WO2015001963A1 - Separation device and separation method - Google Patents

Separation device and separation method Download PDF

Info

Publication number
WO2015001963A1
WO2015001963A1 PCT/JP2014/066232 JP2014066232W WO2015001963A1 WO 2015001963 A1 WO2015001963 A1 WO 2015001963A1 JP 2014066232 W JP2014066232 W JP 2014066232W WO 2015001963 A1 WO2015001963 A1 WO 2015001963A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
separation
solution
columns
stationary phase
Prior art date
Application number
PCT/JP2014/066232
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 渋谷
靖彦 多田
近藤 健之
聖 村上
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP14820358.1A priority Critical patent/EP3018475B1/en
Priority to US14/897,844 priority patent/US10086313B2/en
Publication of WO2015001963A1 publication Critical patent/WO2015001963A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/22Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the construction of the column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1864Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns
    • B01D15/1885Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns placed in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1814Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns recycling of the fraction to be distributed
    • B01D15/1821Simulated moving beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials

Definitions

  • the present invention relates to a separation apparatus and a separation method for separating a substance from a mobile phase by passing a mobile phase containing the substance to be separated through a stationary phase.
  • the separation device that separates the substance from the mobile phase by allowing the mobile phase containing the substance to be separated to pass through the stationary phase is used, for example, when separating useful substances produced by cell culture.
  • an antibody drug which is a useful substance can be obtained by culturing animal cells having antibody-producing ability, and separating and purifying the antibody secreted in the culture solution. That is, useful substances such as antibody drugs are separated and purified using chromatography after removing cells from the culture solution.
  • a predetermined useful substance is produced using microorganisms, the useful substance is often accumulated in cells. In this case, useful substances are separated and purified using chromatography after removing solids from the solution after disrupting the cells.
  • antibody drugs are produced through a clarification process, a recovery process, an intermediate purification process, and a final purification process.
  • different separation apparatuses that is, chromatographic techniques are used in each step depending on the type of antibody of interest.
  • both are common in that the purity of the antibody is increased stepwise and the selectivity of the target antibody is increased.
  • proteins and solids other than antibodies are removed from the culture solution as much as possible. Culturing is performed using salting out, filtration through a filter, centrifugation, etc., because the components of the culture fluid such as serum, ascites fluid, and hybridoma cell culture fluid are different for each type of antibody, and the contents are also different.
  • affinity chromatography is usually used.
  • affinity chromatography with very high specificity using Protein A or Protein G as a ligand is used, and purification with a purity of 90% or more is possible in one step.
  • affinity chromatography using Thiophilic interaction is used for the purpose of antibodies having low affinity with Protein A or G, such as IgM or IgY.
  • affinity chromatography with a secondary antibody that recognizes the antibody is used because of its low blood concentration and lack of high affinity affinity ligands. .
  • processing speed and processing volume are important, and it is required to quickly separate and concentrate the target antibody from a crude state such as a cell extract. This is to facilitate subsequent steps.
  • the intermediate purification process impurities collected together with the target antibody in the collection process are removed.
  • the amount of the treatment solution is large, ion exchange chromatography having a large treatment amount is generally used.
  • the recovery step and the intermediate purification step can be performed in one step.
  • the final final purification step is a step for separating slightly remaining impurities using a high performance column to obtain a final purified antibody.
  • gel filtration chromatography using a column with high resolution is generally used. By using gel filtration chromatography, it is possible to exchange the buffer together with the removal of the low molecular weight substance that inhibits the structural analysis.
  • biopharmaceuticals In the production of biopharmaceuticals, generally, a plurality of culture tanks having a capacity of about 10 m 3 are installed, and after culturing animal cells in these culture tanks, a large amount of culture solution containing biopharmaceuticals (eg, antibodies) (1 batch) 10m 3 or more).
  • a particular problem with such a large amount of culture solution treatment is a recovery step using affinity chromatography. Proteins that specifically bind to biopharmaceuticals (such as Protein A) used in affinity chromatography are very expensive. Therefore, the column using the protein is repeatedly reused for each culture batch. However, when the column is reused, various components in the previous process may remain, and the column may be deteriorated. Due to these, the purification quality of biopharmaceuticals may differ between culture batches.
  • a purified affinity column for producing biopharmaceuticals is very large with a diameter of about 1 m and a bed height of about several tens of centimeters.
