JPS6214059A - Separation refining system appatatus for substance by liquid chromatography - Google Patents
Separation refining system appatatus for substance by liquid chromatographyInfo
- Publication number
- JPS6214059A JPS6214059A JP60153029A JP15302985A JPS6214059A JP S6214059 A JPS6214059 A JP S6214059A JP 60153029 A JP60153029 A JP 60153029A JP 15302985 A JP15302985 A JP 15302985A JP S6214059 A JPS6214059 A JP S6214059A
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- column
- salt concentration
- flow rate
- over time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】
イ、発明の目的
〔産業上の利用分野〕
本発明は、液体クロマトグラフィーによる物質の分離精
製システムに関する。DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention [Field of Industrial Application] The present invention relates to a system for separating and purifying substances by liquid chromatography.
液体クロマトグラフィーは、溶質として複数種の物質(
無機物質、有機物質、生化学的物質等)が混ざり合って
存在する粗製原料液(原試料)から目的の1種、或は数
種、若しくは全ての成分物質を分取(分離精製)するに
有効な手段の1つである。Liquid chromatography uses multiple types of substances (
To separate (separate and purify) one, several, or all of the target component substances from a crude raw material liquid (original sample) that contains a mixture of inorganic substances, organic substances, biochemical substances, etc. This is one of the effective means.
その基本的操作を第4図面の簡単な説明する。The basic operation will be briefly explained using the fourth drawing.
(a)各成分物質のクロマト分離・展開操作内部に固定
相として固体充填剤2が詰められ、一端側に流体導入口
3、他端側に同流出口4を有するカラム1内に導入口3
から、必要に応じて濃度を適当に調整した所定量の原料
液Aを導入すると共に、展開溶媒B(所定塩濃度のリン
酸緩衝液・KCI溶液φNaCl溶液等)を導入する。(a) Chromatographic separation and development operation of each component substance A solid packing material 2 is packed inside as a stationary phase, and an inlet 3 is placed in a column 1 having a fluid inlet 3 at one end and an outlet 4 at the other end.
Then, a predetermined amount of raw material solution A whose concentration is appropriately adjusted as necessary is introduced, and a developing solvent B (phosphate buffer with a predetermined salt concentration, KCI solution, φNaCl solution, etc.) is introduced.
5・6はカラム内の上端側と下端側に配設したフィルタ
部材である。Reference numerals 5 and 6 indicate filter members disposed at the upper and lower ends of the column.
そうするとカラム内の固体充填剤2中を流出口4方向に
流れる原料液Aに含まれる各成分物質が、それ等測々の
固体充填剤2に対する吸着性や分配係数等の差異により
、各成分物質量相互に移動速度差を生じ、その結果カラ
ム内充填剤2に対して原料液の流れ方向に沿って各成分
物質ごとに相互分離した各成分物質の吸着帯ができる。Then, each component substance contained in the raw material liquid A flowing through the solid packing material 2 in the column in the four directions of the outlet port will change due to differences in adsorption properties and distribution coefficients to the solid packing material 2. A difference in movement speed occurs between the amounts, and as a result, an adsorption zone of each component substance is formed on the column packing material 2 along the flow direction of the raw material liquid, where each component substance is separated from each other.
即ち各成分物質が相互にクロマト分離される。That is, the component substances are chromatographically separated from each other.
所定量の原料液Aを導入した後も展開溶媒Bについては
その導入を更に適当時間続行することにより充填剤2に
対する各成分物質の分離吸着帯は全体的に溶媒Bの流れ
方向に移動しつつ各吸着帯相互の間隔が開き(展開)、
いっそうよく分離する。Even after introducing a predetermined amount of raw material liquid A, the introduction of developing solvent B is continued for an appropriate period of time, so that the separation and adsorption zone of each component substance relative to filler 2 moves in the flow direction of solvent B as a whole. The distance between each adsorption zone opens (expands),
Separate better.
(b)各クロマト分離物質の分取操作
カラム充填剤2に対する各成分物質の分離吸着帯の展開
が適当に進行したら、カラムlの導入口3から、カラム
内充填剤2に対して相互分離吸着帯として保持されてい
る各分離成分物質のうち分取すべき目的の成分物質につ
いてのみ充填剤2から離脱を生じさせる塩漬度範囲の分
取溶媒Cを導入する。この分取溶媒Cは前記展開溶媒B
と同じくリン酸緩衝液−KCI溶液・Na1l溶液等で
あるが、その塩濃度を上記目的成分物質の離脱発生濃度
範囲に調整したものである。(b) Preparative operation of each chromatographically separated substance Once the separation and adsorption zone development of each component substance on the column packing material 2 has progressed appropriately, mutual separation adsorption is performed from the inlet 3 of the column 1 to the column packing material 2. A preparative solvent C having a salting degree range that causes separation of only the target component substance to be separated from the filler 2 among the separated component substances held as a band is introduced. This preparative solvent C is the developing solvent B.
The same phosphate buffer, KCI solution, Na1L solution, etc. are used, but the salt concentration is adjusted to the concentration range at which detachment of the target component substance occurs.
そうすると目的の成分物質のみが選択的に充填剤2から
離脱して分取溶媒Cと共にカラムlの流出口4から流出
して分取される。他の成分物質も夫々の物質について特
定される塩濃度の分取溶媒Bをカラム1内に導入するこ
とにより夫々上記と同様に分取することができる。Then, only the target component substance is selectively separated from the packing material 2, flows out from the outlet 4 of the column 1 together with the preparative solvent C, and is fractionated. Other component substances can also be separated in the same manner as described above by introducing into the column 1 the separation solvent B having the salt concentration specified for each substance.
