, the connection accuracy in the direction parallel to the boundary 2 between fields is measured as follows. In other words, for example, 1 is placed at the right end of field FL on the left side of boundary 2.
Main scale graduation lines 3 having a line width of μm are drawn at a pitch of 5 μm. At this time, the center line C is drawn longer than the other lines so that it can be easily identified. Next, move the stage and place the left end of the right field FR, for example 4.9μ.
A vernier scale scale line 4 is drawn with a pitch of m so that its center line CS is at the same position as the center line C of the main scale scale line 3. After the drawing is completed, the drawn pattern is observed using a means for observing an enlarged image, such as an optical microscope. If the connection accuracy in the direction parallel to boundary 2 is extremely high, the center lines C and CS will match, but if the connection is misaligned, the main scale scale line and vernier scale line will be separated from the center line depending on the amount of misalignment. The two lines match, and the accuracy of the connection can be determined by the position of the matching lines. For example, if the second lines in the Y direction from the center line match, it can be determined that the field on the right side is deviated from the field on the left side by 0.2 μm in the Y direction.

又、隣合つたフイールドの境界に垂直な方向の
精度は第2図bに示すように境界2を挾んで同じ
太さの線5,6を所定の間隔で露光し、露光後そ
の2本の線5,6の間隔Tを例えば測長器付の拡
大像観察手段により測定して、測定された間隔と
計画された間隔との差から接続精度を測定するよ
うにしている。
In addition, the accuracy in the direction perpendicular to the boundaries of adjacent fields is determined by exposing lines 5 and 6 of the same thickness at a predetermined interval across the boundary 2, as shown in Figure 2b, and after exposure, the two The distance T between the lines 5 and 6 is measured by, for example, an enlarged image observing means equipped with a length measuring device, and the connection accuracy is determined from the difference between the measured distance and the planned distance.

従つて従来の測定方法においては境界に平行な
方向の接続精度の測定は目盛線を読み取ることに
よつて行えるので容易であるが、境界に垂直な方
向の接続精度の測定は極めて面倒であつた。
Therefore, in conventional measurement methods, it is easy to measure the connection accuracy in the direction parallel to the boundary by reading the scale lines, but it is extremely troublesome to measure the connection accuracy in the direction perpendicular to the boundary. .

本発明はこのような従来の欠点を解決すべくな
されたもので、以下図面に基づき本発明の一実施
例を詳述する。
The present invention has been made to solve these conventional drawbacks, and one embodiment of the present invention will be described in detail below with reference to the drawings.

第3図は本発明により露光される主尺目盛線と
副尺目盛線を示すもので、第3図において、2は
接続精度を測定しようとする隣合うフイールド
FLとFRの境界である。
Figure 3 shows the main scale scale line and vernier scale scale line exposed according to the present invention. In Figure 3, 2 indicates the adjacent field whose connection accuracy is to be measured.
It is the boundary between FL and FR.

測定者は左側のフイールドFLの右端に境界2
に対して45゜をなす主尺目盛線7を露光すると共
に、該主尺目盛線7に対して直角をなす(従つて
境界2に対しては135゜をなす)ように更に主尺
目盛線8を露光する。
The measurer places boundary 2 at the right end of the left field FL.
The main scale graduation line 7 is exposed at an angle of 45° to the main scale scale line 7, and the main scale scale line 7 is further exposed at a right angle to the main scale scale line 7 (therefore, at an angle of 135° to the boundary 2). Expose 8.

次にステージを移動させて右側のフイールド
FRの左端に前記主尺目盛線7と対をなす副尺目
盛線9をその中央の線CSが主尺目盛線7の中央
の線Cと一直線になるように露光すると共に、前
記主尺目盛線8と対をなす副尺目盛線10をその
中央の線CSが主尺目盛線8の中央の線Cと一直
線になるように露光する。尚、これら副尺目盛線
9,10の方向は各々が対をなす主尺目盛線の方
向と一致するように露光する。
Next, move the stage and move to the field on the right.
At the left end of the FR, a vernier scale scale line 9 that is paired with the main scale scale line 7 is exposed so that its center line CS is in line with the center line C of the main scale scale line 7, and the main scale scale line 9 is The vernier scale graduation line 10 that is paired with the line 8 is exposed so that its central line CS is aligned with the central line C of the main scale graduation line 8. Incidentally, the exposure is performed so that the directions of these vernier scale lines 9 and 10 coincide with the directions of the main scale scale lines forming a pair.