  • the culture solution to be processed is as large as 10 m 3 or more, even if the large purification column is used, it is necessary to repeat the collection step many times in order to process one batch of culture solution.
  • the recovery process includes (I) equilibration of the column, (II) adsorption of the target substance, (III) washing, (IV) elution of the target substance, and (V) regeneration of the column.
  • the step of performing (II) is the step of adsorption of the target substance, and the steps (I) and (III) to (V) are in a waiting state for treating the culture solution.
  • the recovery steps (I) to (V) above must be repeated many times, resulting in an increase in waiting time, resulting in an increase in processing time in the recovery step.
  • Patent Document 1 in order to eliminate waiting time, a plurality of columns are installed, and the recovery process in each column is shifted to treat the culture solution.
  • the target substance adsorption process is continuously performed. Methods of processing are being considered. However, this method has a problem that it is necessary to secure a wider facility space because a plurality of columns are installed, and the cost of the column packing is increased.
  • the present invention includes the following.
  • a separation column having a stationary phase with a capacity capable of treating the entire amount of the mobile phase containing the substance to be separated is provided, the separation column is replaceable, and the number of times the stationary phase is used in one batch processing. Separation device characterized by the number of lifetimes.
  • the separation column includes a plurality of columns including the stationary phase, and the total amount of the stationary phase packed in the plurality of columns is a capacity capable of processing the total amount of the mobile phase containing the substance to be separated.
  • the separation device according to (1) (3) A plurality of pipes connected to each of the plurality of columns, a plurality of switch valves respectively disposed on the plurality of pipes, and communication of each pipe by the plurality of switch valves are controlled.
  • the separation device further comprising a control device.
  • the separation apparatus wherein the total column bed height of the plurality of columns is a column bed height when the stationary phase having the capacity is a single column.
  • the separation apparatus wherein the capacity of the stationary phase is defined based on the total amount of substances to be separated contained in the mobile phase and the maximum adsorption capacity of the stationary phase.
  • a separation method characterized by exchanging a used separation column after the recovery step.
  • the separation column includes a plurality of columns including the stationary phase, and the total amount of the stationary phase packed in the plurality of columns is a capacity capable of processing the total amount of the mobile phase containing the substance to be separated. Yes, The separation method according to (6), wherein the mobile phase is sequentially supplied to the plurality of columns.
  • a plurality of pipes are connected to each of the plurality of columns, a plurality of switch valves are arranged on the plurality of pipes, and a control device controls communication of each pipe by the plurality of switch valves.
  • the separation column includes a plurality of columns including the stationary phase, and the total amount of the stationary phase packed in the plurality of columns is a capacity capable of processing the total amount of the mobile phase including the substance to be separated.
  • the substance production apparatus according to (11).
  • a plurality of pipes connected to each of the plurality of columns, a plurality of switch valves respectively disposed on the plurality of pipes, and communication of each pipe by the plurality of switch valves are controlled.
  • the capacity of the stationary phase is defined based on the total amount of substances to be separated contained in the mobile phase and the maximum adsorption capacity of the stationary phase, The substance production apparatus according to (11) .
  • the target substance can be separated with a certain accuracy for each mobile phase batch to be processed. Therefore, by using the separation apparatus according to the present invention, a high-quality target substance with little variation in quality can be obtained.
  • the separation apparatus to which the present invention is applied comprises a separation column C filled with a stationary phase.
  • the solution B (mobile phase) stored in the tank A is supplied to the separation column C, the substance to be separated contained in the solution is captured by the stationary phase in the separation column C.
  • the eluent is supplied to the separation column C, the substance trapped in the stationary phase is recovered from the separation column C.
  • the stationary phase packed in the separation column C has a capacity capable of processing the entire amount of the solution to be processed (mobile phase), that is, a capacity that reaches the number of lifetimes by processing for one batch.
  • the separation apparatus to which the present invention is applied by replacing the separation column C for each batch of the solution B to be treated, the separation apparatus to which the present invention is applied, the processing time when processing a plurality of batches can be shortened. Variations in separation accuracy caused by stationary phase degradation and the like can be suppressed. Since the separation column and the separation control device portion are separated by the column connection joint portion, the separation column C can be easily replaced by simply removing the column connection joint.