或はカラムl内に導入する分取溶媒Cの塩濃度を予め設
定したグラジェント(gradient)経時的推移計
画に従って無段階的(第2図)に或は段階的(第3図)
に経時変化させつつ導入することによりその導入分取溶
媒Cの塩濃度の経時変化につれてカラム充填剤2に保持
されている、各分離成分物質イ・口・ノい・・が順次に
充填剤2から離脱して分取溶媒Cと共にカラム1の流出
口4から流出する。そこで鎖目4から順次に流出する各
分取成分物質含有溶媒流を1個々の成分物質含有溶媒流
部分ごとに、或は目的の成分物質含有溶媒流部分につい
て分別採取する。Alternatively, the salt concentration of the preparative solvent C introduced into the column 1 can be adjusted steplessly (Fig. 2) or stepwise (Fig. 3) according to a preset gradient time course plan.
As the salt concentration of the introduced preparative solvent C changes over time, each of the separated component substances retained in the column packing material 2 is sequentially introduced into the packing material 2 while changing the salt concentration over time. It separates from the column and flows out from the outlet 4 of the column 1 together with the preparative solvent C. Therefore, each fractional component substance-containing solvent stream sequentially flowing out from the chain 4 is fractionated and collected for each individual component substance-containing solvent stream portion, or for each component substance-containing solvent stream portion of interest.
(c)カラム内クリーニング等
カラム内充填剤2に保持されている各分離成分物質のう
ち目的の1種、或は数種、若しくは全ての成分物質の分
取を終了したら、カラム充填剤に離脱せずに吸着残存し
ている全ての物質を離脱させる塩濃度の溶媒を導入して
充填剤2のクリーニング操作をする。(c) Column cleaning, etc. After completing the separation of one, several, or all of the target component substances held in the column packing material 2, they are released into the column packing material. A cleaning operation for the filler 2 is carried out by introducing a solvent having a salt concentration that allows all substances remaining adsorbed to be removed without being absorbed.
而して以後前記(a)Φ (b)−(c)の操作を1サ
イクルとして繰り返すことにより原料液からの所要の成
分物質の分取を順次回分的に実行することができる。Thereafter, by repeating the operations (a) Φ (b) to (c) as one cycle, it is possible to sequentially and fractionally separate the required component substances from the raw material liquid.
目的の分取成分物質を含有する個々の溶媒は濃縮装置で
所要濃度に濃縮される。或は更に乾燥操作等により目的
の分取成分物質のみにされる。The individual solvents containing the desired preparative component substances are concentrated to the required concentration in a concentrator. Alternatively, only the desired preparative component substances can be separated by a drying operation or the like.
以上のように液体クロマトグチフィーは物質の分離精製
手法として有効なものであるが、特にカラム内充填剤2
としてハイドロキシアパタイト結晶(通常、化学組1&
Ca+o (po、 ) b (OH) 2、へ方品
系学位格子: aAb−120°、a A C= b
A C−90c′、 1al= 1bl= 9.24λ
、1c)= 8.88^によって特徴づけられるリン酸
カルシウムの一種であり、板状ないしは鱗片状結晶体)
を用いた場合は、他の充填剤例えばイオン交換樹脂・活
性アルミナ・炭酸カルシウムなどを用いる場合には困難
であった、微細な構造差を有する物質量の相互分離、例
えば分子量10’〜109ダルトンの生体関連高分子(
免疫グロブリン・インターフェロン・酵素類等の蛋白質
類、RNA・DNA・プラスミド等の核酸類、ウィルス
類など)についても鋭敏等高精度に分取操作することが
可能であり1例えばバイオテクノロジー分野での遺伝子
組換え、細胞融合、細胞大量培養法等により合成された
各種の目的有用物質を高純度に分離精製する手段として
、特に注目されている。As mentioned above, liquid chromatography is effective as a separation and purification method for substances, but in particular, the in-column packing material 2
as hydroxyapatite crystals (usually chemical group 1 &
Ca+o (po, ) b (OH) 2, Hexagonal degree lattice: aAb-120°, a A C= b
A C-90c', 1al= 1bl= 9.24λ
, 1c) = 8.88^ It is a type of calcium phosphate characterized by plate-like or scaly crystals)
When using other fillers such as ion exchange resins, activated alumina, calcium carbonate, etc., it is difficult to separate amounts of substances with minute structural differences, such as molecular weights of 10' to 109 daltons. of biologically relevant polymers (
Proteins such as immunoglobulins, interferons, and enzymes, nucleic acids such as RNA, DNA, and plasmids, and viruses can be separated with sensitivity and precision. It is attracting particular attention as a means of separating and purifying to high purity various useful substances synthesized by recombination, cell fusion, cell mass culture methods, etc.
ところで従来、上記のような液体クロマトグラフィーに
よる物質の分離精製操作を可及的にシステム装置化した
ものはある。しかしそれ等は単に最初に設定したプログ
ラム通りにクロマトシステム操作が機械的に進行するだ
けの単純なものにすぎず、例えば何等かの理由でシステ
ムに実際に流されている溶媒の塩濃度が許容範囲から外
れていたり、システムに実際に流されている流体の流量
が許容範囲から外れていたり、システム流路に気泡が発
生していたりする等のアクシデントを生じていたとして
も、それに拘らずシステムは単純に機械的に進行するも
のである。そのために予定した理想的なりロマト過程と
、実際に行われつつあるクロマト過程との間にずれが生
じ易く、分取精度的にも、クロマトデータ的にも信頼性
の低いものであった。In the past, there have been systems in which the separation and purification operations of substances by liquid chromatography as described above are implemented as much as possible. However, these are simply simple processes in which the chromatographic system operation proceeds mechanically according to the initially set program.For example, for some reason, the salt concentration of the solvent actually flowing through the system is acceptable. Regardless of whether the system is out of range, the flow rate of the fluid actually flowing through the system is outside of the allowable range, or an accident has occurred such as air bubbles forming in the system flow path, the system is a purely mechanical process. For this reason, a discrepancy easily occurs between the planned ideal chromatographic process and the chromatographic process that is actually being carried out, resulting in low reliability in terms of preparative separation accuracy and chromatographic data.