さて、これら目盛線は境界2に対して45゜(或
は135゜)の角度を有している。従つて左側のフ
イールドFLに対して右側のフイールドFRが境界
2に対して垂直な方向にbだけずれたとすると、
副尺目盛線pは第4図から明らかなようにずれが
全く無い時の位置p′に比較してあたかもフイール
ドFRが境界2に平行(上方に)にbだけずれた
時に観察されるような位置に見え、又副尺目盛線
qはずれが全く無い時の位置q′に比較してあたか
もフイールドFRが境界2に平行(下方に)に−
bだけずれた時に観察されるような位置に見え
る。
Now, these scale lines have an angle of 45° (or 135°) with respect to boundary 2. Therefore, if the right field FR deviates from the left field FL by b in the direction perpendicular to boundary 2, then
As is clear from Fig. 4, the vernier scale line p is as if it were observed when the field FR was shifted parallel to (upwards) boundary 2 by b compared to the position p' when there was no shift at all. The vernier scale line q appears to be in the position q′ when there is no deviation at all, as if the field FR is parallel to the boundary 2 (downwards).
The position appears to be the one observed when shifted by b.

従つて、フイールドFRがフイールドFLに対し
て境界2に平行な方向にa、垂直な方向にbだけ
ずれたとすると、目盛線7,9によるずれ量の読
み値Mはa+bであり、一方目盛線8,10によ
るずれ量の読み値Nはa−bである。
Therefore, if field FR deviates from field FL by a in the direction parallel to boundary 2 and by b in the perpendicular direction, the reading value M of the deviation amount by scale lines 7 and 9 is a+b, while the scale line The reading value N of the amount of deviation based on 8 and 10 is a-b.

そこで、露光が終了した後目盛線7,9による
ずれ量Mを読み取ると共に目盛線8,10による
ずれ量の読み値Nを読み取り、前述した関係から
逆に境界2に平行な方向のずれ量aをa=M+N/2 から求めると共に、境界2に垂直な方向のずれ量
bをb=M−N/2から求めることができる。
Therefore, after the exposure is completed, the amount of deviation M by the scale lines 7 and 9 is read, and the reading value N of the amount of deviation by the graduation lines 8 and 10 is read, and from the above-mentioned relationship, the amount of deviation a in the direction parallel to the boundary 2 is conversely read. can be found from a=M+N/2, and the amount of deviation b in the direction perpendicular to the boundary 2 can be found from b=M-N/2.

上述したように、本発明によれば目盛線を読み
取つて簡単な計算をするだけでフイールドの境界
に平行な方向と垂直な方向のフイールド間接続精
度を簡単に測定することができる。
As described above, according to the present invention, it is possible to easily measure the inter-field connection accuracy in the direction parallel to and perpendicular to the field boundaries by simply reading the scale lines and performing simple calculations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチツプが複数のフイールドの集合とし
て露光されることを説明するための図、第2図は
従来の方法を説明するための図、第3図は本発明
の一実施例を示すための図、第4図は隣合うフイ
ールドの境界に垂直な方向のずれが目盛線にもた
らす効果について説明するための図である。 2:境界、7:主尺目盛線、8:主尺目盛線、
9:副尺目盛線、10:副尺目盛線。
Fig. 1 is a diagram for explaining that a chip is exposed as a set of multiple fields, Fig. 2 is a diagram for explaining a conventional method, and Fig. 3 is a diagram for showing an embodiment of the present invention. FIG. 4 is a diagram for explaining the effect that a deviation in the direction perpendicular to the boundary between adjacent fields has on the scale line. 2: Boundary, 7: Main scale scale line, 8: Main scale scale line,
9: Vernier scale line, 10: Vernier scale line.