  • the treatment for one batch means, for example, a predetermined amount of solution obtained by one batch culture when the target substance is produced by cell culture.
  • the treatment for one batch is not limited to the total amount of the solution obtained by one batch culture, and may be a half amount of the solution obtained by one batch culture, or one fed-batch culture. Or a half amount of the solution obtained by one fed-batch culture.
  • the number of lifetimes of the stationary phase means the number of times that the recovery amount of the target substance by the stationary phase is reduced to a predetermined ratio.
  • the recovery amount of the target substance is 10%, 20%, 30%, 40 %, 50%, 60%, 70%, 80%, 90% or 95%.
  • the number of times the recovery amount of the target substance is reduced to 95% is preferably the life cycle number, and the number of times the recovery amount of the target substance is reduced to 90% is more preferably the life cycle number. It is most preferable that the number of times the life is reduced to 80% be the life number.
  • the separation device refers to the specific substance from other substances in the mobile phase by passing the mobile phase through the stationary phase and capturing the specific substance in the mobile phase in the stationary phase.
  • the separation device may be referred to as a purification device, and is synonymous with a so-called chromatography device.
  • the separation device may be any of so-called partition chromatography, adsorption chromatography, molecular exclusion chromatography, ion exchange chromatography, and affinity chromatography.
  • partition chromatography adsorption chromatography
  • molecular exclusion chromatography molecular exclusion chromatography
  • ion exchange chromatography ion exchange chromatography
  • affinity chromatography affinity chromatography
  • FIGS. 2 and 3 A preferred embodiment of the separation apparatus according to the present invention is shown in FIGS.
  • the separation apparatus shown in FIGS. 2 and 3 includes three affinity packed columns 1A, 1B, and 1C (separate columns 1A, 1B, and 1C) that continuously process a solution containing a substance to be separated (mobile phase, sample solution). And various solutions used in the separation process, a pump for feeding the liquid, and the like.
  • the number of packed columns is not limited to three, and there may be two or more packed columns as required as shown in FIG.
  • the apparatus configuration in the case of three packed columns (FIGS. 2 and 3) will be described in detail.
  • the separation apparatus shown in FIG. 2 includes three separation columns 1A, 1B and 1C connected in series, five liquid-feeding pumps 3 and 4, five solution reservoirs 5, 6, 7, 8 and 9, and a switch. It is comprised from the valve
  • the columns connected in series have a structure in which the upstream and downstream are connected by piping and can be circulated. Upstream of each column can be passed through various solution reservoirs and a switch valve 15. Further, downstream of each column is a structure in which liquid can be passed through the switch valves 41 to 43 to the switch valve 38, and the switch valve 38 is connected to the waste liquid pipe or the purified solution pipe.
  • the various solutions that have entered the reservoirs 5, 6, 7, 8, and 9 are fed to the switch valve 15 by driving the liquid feeding pumps 3 and 4.
  • the switch valve 15 switches the flow path so that various solutions are sent to appropriate separation columns 1A, 1B, and 1C according to the process shown in FIG.
  • the switch valve 15 is configured so that all the one-to-one combinations of various solutions and flow path connections to the separation columns 1A, 1B and 1C can be performed. Yes.
  • there is a solution that is not sent as a process to each column there is also a solution that does not feed (does not operate the feed pump 3 or 4).
  • each separation column 1A, 1B and 1C and each pipe are selected by the switch valve 38 according to the process shown in FIG.
  • the switch valves 15 and 38 are configured so that each separation column 1A, 1B and 1C and each pipe realize all combinations of flow paths.
  • a control program can be stored in the computer 39 in advance and executed by the control device 40 in accordance with the control program.
  • Step 1 A feed solution (reservoir 5) containing at least one target compound is passed across the separation column 1A and the effluent is moved from the separation column 1A to the separation column 1B.
  • Step 2 The switch valve 15 is controlled so that the feed solution (reservoir 5) is sent to the separation column 1B, and the washing solution (reservoir 6) is passed across the separation column 1A to which the target compound is bound.
  • Step 3 The washing liquid effluent (downstream of the separation column 1A) is moved to the separation column 1C, and then the effluent from the separation column 1B is moved to the separation column 1C.
  • Step 4 Regenerate the separation column 1A.
  • Step 5 Direct feed solution (reservoir 5) to separation column 1C and pass wash solution (reservoir 6) across separation column 1B to which the target compound is bound.