本考案は上記に鑑みて、信頼性が極めて高く、例えば高
精度の目的物質分取能力、大量処理能力等の要求される
バイオテクノロジー分野の工業的物質分取装置としても
十分に実用できる、この種のシステム装置を開発して提
供することを目的とする。In view of the above, the present invention is extremely reliable and can be fully put into practical use as an industrial substance separation device in the biotechnology field, which requires, for example, high-precision target substance separation ability and large-scale processing ability. The purpose is to develop and provide a variety of system equipment.
口、発明の構成
〔問題点を解決するための手段〕
即ち本発明は、
内部に固定相としての固体充填剤が詰められ導入された
M料液中の各成分物質を相互にクロマト分離・展開する
1個のカラム或は複数個のカラムからなるクロマト分離
カラム系と、
上記カラム系のカラム内に原料液を導入する原料液供給
装置と、
同じ〈カラム系のカラム内に溶媒液を、該溶媒液の含有
塩濃度を基準のグラジェント経時的推移設定に従って無
段階的に或は段階的に経時変化させつつ導入する溶媒供
給装置と、
カラム系のカラムから順次に流出する各分取成分物質含
有溶媒流を、個々の成分物質含有溶媒液部分ごとに、或
は目的の成分物質含有溶媒液部分について分別採取する
フラクションコレータと、溶媒供給装置からカラム系の
カラム内へ入る溶媒流の一部、或はカラム系のカラム内
から流出する溶媒液の1部をサンプル溶媒として受けて
溶媒の塩濃度の経時変化状態を測定する塩濃度測定装置
と、
カラム系のカラム内から流出する溶媒流の1部をサンプ
ル溶媒として受けてカラム内から分取される各成分物質
の経時的順次分取状態を測定する成分物質分取状態測定
−モニタ装置と。Structure of the Invention [Means for Solving the Problems] That is, the present invention involves mutually chromatographically separating and developing each component substance in the M solution, which is introduced with a solid filler as a stationary phase packed inside. a chromatographic separation column system consisting of one column or a plurality of columns; a raw material solution supply device for introducing the raw material solution into the columns of the column system; A solvent supply device that introduces the salt concentration of the solvent solution while changing it steplessly or stepwise according to the standard gradient time course setting, and each fraction component substance that sequentially flows out from the column of the column system. A fraction collator that collects the contained solvent stream separately for each component substance-containing solvent liquid part or for the desired component substance-containing solvent liquid part, and a part of the solvent flow that enters the column of the column system from the solvent supply device. , or a salt concentration measuring device that receives a portion of the solvent flowing out from inside the column of the column system as a sample solvent and measures the state of change in the salt concentration of the solvent over time; A component substance separation state measuring/monitoring device that receives one part as a sample solvent and measures the separation state of each component substance fractionated from the column sequentially over time.
カラム系に流入する溶媒流の流量、又はカラム系のカラ
ム内から流出する溶媒流の流量、又はその両方を経時的
に測定する溶媒流量測定装置と、前記塩濃度測定装置か
ら出力される溶媒塩濃度の経時変化測定値と基準の塩濃
度経時変化関数値とを比較し、その比較情報を塩濃度経
時変化制御手段にフィードバックして溶媒供給装置から
カラム系のカラム内へ導入される溶媒の塩濃度を適正に
更正する塩濃度自動調節系統、及び前記溶媒流i測定装
置から出力される溶媒流量の経時変化測定値と基準の流
量値とを比較し、その比較情報を流量制御手段にフィー
ドバックして溶媒供給装置からカラム系のカラム内へ導
入される溶媒流量を適正に更正する溶媒流量自動調節系
統を含み、システムを構成する前記の各構成装置を所定
の操作条件に従って連係制御するシステムコントロール
装置と。A solvent flow measuring device that measures the flow rate of a solvent stream flowing into a column system, the flow rate of a solvent stream flowing out from a column of a column system, or both over time; and a solvent salt output from the salt concentration measuring device. The measured value of the concentration change over time is compared with the standard salt concentration change function value over time, and the comparison information is fed back to the salt concentration change over time control means to control the salt content of the solvent introduced from the solvent supply device into the column of the column system. A salt concentration automatic adjustment system for appropriately correcting the concentration and a measured value of the change in solvent flow rate over time outputted from the solvent flow i measurement device are compared with a reference flow rate value, and the comparison information is fed back to the flow rate control means. A system control device that includes an automatic solvent flow rate adjustment system that appropriately adjusts the flow rate of the solvent introduced from the solvent supply device into the column of the column system, and that coordinately controls each of the above-mentioned component devices that make up the system according to predetermined operating conditions. and.
からなる、ことを特徴とする液体クロマトグラフィーに
よる物質の分離精製システム装置を要旨とする。The subject matter is a system for separating and purifying substances by liquid chromatography, which is characterized by:
上記本発明システム装置の大きな特徴は、システム装置
に実際上流されている溶媒の塩濃度並びに流量の経時的
変化を夫々自動的に測定して夫々の適正値と比較させ、
それ等の比較情報を塩濃度経時変化制御手段並びに流量
制御手段にフィードバックして、システム装置に実際上
流される溶媒の塩濃度並びに流量を夫々常に適切な設定
条件になるように自動制御する制御系統を有する点にあ
り、これにより現在進行中のクロマト過程に何等かの理
由で設定条件ずれが生じても直ちにその条件ずれの更正
が自動的になされるので、クロマト過程は終始理想的な
設定条件で実行される。即ち極めて信頼性の高いシステ
ム装置が構成される。A major feature of the system device of the present invention is that the salt concentration and flow rate changes over time of the solvent actually flowing upstream into the system device are automatically measured and compared with respective appropriate values.
A control system that feeds back such comparative information to the salt concentration temporal change control means and the flow rate control means, and automatically controls the salt concentration and flow rate of the solvent actually upstream to the system device so that they always maintain appropriate setting conditions. As a result, even if a setting condition deviation occurs for some reason in the chromatography process currently in progress, the deviation in setting conditions is automatically corrected immediately, so that the chromatography process is maintained under ideal setting conditions from beginning to end. is executed. In other words, an extremely reliable system device is constructed.