Claims (1)

【特許請求の範囲】[Claims] 1 隣合つて露光される二露光領域の境界に沿つ
て一方の露光領域側に主尺目盛線を露光すると共
に他方の露光領域側に副尺目盛線を露光し、主尺
目盛線と副尺目盛線の拡大像を観察することによ
り前記二露光領域の接続精度を測定する方法にお
いて、前記主尺目盛線と副尺目盛線からなる対を
二対露光すると共に、そのうち第1の対の目盛線
の方向は第2の対の目盛線の方向に対して直角を
なし且つ前記境界に対して45゜をなすように露光
し、これら第1、第2の対の目盛線を観察して前
記境界に平行な方向と垂直な方向の接続精度を測
定するようにしたことを特徴とする電子線露光に
おける接続精度測定方法。
1 Along the boundary between two exposure areas that are exposed next to each other, expose the main scale scale line on one exposure area side and expose the vernier scale line on the other exposure area side, and In the method of measuring the connection accuracy of the two exposure areas by observing an enlarged image of the scale lines, two pairs of the main scale scale line and the vernier scale scale line are exposed, and the scale of the first pair of the scale lines is exposed. Exposure is performed so that the direction of the lines is perpendicular to the direction of the second pair of graduation lines and 45° to the boundary, and the first and second pairs of graduation lines are observed to determine the A method for measuring connection accuracy in electron beam exposure, characterized in that connection accuracy is measured in a direction parallel to a boundary and in a direction perpendicular to a boundary.
JP56033676A 1981-03-09 1981-03-09 Measurement of connection accuracy for electron beam exposure Granted JPS57148347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56033676A JPS57148347A (en) 1981-03-09 1981-03-09 Measurement of connection accuracy for electron beam exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56033676A JPS57148347A (en) 1981-03-09 1981-03-09 Measurement of connection accuracy for electron beam exposure

Publications (2)

Publication Number Publication Date
JPS57148347A JPS57148347A (en) 1982-09-13
JPS6214089B2 true JPS6214089B2 (en) 1987-03-31

Family

ID=12393049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56033676A Granted JPS57148347A (en) 1981-03-09 1981-03-09 Measurement of connection accuracy for electron beam exposure

Country Status (1)

Country Link
JP (1) JPS57148347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118074U (en) * 1988-02-02 1989-08-09

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834731U (en) * 1981-08-28 1983-03-07 三洋電機株式会社 Electron beam exposure mask
JPS604216A (en) * 1983-06-21 1985-01-10 Mitsubishi Electric Corp Electron beam exposure
JP2726411B2 (en) * 1986-05-09 1998-03-11 三菱電機株式会社 Pattern drawing method
JPH07111951B2 (en) * 1988-06-22 1995-11-29 日本電気株式会社 Measuring method of connection accuracy for electron beam drawing
JP2870461B2 (en) * 1995-12-18 1999-03-17 日本電気株式会社 Photomask alignment mark and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118074U (en) * 1988-02-02 1989-08-09

Also Published As

Publication number Publication date
JPS57148347A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
JP2546350B2 (en) Alignment device
US4335962A (en) Method and apparatus for determining spatial information
JPH0533525B2 (en)
JPH0321901B2 (en)
JPS6214089B2 (en)
US3982837A (en) Method and apparatus for calibrating Reseau grids
US2134062A (en) Gauge
US4606643A (en) Fine alignment system
JP2878769B2 (en) Method for determining the position of a reference point of a scanning device relative to an incremental scale, and a reference point shaper
JPH0135492B2 (en)
JPH04333213A (en) Alignment mark
JPS62162340A (en) Evaluation of pattern jointing precision
JP2829211B2 (en) Misalignment measurement method
JPS5983167A (en) Registering method of multilayer printing
JP2723502B2 (en) Positioning method
US3325901A (en) Process for eliminating errors of ec- centricity and for reducing er- rors of graduation in topographic instruments
JPS6118128A (en) Pattern alignment error measuring method
JPS6236508A (en) Method of matching position of mask with position of wafer
JPS6111461B2 (en)
JPS61144022A (en) Photo mask
JPS6253764B2 (en)
JPH07111951B2 (en) Measuring method of connection accuracy for electron beam drawing
JPH04587B2 (en)
JPH07226365A (en) Stage accuracy measuring method
SU996853A1 (en) Method of measuring axis non-intersection value of two nominally perpendicular holes