  • Step 6 The washing liquid effluent (downstream of the separation column 1B) is moved to the separation column 1A, and then the effluent from the separation column 1C is moved to the separation column 1A.
  • Step 7 Regenerate the separation column 1B.
  • Step 8 Direct feed solution (reservoir 6) to separation column 1A and pass wash solution (reservoir 6) across separation column 1C to which the target compound is bound.
  • Step 9 The washing liquid effluent (downstream of the separation column 1C) is moved to the separation column 1B, and then the effluent from the separation column 1A is moved to the separation column 1B.
  • Step 10 Regenerate the separation column 1C. Then, steps 2 to 10 are repeated according to the steps shown in FIG. Here, at least one substance to be separated is recovered in Step 4, Step 7, and / or Step 10.
  • a separation apparatus as shown in FIG. 3 may be used.
  • Three separation columns 1A, 1B and 1C connected in parallel (a column connected in series is regarded as one column), five liquid-feeding pumps 3 and 4, five solution reservoirs 5, 6, 7, 8 and 9, a switch valve 15 (flow path switching part device), and a pipe connecting them.
  • the various solutions that have entered the reservoirs 5, 6, 7, 8, and 9 are fed to the switch valve 15 by driving the liquid feeding pumps 3 and 4.
  • the switch valve 15 switches the flow path so that various solutions are sent to appropriate separation columns 1A, 1B, and 1C according to the process shown in FIG.
  • the switch valve 15 is configured so that all the one-to-one combinations of various solutions and flow path connections to the separation columns 1A, 1B and 1C can be performed. Yes. However, when there is a solution that is not sent as a process to each column, there is also a solution that does not feed (does not operate the feed pump 3 or 4).
  • each separation column 1A, 1B and 1C and each pipe are selected by the switch valve 38 according to the process shown in FIG.
  • the switch valves 15 and 38 are configured so that each separation column 1A, 1B and 1C and each pipe realize all combinations of flow paths.
  • a control program can be stored in the computer 39 in advance and executed by the control device 40 in accordance with the control program.
  • FIG. 4 shows a separation apparatus having two separation columns 1A and 1B
  • FIG. 5 shows a separation apparatus having three separation columns 1A, 1B and 1C, and three liquid feed pumps 3,
  • a separation device having 4 and 34 is illustrated.
  • the solution stored in the reservoir 5 is fed by the pump 3 and can be fed to the piping of the switch valve 21 or the piping of the switch valve 22 by the control of the selection valve 15.
  • the solution stored in the reservoir 6, the reservoir 7, the reservoir 8, and the reservoir 9 can be fed by the pump 4, and the solution fed to the pipe connected to the pump 4 can be selected by the control of the selection valve 14. it can.
  • the piping on the pump 4 side is simultaneously selected to the switch valve 24 side, or the piping from the pump 3 side is When selected on the switch valve 22 side, the piping on the pump 4 side is simultaneously selected on the switch valve 23 side.
  • either the column 1A side pipe or the waste liquid side pipe is selected, and in the switch valve 11, either the column 1B side pipe or the waste liquid side pipe is selected.
  • the column 1A is connected to the switch valve 12 through a pipe on the opposite side to the switch valve 10.
  • the column 1B is connected to the switch valve 13 via a pipe on the opposite side of the switch valve 11.
  • the switch valves 12 and 13 either the pipe on the collection container 25 side or the pipe on the waste liquid side is selected.
  • all pumps and flow path switching devices are controlled by a control device in which liquid feeding conditions such as liquid feeding timing, liquid feeding speed and liquid feeding time are programmed in advance. That is, the separation operation can be performed automatically and continuously by operating the pump and the flow path switching device in a predetermined order by the control device.
  • the number of reservoirs connected to the pump 4 by the selection valve 14 is four in the example of FIG. 4, it may be more or less.
  • switch valves 10 and 11 arranged immediately upstream of the columns 1A and 1B flow the solution flowing through the columns 1A and 1B to the waste liquid side in advance, respectively, and switch the solutions leading to the columns 1A and 1B. In this case, the mixing of the solution before and after can be minimized.
  • the switch valves 12 and 13 disposed immediately downstream of the columns 1A and 1B allow the solution coming out of the columns 1A and 1B to pass through the waste reservoir container or the recovery container 25, respectively. Can be switched.