第1図は上記本発明に従う一実施例装置の構成を示すブ
ロック図である。FIG. 1 is a block diagram showing the configuration of an embodiment of the apparatus according to the present invention.
10は、内部に固定相として例えばハイドロキシアパタ
イト結晶等の固体充填剤が詰められ、導入された原料液
中の各成分物質を相互にクロマト分離・展開する1個の
カラムl又は複数個のカラムからなるクロマト分離カラ
ム系である。10 is one column or a plurality of columns packed with a solid packing material such as hydroxyapatite crystal as a stationary phase and mutually chromatographically separates and develops each component substance in the introduced raw material liquid. This is a chromatographic separation column system.
11は原料液供給装置であり、原料液Aの貯溜タンク1
2、原料液抜き出しポンプ13、カラムlの流体導入口
側の配管15内に所定量の原料液を注入する原料液イン
ジェクタ14等からなる。11 is a raw material liquid supply device, which is a storage tank 1 for raw material liquid A;
2, a raw material liquid extraction pump 13, a raw material liquid injector 14 for injecting a predetermined amount of raw material liquid into the piping 15 on the fluid inlet side of the column I, and the like.
16は溶媒供給装置であり、塩濃度を低く調製した溶媒
(低、濃度溶媒)の貯溜供給部17と、塩濃度を高く調
製した溶媒(高濃度溶媒)の貯溜供給部21と、その両
供給部からの低濃度溶媒と高濃度溶媒との合流混合室2
5とからなる。Reference numeral 16 denotes a solvent supply device, which includes a storage supply unit 17 for a solvent prepared with a low salt concentration (low concentration solvent), a storage supply unit 21 for a solvent prepared with a high salt concentration (high concentration solvent), and a storage supply unit 21 for supplying both. Confluence mixing chamber 2 of low concentration solvent and high concentration solvent from
It consists of 5.
低濃度溶媒貯溜供給部17は、リン酸緩衝液・KC1溶
液・NaC1溶液などの各種の溶媒について塩濃度を低
く調製したものを夫々貯溜させた複数のタンク18.
・18□・・・18nと、それ等のタンクの選択切換
えコック装置19と、該コック′!l装置19により選
択されたタンク中の低濃度溶媒を混合室25に導入する
ポンプ20等からなる。The low-concentration solvent storage and supply unit 17 includes a plurality of tanks 18.
・18□...18n, the tank selection switching cock device 19, and the cock'! It consists of a pump 20 and the like that introduces the low concentration solvent in the tank selected by the l device 19 into the mixing chamber 25.
又高濃度溶媒貯溜供給部21は同じくリン酸緩衝液@K
CI溶液・Mail溶渣など各種の溶媒について塩濃度
を高く調製したものを夫々貯溜させた複数のタンク22
宜 ・222・・・22nと、それ等のタンクの選択切
換えコック装置23と、該コック装置23により選択さ
れたタンク中の高濃度溶媒を混合室25に導入するポン
プ24等からなる。Also, the high concentration solvent storage supply section 21 also contains phosphate buffer @K.
A plurality of tanks 22 each storing various solvents such as CI solution and Mail solution prepared with high salt concentration.
222, .
溶媒混合室25の溶媒は配管15を通じてカラム系lO
のカラム1内に導入される。26は溶媒混合室25と、
前記原料インジェクタ14との間の配管部分に設けた圧
力計である。The solvent in the solvent mixing chamber 25 is supplied to the column system lO through the pipe 15.
is introduced into column 1 of. 26 is a solvent mixing chamber 25;
This is a pressure gauge provided in the piping section between the raw material injector 14 and the raw material injector 14.
27はカラム系10のカラム1の流体流出口側の配管2
8に設けた流出溶媒流i測定装置、29はその次位に設
けたフラクションコレータ(Fraction Co1
1ector)、30はフラクションコレータで分別採
取された所要の各成分物質含有溶媒液部分の分配を受け
て夫々濃縮処理する濃縮装置である。27 is piping 2 on the fluid outlet side of column 1 of column system 10
8 is an outflow solvent flow i measurement device, and 29 is a fraction collator (Fraction Co1) installed next to it.
1ector) and 30 are concentrators that distribute and condense the respective required component substance-containing solvent liquid portions that have been fractionally collected by the fraction collator.
31は前記流量測定装置27から延出させた小量のサン
プル溶媒を採取する分岐管、32・33・34はその分
岐管路に順次直列に配設したサンプル溶媒送すボンブ、
成分物質分取状態測定−モニタ装置、塩濃度測定装置で
ある。31 is a branch pipe for collecting a small amount of sample solvent extending from the flow rate measurement device 27; 32, 33, and 34 are bombs for sending sample solvent arranged in series in the branch pipe;
This is a component substance separation state measurement/monitoring device and a salt concentration measuring device.
35はシステムコントロール装置(制御回路部)である
、このコントロール装M35はシステムを構成する各構
成装置をコンソール部40で予め設定した所定の操作条
件に従って連係制御する。具体的には原料液供給装M1
1のポンプ13、低濃度溶媒供給装置17のコック装M
19及びポンプ20、高濃度溶媒供給装置21のコック
装置23及びポンプ24、フラクションコレータ29、
fIi縮装置130、サンプル溶媒送りポンプ32等を
連係制御する。尚システム中の各ポンプは全て無脈動ポ
ンプである。Reference numeral 35 denotes a system control device (control circuit section). This control device M35 coordinately controls each component device making up the system according to predetermined operating conditions set in advance by the console section 40. Specifically, the raw material liquid supply device M1
1 pump 13, cock equipment M of low concentration solvent supply device 17
19 and pump 20, cock device 23 and pump 24 of high concentration solvent supply device 21, fraction collator 29,
The fIi condenser 130, the sample solvent feed pump 32, etc. are linked and controlled. All pumps in the system are non-pulsating pumps.