  • Reservoir 5, reservoir 6, reservoir 7, reservoir 8, and reservoir 9 are various solution reservoirs.
  • the reservoir 5 contains a solution (mobile phase) containing a substance to be separated, and a selection valve 15 via a liquid feed pump 3. To be supplied.
  • the reservoir 6 contains a column equilibration solution
  • the reservoir 7 contains a washing solution
  • the reservoir 8 contains an elution solution
  • the reservoir 9 contains a regeneration solution.
  • the selection valve 14 can switch any one of the reservoir 6, the reservoir 7, the reservoir 8, and the reservoir 9 to communicate with each other, and can supply various solutions to the selection valve 15 via the liquid feeding pump 4.
  • the selection valve 15 is a valve for switching the solution flowing from the pump 3 side and the solution flowing from the pump 4 side to the column 1A or the column 1B while selecting the flow path so as not to select the same column at the same time. is there.
  • the switch valves 21 to 24 are controlled so that the flow from the pump 4 side flows to the column 1B side.
  • the switch valves 21 to 24 are controlled so that the flow from the pump 4 side flows to the column 1A side.
  • the purified protein separated by the column 1A or 1B can be intermittently recovered by sending it to the recovery container 25 only when it is desired to recover it by the switch valve 12 and the switch valve 13.
  • chromatography monitoring can be performed by attaching the ultraviolet monitor 26 (UV monitor) in the middle of a collection line.
  • the separation apparatus shown in FIG. 5 includes a selection valve 33 and a pump 34 for feeding the solution filled in the reservoirs 8 and 9, a selection valve 35 used for feeding the separation column 1B, and a separation column 1C.
  • a selection valve 36 used for liquid feeding, a switch valve 37 for controlling liquid feeding to the separation column 1C, and a switch valve 32 connected to the separation column 1B via a pipe on the opposite side to the switch valve 37 are provided. Except for this, the configuration is the same as that of the separation apparatus shown in FIG.
  • the separation column is divided into a plurality of columns at the column bed height (in the direction of the linear flow rate of the sample solution), so that the pressure loss applied to each column can be reduced and the pressure load applied to the column can be reduced.
  • the sum of the column bed heights of a plurality of columns is defined as the column bed height when the stationary phase having a capacity capable of processing the total amount of the mobile phase containing the substance to be separated is a single column.
  • each separation column depends on the amount of sample solution to be processed and the time required for each step (I) to (V). It is preferable to do. A specific design method is described below.
  • the time of each (I) to (V) can be determined as follows. However, the following method is an example and may be determined based on other criteria.
  • the column equilibration time can be determined as the time required to stabilize the baseline by monitoring the absorbance of the eluate during column equilibration. On the other hand, it may be the time required for the amount of liquid fed at the time of solvent replacement to reach 10 times the column volume.
  • the linear velocity can be determined as follows.
  • the column bed height and the linear velocity have the relationship shown in FIG. 7, and it is necessary to satisfy the condition of the range below the allowable pressure of the column (the curve P in the figure).
  • the antibody recovery rate is experimentally measured under various conditions of changing the column bed height and linear velocity, and determined by the column bed height and linear velocity that maintain a constant recovery rate (eg, 95%). can do.
  • the dynamic binding capacity shown below may be measured.
  • linear velocity measurement An appropriate linear velocity was examined using a protein A column. After adding an IgG sample under various linear velocity conditions, washing with sodium phosphate (pH 7.0) containing 300 mM sodium chloride solution and 1.88 column volume (CV), then 20 mM sodium phosphate containing 300 mM sodium chloride solution (pH 2) .8), Stepwise elution was performed using 6.31 CV. The recovery rate was derived by quantifying the amount of IgG recovered at each linear velocity and taking the ratio with the amount of added IgG sample. In this example, the linear velocity at which the recovery rate was maintained at 90% or higher was determined as the appropriate linear velocity.
  • maximum binding capacity There are two types of carrier binding capacity: maximum binding capacity and dynamic binding capacity.
  • the former represents the upper limit of the amount by which the carrier can collect the target molecule, and the latter is a numerical value representing how efficiently the carrier can be collected in the state where the sample to be purified is flowing. Since the carrier having a high dynamic binding capacity can recover a large number of target molecules at a high flow rate, the target molecule can be purified efficiently in a short time.
  • maximum binding capacity a standard protein solution is added to the column, and the absorbance of the eluate is monitored. The liquid feeding is continued until the absorbance of the eluate becomes the same as that of the added sample, and the amount of binding can be determined from the “eluted protein amount”. The maximum binding capacity is not affected by the addition flow rate.
  • the dynamic binding capacity was measured according to the following procedure. 10 mL of IgG diluted with PBS at a concentration of 10 mg / mL was sent with a syringe pump at a linear flow rate of 500 cm / h. The absorbance of the solution was measured from the outlet of the channel. The results are shown in FIG. In general, the dynamic binding capacity is often the amount of added protein at the time when the absorbance of the added sample or the leakage of 5% of the protein amount is observed, so 21.5 mg / mL is dynamic as shown in FIG. It can be seen that this is the binding capacity.
  • Method for determining cleaning time T3 The effect of cleaning can be confirmed by measuring the pressure before and after cleaning. For example, before replacing the elution buffer with the washing solution or after washing with the washing solution, compare the pressure when the ultrapure water is replaced once and flow the ultrapure water, and the time until the pressure drops can be determined as the washing time. it can. As another method, the absorbance of the eluate is measured in the washing step, and the time until the baseline is stabilized can be determined as the washing time. Alternatively, it is possible to determine the time required for the flow of the cleaning liquid of a fixed multiple (for example, 10 times) of the column volume as the cleaning time.
  • guanidine hydrochloride can be used as the cleaning agent. Guanidine hydrochloride is characterized by breaking hydrophobic interactions and dissolving precipitated and denatured proteins.
  • An organic solvent (such as isopropanol) can be used as the cleaning agent. Organic solvents are characterized by the removal of lipids and hydrophobic impurities and the difficulty of removing precipitated raw materials.
  • sodium hydroxide can be used as the cleaning agent.
  • sodium hydroxide solubilizes precipitated proteins, solubilizes lipids by alkaline hydrolysis, removes nucleic acids from the carrier, has a bactericidal action, and has the characteristics of degrading protein ligands.
  • sodium hydroxide is particularly preferable because it is effective for cleaning, disinfection, pyrogen inactivation, and virus inactivation.
  • Elution time of target substance T4 The time from when the antibody is adsorbed to the column and the eluate starts to flow until the absorbance due to antibody elution is reduced and returned to the baseline can be determined as the elution time.
  • Column regeneration time T5 As an example, 10 column volumes (CV) of 20 mM phosphate buffer, 0.5 M NaCl solution, and 50 mM EDTA solution (pH 7.4) are sent to remove metal ions, and then 15 CV ultrapure water is sent. The time required for this can be used as the column regeneration time. If the column is very dirty, it may be necessary to slowly feed 5CV of 1M NaOH solution and wash, and then add 15CV or more of neutral buffer to set the time required to return the column to neutrality. it can.
  • Equation (2) Determination method of column volume Concentration of target substance in culture solution: Ct, volume of culture solution per batch: Vb, target substance dynamic adsorption amount per unit volume: Am, capacity per column: Vc, column Assuming that the number of N is N and the number of column reuse times is R, the relationship of Equation (2) is established.
  • the equations (1) and (2) can be satisfied.
  • the control system of the purification apparatus becomes more complicated. It is desirable that the number of columns N be the minimum.
  • the stationary phase in the column is normally used repeatedly, but protein A in the stationary phase gradually deteriorates (desorbs or denatures) due to alkali treatment such as NaOH in the regeneration process, and the recovery amount of the target substance gradually increases.
  • the number of reuse until the target recovery amount cannot be obtained is defined as the lifetime (the number of lifetimes). If the life varies depending on the stationary phase, the recovery amount can be monitored for each use, and the life until the specified recovery amount determined by the user cannot be obtained can be used.
  • the number of reuses guaranteed by the manufacturer It is good also as lifetime. Since R is the number of column reuses (lifetime), the column capacity is (1 / R) of a normal column.
  • the required column volume is the product of the capacity Vc per column and the number N of columns.
  • a column having a volume of Vc ⁇ N is divided into N columns.