又上記のコントロール装W135は、溶媒流駿測定装F
a27、成分物質分取状態測定−モニタ装置33、fJ
i濃度測定装置34から夫々出力されるクロマト回転進
行状態情報を受けて所定のシステム自動更正制御を行う
と共に1所要データの出力・表示、警告等も行う。In addition, the above control device W135 is a solvent flow measuring device F.
a27, component substance separation state measurement-monitor device 33, fJ
Upon receiving the chromatography rotation progress status information outputted from each of the i concentration measuring devices 34, it performs predetermined system automatic correction control, outputs/displays required data, and issues warnings.
以下作動を説明する。The operation will be explained below.
■コントロール装置35に所定の操作条件を設定する。(2) Setting predetermined operating conditions on the control device 35;
システムをオンにする。Turn on the system.
■溶媒供給装置16からカラム系lOのカラム1に対し
て溶61 Cが、予め設定したグラジェント経時的推移
設定に従って含有塩濃度が無段階的(w42図)に或は
段階的(ti43図)に自動的に経時変化制御されなが
ら連続的に導入される。上記装置16からカラム1へ導
入される溶媒Cの含有塩濃度の自動的な経時変化制御は
具体的には次のようにしてなされる。■ Solvent 61C is supplied to column 1 of the column system 10 from the solvent supply device 16, and the salt concentration is adjusted steplessly (w42 figure) or stepwise (ti43 figure) according to the preset gradient time course setting. It is introduced continuously while automatically controlling the change over time. Specifically, the automatic time-dependent change control of the salt concentration of the solvent C introduced into the column 1 from the device 16 is performed as follows.
即ちシステムがオンされると、低濃度溶媒供給部17に
ついて、予め選択指定した種類の溶媒タンク(例えば低
濃度のリン酸緩衝液を貯溜したタンク181)に対応す
る、コック装置19中のコックがコントロール装置35
により開き状態に保持される。一方高濃度溶媒供給部1
8についても、予め選択指定した種類の溶媒タンク(例
えば高濃度のリン酸緩衝液を貯溜したタンク221)に
対応する、コック装置23中のコックがコントロール装
2t35により開き状態に保持される。That is, when the system is turned on, the cock in the cock device 19 corresponding to the type of solvent tank (for example, tank 181 storing a low concentration phosphate buffer solution) selected in advance for the low concentration solvent supply section 17 is activated. Control device 35
It is held open by On the other hand, high concentration solvent supply section 1
8, the cock in the cock device 23 corresponding to the type of solvent tank selected and designated in advance (for example, the tank 221 storing high concentration phosphate buffer) is held open by the control device 2t35.
次いでポンプ20の作動がなされて低濃度溶媒Ct、が
混合室25へ導入される。又ポンプ24の作動がなされ
て高濃度溶媒Coが同じく混合室25へ導入される。こ
の混合室25への上記両溶媒CLとCHの導入は、ポン
プ20と同24のコントロール装置35による制御によ
り、低濃度溶媒CLについては最初は大量に、以後経時
的に所定の減少関数に従って導入量が減少されるように
、又高濃度溶媒CHについては上記とは逆に、最初は零
か或は極〈少量で、以後経時的に所定の増大関数に従っ
て導入量が増大され、且つ混合室25へ導入される両溶
6ICLとCHのトータル量は経時的に略一定となる関
係に制御される。Next, the pump 20 is activated and the low concentration solvent Ct is introduced into the mixing chamber 25. Also, the pump 24 is activated and the high concentration solvent Co is introduced into the mixing chamber 25 as well. The introduction of both solvents CL and CH into the mixing chamber 25 is controlled by the pump 20 and the control device 35 of the same 24, with the low concentration solvent CL being introduced in large quantities at first, and thereafter in accordance with a predetermined decreasing function over time. Contrary to the above for the highly concentrated solvent CH, the amount introduced is zero or very small at first, and then the amount introduced is increased according to a predetermined increasing function over time, and the amount is increased in the mixing chamber. The total amount of both soluble 6ICL and CH introduced into 25 is controlled to maintain a substantially constant relationship over time.
これにより混合室16からカラム1内に溶媒Cが、予め
設定したグラジェント経時的推移設定に従って含有塩濃
度が無段階的に或は段階的に経時変化しつつ導入される
。As a result, the solvent C is introduced from the mixing chamber 16 into the column 1 while the salt concentration thereof changes steplessly or stepwise in accordance with a preset gradient setting over time.
■溶媒Cのカラムl内への導入が開始む されてから1
.時点において、原料液供給?装置11のポンプ13が
コントロール装置35で作動制御されて所定量の原料m
Aがインジェクタ14により、混合室25からカラムl
へ至る配管15内に導入され、その原料液Aが溶媒Cと
共にカラム1内に入る。■Since the introduction of solvent C into column 1 has started 1
.. At this point, raw material liquid supply? The operation of the pump 13 of the device 11 is controlled by the control device 35 to pump a predetermined amount of raw material m.
A is injected into the column l from the mixing chamber 25 by the injector 14.
The raw material liquid A enters the column 1 together with the solvent C.
■これによりカラム1内において原料導入時点1、から
時点t2の間に原料液A中の各成分物質のクロマト分離
・展開がなされる。(2) As a result, each component substance in the raw material liquid A is chromatographically separated and developed in the column 1 between the raw material introduction time 1 and the time t2.
■溶媒Cは引続きカラムl内に供給されておリ、塩濃度
が経時的に増大していく、而してその塩濃度が最大値(
高濃度溶媒CHの濃度)に到達する時点t3までの間に
、その塩濃度の経時変化につれてカラム内充填剤に保持
されている、各クロマト分離中展開物質イ・口・ハ・・
・が順次に充填剤から離脱して溶媒Cと共に配管28に
流出する。■Solvent C continues to be supplied into column L, and the salt concentration increases over time, until the salt concentration reaches its maximum value (
Until the time point t3 when the concentration of high concentration solvent CH is reached, each developing substance during chromatographic separation retained in the column packing material as the salt concentration changes over time.