  • a column with the same column bed height and a column cross-sectional area divided into 1 / N has a larger pressure loss than the column before the division. Therefore, it is desirable that the column bed is divided into at least two parts in the height direction. What is necessary is just to divide the column bed height and cross-sectional area so that the pressure loss is smaller than the upper limit of the design (see FIG. 9).
  • FIG. 9A has the same cross-sectional area and is divided in the height direction.
  • FIG. 9B shows the case where the height and the cross-sectional area are divided, and the divided columns match the specifications of the commercial column.
  • the separation column is packed with an amount of stationary phase that can process the entire amount of mobile phase to be processed.
  • the separation column itself can be replaced and the next batch can be processed using a new separation column.
  • the pressure applied to the column can be reduced even if the mobile phase to be processed has a large capacity. Therefore, in this case, acrylamide, polypropylene, high-density polyethylene, polyethylene terephthalate, or the like that is used as a disposable material in other fields can be used as a material for the column holder.
  • acrylamide, polypropylene, high-density polyethylene, polyethylene terephthalate, or the like that is used as a disposable material in other fields can be used as a material for the column holder.
  • what used conventionally used glass and stainless steel as the material of a column holder can also be used.
  • any conventionally used material can be used as the base of the stationary phase.
  • any of agarose and silica gel or a combination thereof can be used.
  • the ligand that can specifically capture the substance to be separated is not particularly limited, and for example, Protein A, G, and Thiophilic interaction can be used.
  • FIG. 10 shows a system in which the separation apparatus according to the present invention is applied to a biopharmaceutical purification process.
  • the system shown in FIG. 10 includes a medium receiving tank 101 filled with a culture solution in which cells that secrete and produce antibodies such as biopharmaceuticals are cultured, and an affinity column 102 having a stationary phase that specifically captures the antibody to be separated. And an eluent tank 106 filled with an eluent that elutes the antibody captured in the stationary phase.
  • a medium receiving tank 101 filled with a culture solution in which cells that secrete and produce antibodies such as biopharmaceuticals are cultured
  • an affinity column 102 having a stationary phase that specifically captures the antibody to be separated.
  • an eluent tank 106 filled with an eluent that elutes the antibody captured in the stationary phase.
  • a fraction tank 109 downstream of the affinity column 102 are a fraction tank 109, a UF filtration device 105, a sterilization filter 108, a receiving tank 110, an anion exchange column 103, a fraction tank 109, a cation exchange column. 104 and the fraction tank 109 are installed in order. Further, in the system shown in FIG. 10, a cooling device 107 is disposed upstream of the affinity column 102.
  • a culture solution containing a biopharmaceutical such as an antibody is clarified by removing components such as cells by centrifugation or the like.
  • a target biopharmaceutical such as an antibody is collected using the system shown in FIG.
  • the affinity column 102 continuously processes the culture solution according to the process chart shown in FIG.
  • the packing material of the affinity column 102 can be reused according to the process chart shown in FIG.
  • the stationary phase packed in the affinity column 102 has a capacity capable of processing the entire amount of the culture solution, and preferably the total amount of the culture solution is the upper limit of use.
  • the use upper limit amount is the maximum amount of mobile phase that can maintain the separation performance of the stationary phase.
  • the culture sample solution that has undergone the recovery step is filled into a vial through intermediate purification and final purification.
  • the affinity column 102 can be removed and incinerated as it is.
  • the next preparation can be easily performed by connecting the new affinity column 102 to the line.

Abstract

[Problem] To separate a material to be separated at a low cost and constant accuracy when the material to be separated is separated from a mobile phase containing the material to be separated through the passing of the mobile phase through a stationary phase, even if the mobile phase has a large volume. [Solution] A separation device characterized in that a separation column provided with a stationary phase having a volume capable of processing the entire volume of a mobile phase containing a material to be separated is provided, the separation column is replaceable, and the usage count of the stationary phase reaches a lifetime count through the processing of one batch.

Description

分離装置及び分離方法Separation apparatus and separation method
 本発明は、分離対象の物質を含む移動相を固定相に通過させることで移動相から当該物質を分離する分離装置及び分離方法に関する。 The present invention relates to a separation apparatus and a separation method for separating a substance from a mobile phase by passing a mobile phase containing the substance to be separated through a stationary phase.