* are sequentially separated from the filler and flow out into the pipe 28 together with the solvent C.
(Φその流出溶媒は次いでフラクションコレータ29に
より、順次に流出する個々の成分物質含有溶媒液部分ご
とに、或は目的の有用成分物質含有溶媒部分について分
別採取される。(ΦThe effluent solvent is then separated and collected by the fraction collator 29 for each component-containing solvent liquid portion that sequentially flows out, or for the desired useful component-substance-containing solvent portion.
不要成分物質を含む溶媒液部分は排液36される。The solvent portion containing unnecessary component substances is drained 36.
■次いで、分別採取された各有用成分物質を含有する溶
媒液は濃縮装置30へ導入されて、濃縮液として夫々取
り出される。(2) Next, the separately collected solvent solutions containing the respective useful component substances are introduced into the concentrator 30 and taken out as concentrated liquids.
■一方力ラム1から配管28に流出する実際上の溶媒流
量が流量測定装置27により経時的に測定され、その経
時的測定値がコントロール装置35に入力され、それが
予め設定されている基準の流量値と比較され、その比較
情報が流量制御回路部にフィードバックされて、カラム
1内に導入される溶媒流量が常に基準値量に保持される
ように、溶媒供給装置16のポンプ20又は/及び同2
4の作動状態が関係的に自動調節制御される。■On the other hand, the actual flow rate of the solvent flowing out from the force ram 1 into the pipe 28 is measured over time by the flow rate measuring device 27, and the measured value over time is input to the control device 35, and it is determined based on the preset standard. The pump 20 of the solvent supply device 16 and/or Same 2
The operating states of 4 are automatically controlled in relation to each other.
■又カラムlから配管28に流出する溶媒流の極〈一部
が流i測定装置27から延出させた分岐管31からサン
プル溶媒として分流される。そのサンプル溶媒はポンプ
32により連続的に成分物質分取状態測定−モニタ装置
33に送られ該装置を通過する。そしてその通過過程で
該装置33によりカラムl内から順次に分取される各成
分物質の経時的順次分取状態が測定−モニタされ(第2
図の鎖線はそのモニタクロマトグラム)、その情報がコ
ントロール装置35へ入力される。この各成分物質の経
時的順次分取状態の測定−モニタは例えばサンプル溶媒
の紫外線吸収特性の経時的変化を測定する方式により精
度よく検出される。(2) Also, a small portion of the solvent flow flowing out from the column 1 to the pipe 28 is branched off from the branch pipe 31 extending from the flow i measuring device 27 as a sample solvent. The sample solvent is continuously sent by a pump 32 to a component separation state measurement/monitoring device 33 and passes through the device. During the passing process, the device 33 measures and monitors the state of each component substance sequentially separated from the column 1 over time (second
The dashed line in the figure is the monitor chromatogram), and the information is input to the control device 35. This measurement and monitoring of the state of sequential separation of each component substance over time is performed with high accuracy, for example, by a method of measuring changes over time in the ultraviolet absorption characteristics of the sample solvent.
[株]上記装置33を通過したサンプル溶媒は次位の塩
濃度測定装置34に入り、システムを流れる溶媒Cの塩
濃度の実際上の経時変化状態が測定される。測定後のサ
ンプル溶媒は排液37される。[Co., Ltd.] The sample solvent that has passed through the device 33 enters the next salt concentration measuring device 34, and the actual change over time in the salt concentration of the solvent C flowing through the system is measured. The sample solvent after measurement is drained 37.
溶媒Cの塩濃度の経時変化は、例えば溶媒Cの屈折率の
経時的変化を測定する方式、電気伝導度の経時的変化を
測定する方式等により検出できるが、前者の屈折率測定
方式の方が後者の方式に比べて電気分解現象等なくリニ
アに精度よく検出できることから実用的である。Changes in the salt concentration of solvent C over time can be detected, for example, by a method that measures changes in the refractive index of solvent C over time, a method that measures changes in electrical conductivity over time, etc., but the former refractive index measurement method is better. Compared to the latter method, this method is more practical because it can detect linearly and accurately without electrolytic phenomena.
而してその経時的測定値がコントロール装!135に入
力され、その経時的測定値が予め設定されている基準の
塩濃度経時変化関数値(予定したグラジェント経時的推
移設定)と比較され、その比較情報が塩濃度制御回路部
にフィードバックされてカラムl内に導入される溶媒の
塩濃度の経時変化が予定の推移設定に保持されるように
、溶媒供給装置16ポンプ20又は/及び同24の作動
状態が関係的に自動調節制御される。And the measured values over time are the control device! 135, the measured value over time is compared with a preset standard salt concentration time change function value (planned gradient time course setting), and the comparison information is fed back to the salt concentration control circuit. The operating states of the solvent supply device 16 and the pump 20 and/or 24 are automatically controlled in relation to each other so that the change over time in the salt concentration of the solvent introduced into the column I is maintained at the predetermined course setting. .
0カラム1内へ導入される溶媒Cの塩濃度が最大値に到
達した時点t3から所定の時点t4までの間はカラムl
内には引続き溶媒Cが塩濃度最大値のまま導入される。0 During the period from time t3 when the salt concentration of solvent C introduced into column 1 reaches the maximum value to predetermined time t4, column 1
Subsequently, solvent C is introduced into the chamber at the maximum salt concentration.
この間にカラム内充填剤に残存している全ての吸着成分
物・質が離脱してコレータ29から排液36されること
によりカラム1内のクリーニングが行われる。During this time, all the adsorbed components remaining in the packing material in the column are separated and drained from the collator 29 as a liquid 36, thereby cleaning the inside of the column 1.
O以後上記■〜◎を1分取操作サイクルとして同じサイ
クルが繰り返して自動的に実行されて、原料液供給装置
11から間欠的にカラム内へ導入される原料液から目的
の成分物質が高精度に連続的に分取されていく。From O onwards, the same cycle is automatically repeated as one preparative operation cycle from ■ to ◎ above, and the target component substance is extracted with high precision from the raw material liquid that is intermittently introduced into the column from the raw material liquid supply device 11. It is continuously separated.
なお、溶媒の塩濃度測定は溶媒のカラム内導入側配管1
5側からサンプル溶媒をとりだし、そのサンプル溶媒の
塩濃度を測定するようにしてもよい。Note that the salt concentration of the solvent is measured using pipe 1 on the solvent introduction side into the column.
Alternatively, a sample solvent may be taken out from the 5 side and the salt concentration of the sample solvent may be measured.
ハ1発明の効果
以ヒのように本発明のシステム装置は、進行中のクロマ
ト過程に何等かの理由で設定条件ずれが生じても直ちに
その条件ずれの更正が自動的になされるので、クロマト
過程は終始理想的な設定条件に実際的に従って実行され
る極めて信頼性の高いものであり、所期の目的がよく達
成され、例えばバイオテクノロジー分野における有用物
質の分取システム装置として極めて有効適切である。C1 Effects of the Invention As shown in C, the system device of the present invention is capable of immediately and automatically correcting the setting condition deviation even if a setting condition deviation occurs for some reason in the ongoing chromatography process. The process is very reliable, carried out practically according to ideal set conditions throughout, and the intended purpose is well achieved, making it extremely effective and suitable as a preparative system for useful substances, for example in the field of biotechnology. be.
第1図は一実施例システム装置の構成を示すブロック図
、第2図は溶媒塩濃度の無段階的経時変化推移設定グラ
フ例、第3図は同じく段階的経時変化推移設定グラフ例
、第4図はカラムの一構成例を示す縦断面図である。
lはカラム、11は原料液供給装置、16は溶媒供給装
置、29はフラクションコレータ、30は濃縮装置、3
5はシステムコントロール装置。Fig. 1 is a block diagram showing the configuration of the system device of one embodiment, Fig. 2 is an example of a graph for setting a stepless change in solvent salt concentration over time, Fig. 3 is an example of a graph for setting a stepwise change over time, and Fig. The figure is a longitudinal sectional view showing an example of a column configuration. 1 is a column, 11 is a raw material liquid supply device, 16 is a solvent supply device, 29 is a fraction collator, 30 is a concentrator, 3
5 is a system control device.
Claims (4)
入された原料液中の各成分物質を相互にクロマト分離・
展開する1部のカラム或は複数個のカラムからなるクロ
マト分離カラム系と、 上記カラム系のカラム内に原料液を導入する原料液供給
装置と、 同じくカラム系のカラム内に溶媒液を、該溶媒液の含有
塩濃度を基準のグラジェント経時的推移設定に従って無
段階的に或は段階的に経時変化させつつ導入する溶媒供
給装置と、 カラム系のカラムから順次に流出する各分取成分物質含
有溶媒流を、個々の成分物質含有溶媒液部分ごとに、或
は目的の成分物質含有溶媒液部分について分別採取する
フラクションコレータと、溶媒供給装置からカラム系の
カラム内へ入る溶媒流の一部、或はカラム系のカラム内
から流出する溶媒液の1部をサンプル溶媒として受けて
溶媒の塩濃度の経時変化状態を測定する塩濃度測定装置
と、 カラム系のカラム内から流出する溶媒流の1部をサンプ
ル溶媒として受けてカラム内から分取される各成分物質
の経時的順次分取状態を測定する成分物質分取状態測定
−モニタ装置と、 カラム系に流入する溶媒流の流量、又はカラム系のカラ
ム内から流出する溶媒流の流量、又はその両方を経時的
に測定する溶媒流量測定装置と、前記塩濃度測定装置か
ら出力される溶媒塩濃度の経時変化測定値と基準の塩濃
度経時変化関数値とを比較し、その比較情報を塩濃度経
時変化制御手段にフィードバックして溶媒供給装置から
カラム系のカラム内へ導入される溶媒の塩濃度を適正に
更正する塩濃度自動調節系統、及び前記溶媒流量測定装
置から出力される溶媒流量の経時変化測定値と基準の流
量値とを比較し、その比較情報を流量制御手段にフィー
ドバックして溶媒供給装置からカラム系のカラム内へ導
入される溶媒流量を適正に更正する溶媒流量自動調節系
統を含み、システムを構成する前記の各構成装置を所定
の操作条件に従って連係制御するシステムコントロール
装置と、 からなる、ことを特徴とする液体クロマトグラフィーに
よる物質の分離精製システム装置。(1) A solid packing material is packed inside as a stationary phase, and each component substance in the introduced raw material liquid is chromatographically separated from each other.
A chromatographic separation column system consisting of one column or a plurality of columns to be developed; a raw material solution supply device for introducing a raw material solution into the columns of the column system; A solvent supply device that introduces the salt concentration of the solvent solution while changing it steplessly or stepwise according to the standard gradient time course setting, and each fraction component substance that sequentially flows out from the column of the column system. A fraction collator that collects the contained solvent stream separately for each component substance-containing solvent liquid part or for the desired component substance-containing solvent liquid part, and a part of the solvent flow that enters the column of the column system from the solvent supply device. , or a salt concentration measuring device that receives a portion of the solvent flowing out from inside the column of the column system as a sample solvent and measures the state of change in the salt concentration of the solvent over time; A component substance separation state measurement/monitoring device for measuring the separation state of each component substance collected sequentially over time from within the column by receiving one part as a sample solvent, and a flow rate of the solvent flow flowing into the column system, or A solvent flow rate measuring device that measures the flow rate of a solvent flow flowing out from a column of a column system, or both over time, and a measured value of a change in solvent salt concentration over time output from the salt concentration measuring device and a reference salt concentration. A salt concentration automatic adjustment system that compares the temporal change function value and feeds back the comparison information to the salt concentration temporal change control means to appropriately correct the salt concentration of the solvent introduced from the solvent supply device into the column of the column system. , and compares the measured value of the change in solvent flow rate over time outputted from the solvent flow rate measurement device with a reference flow rate value, and feeds back the comparison information to the flow rate control means and introduces it from the solvent supply device into the column of the column system. a system control device that includes a solvent flow rate automatic adjustment system that appropriately corrects the solvent flow rate that is applied, and that coordinately controls each of the above-mentioned component devices constituting the system according to predetermined operating conditions. Separation and purification system equipment for substances using graphics.
経時変化を測定して塩濃度の経時変化を検出する方式の
装置である、特許請求の範囲第(1)項に記載のシステ
ム装置。(2) The system device according to claim (1), wherein the salt concentration measuring device is a device that detects a change in salt concentration over time by measuring a change in the refractive index of a sample solvent over time. .
プル溶媒の紫外線吸収特性の経時的変化を測定して各分
取成分物質の経時的順次分取状態を検出する方式の装置
である、特許請求の範囲第(1)項に記載のシステム装
置。(3) The component substance separation state measurement-monitor device is a device of a type that measures changes over time in the ultraviolet absorption characteristics of the sample solvent and detects the separation state of each preparative component substance over time. A system device according to claim (1).
パタイト結晶を用いる、特許請求の範囲第(1)項に記
載のシステム装置。(4) The system device according to claim (1), wherein hydroxyapatite crystals are used as the solid filler in the column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60153029A JPS6214059A (en) | 1985-07-11 | 1985-07-11 | Separation refining system appatatus for substance by liquid chromatography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60153029A JPS6214059A (en) | 1985-07-11 | 1985-07-11 | Separation refining system appatatus for substance by liquid chromatography |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6214059A true JPS6214059A (en) | 1987-01-22 |
Family
ID=15553408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60153029A Pending JPS6214059A (en) | 1985-07-11 | 1985-07-11 | Separation refining system appatatus for substance by liquid chromatography |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6214059A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0628813A1 (en) * | 1993-06-08 | 1994-12-14 | I & T INFORMATIQUE ET TECHNOLOGIES | High performance liquid chromatography instrument with a controlling device and process for controlling its functioning |
JP2010112960A (en) * | 2010-01-18 | 2010-05-20 | Ajinomoto Co Inc | Liquid chromatography apparatus and analysis program |
JP2012068244A (en) * | 2010-09-20 | 2012-04-05 | Asahi Kasei Bioprocess Inc | Liquid chromatography system and method for protein separation and purification |
CN111542379A (en) * | 2017-11-16 | 2020-08-14 | 诺瓦塞普工艺公司 | Method for separating mixtures by detecting purity or yield in a tundish |
US11857892B2 (en) | 2017-11-16 | 2024-01-02 | Novasep Process Solutions | Regulated method for separating a mixture |
-
1985
- 1985-07-11 JP JP60153029A patent/JPS6214059A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0628813A1 (en) * | 1993-06-08 | 1994-12-14 | I & T INFORMATIQUE ET TECHNOLOGIES | High performance liquid chromatography instrument with a controlling device and process for controlling its functioning |
FR2706135A1 (en) * | 1993-06-08 | 1994-12-16 | I T Inf Technologies | High performance liquid chromatography instrument equipped with a control device and method for controlling the operation of such an instrument. |
JP2010112960A (en) * | 2010-01-18 | 2010-05-20 | Ajinomoto Co Inc | Liquid chromatography apparatus and analysis program |
JP2012068244A (en) * | 2010-09-20 | 2012-04-05 | Asahi Kasei Bioprocess Inc | Liquid chromatography system and method for protein separation and purification |
CN111542379A (en) * | 2017-11-16 | 2020-08-14 | 诺瓦塞普工艺公司 | Method for separating mixtures by detecting purity or yield in a tundish |
US11857892B2 (en) | 2017-11-16 | 2024-01-02 | Novasep Process Solutions | Regulated method for separating a mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2003272368B2 (en) | Method of purifying polypeptides by simulated moving bed chromatography | |
EP1877769B1 (en) | Method and device for chromatographic purification | |
JP6566035B2 (en) | Preparative purification equipment | |
JPH06511084A (en) | protein chromatography system | |
EP1753517B1 (en) | Method for the production of chemical and pharmaceutical products with integrated multicolumn chromatography | |
CA1114530A (en) | Isotope separation | |
JPH0249159A (en) | Chromatographic separation | |
US6802969B2 (en) | Preparative chromatography system and separation/purification method using same | |
JP5023235B2 (en) | Quasi-continuous chromatographic method and corresponding apparatus for separating two or more multi-component mixtures | |
EP1140316A1 (en) | Continuous method for separating substances according to molecular size | |
JPS6214059A (en) | Separation refining system appatatus for substance by liquid chromatography | |
CN104203903B (en) | The continuous separation device of valine and the method being continuously separated valine with it | |
WO2015001963A1 (en) | Separation device and separation method | |
CN111629802B (en) | Method for conditioning a separation mixture | |
EP0590911B1 (en) | Separation of a multicomponent mixture into components thereof | |
US20220168668A1 (en) | End-to-End Continuous Purification System | |
TWI785027B (en) | Simulated moving bed xylenes separation process, and optimized operating conditions for units treating paraxylene-rich feeds | |
Buhlert et al. | Construction and development of a new single-column simulated moving bed system on the laboratory scale | |
JPH07328305A (en) | Method for monitoring separation of optical isomer in pseudo-moving bed type chromatic separator, apparatus and method for pseudo-moving bed type chromatic separation | |
JPS6396552A (en) | Industrial separation for vital high polymer and apparatus tobe used for said method | |
Tonkovich et al. | Experimental evaluation of designs for the simulated countercurrent moving bed separator | |
CN115925573B (en) | Purification method of D-calcium pantothenate | |
JPH04131104A (en) | Controlling method for para-moving bed way | |
JPH0534248A (en) | Method and apparatus for automatically pre-treating sample solution | |
JPH10128005A (en) | Method for determining operating condition of pseudo moving bed type separator and pseudo moving bed separator |