 分離対象の物質を含む移動相を固定相に通過させることで移動相から当該物質を分離する分離装置は、例えば、細胞培養により生産した有用物質を分離する際に利用される。例えば、有用物質である抗体医薬は、抗体産生能を有する動物細胞を培養し、培養液に分泌された抗体を分離・精製することにより得ることができる。すなわち、抗体医薬等の有用物質は、培養液から細胞を除去した後、クロマトグラフィーを用いて分離・精製される。一方、微生物を用いて所定の有用物質を製造する場合、当該有用物質は細胞内に蓄積される場合が多い。この場合、有用物質は、細胞を破砕した後、溶液から固形物を除去し、その後、クロマトグラフィーを用いて分離・精製される。 The separation device that separates the substance from the mobile phase by allowing the mobile phase containing the substance to be separated to pass through the stationary phase is used, for example, when separating useful substances produced by cell culture. For example, an antibody drug which is a useful substance can be obtained by culturing animal cells having antibody-producing ability, and separating and purifying the antibody secreted in the culture solution. That is, useful substances such as antibody drugs are separated and purified using chromatography after removing cells from the culture solution. On the other hand, when a predetermined useful substance is produced using microorganisms, the useful substance is often accumulated in cells. In this case, useful substances are separated and purified using chromatography after removing solids from the solution after disrupting the cells.
 一般的に抗体医薬は、清澄化工程、回収工程、中間精製工程及び最終精製工程を経て製造される。この製造方法において、目的とする抗体の種類によって各工程で異なる分離装置、すなわちクロマトグラフィー手法が用いられる。ただし、段階的に抗体の純度を高め、目的の抗体の選択性を高めていく点ではいずれも共通している。 Generally, antibody drugs are produced through a clarification process, a recovery process, an intermediate purification process, and a final purification process. In this production method, different separation apparatuses, that is, chromatographic techniques are used in each step depending on the type of antibody of interest. However, both are common in that the purity of the antibody is increased stepwise and the selectivity of the target antibody is increased.
 清澄化工程は、培養液から抗体以外のタンパク質や固形物をできるだけ除去する。抗体の種類ごとに血清や腹水、ハイブリドーマ細胞培養液など培養液成分が異なり、含有物も異なるため、塩析やフィルターによるろ過、遠心分離などを用いて清澄化を行う。 In the clarification step, proteins and solids other than antibodies are removed from the culture solution as much as possible. Culturing is performed using salting out, filtration through a filter, centrifugation, etc., because the components of the culture fluid such as serum, ascites fluid, and hybridoma cell culture fluid are different for each type of antibody, and the contents are also different.
 また、回収工程では、通常アフィニティークロマトグラフィーが用いられる。目的とする抗体がIgGの場合にはProtein AやProtein Gをリガンドとした非常に特異性の高いアフィニティークロマトグラフィーが用いられ、ワンステップで純度90%以上の精製が可能である。一方、Protein AやGとの親和性が低い抗体、例えばIgMやIgYを目的とする場合には、Thiophilic interactionを利用したアフィニティークロマトグラフィーが用いられる。また、IgA、IgD及びIgEを目的とする場合は、血中濃度が低いことや、親和性の高いアフィニティリガンドがないことから、その抗体を認識する二次抗体を固定したアフィニティークロマトグラフィーが用いられる。この回収工程においては、処理スピードと処理容量が重要であり、目的とする抗体を細胞抽出液などのクルードな状態から速やかに分離・濃縮することが求められる。以降の工程を容易とするためである。 In the recovery step, affinity chromatography is usually used. When the target antibody is IgG, affinity chromatography with very high specificity using Protein A or Protein G as a ligand is used, and purification with a purity of 90% or more is possible in one step. On the other hand, for the purpose of antibodies having low affinity with Protein A or G, such as IgM or IgY, affinity chromatography using Thiophilic interaction is used. For purposes of IgA, IgD, and IgE, affinity chromatography with a secondary antibody that recognizes the antibody is used because of its low blood concentration and lack of high affinity affinity ligands. . In this recovery step, processing speed and processing volume are important, and it is required to quickly separate and concentrate the target antibody from a crude state such as a cell extract. This is to facilitate subsequent steps.
 次に、中間精製工程では、回収工程で目的の抗体とともに回収された夾雑物を除去する。この工程では、処理溶液量が多いので、処理量が大きいイオン交換クロマトグラフィーが一般的に用いられている。なお、処理溶液量が少ない場合は、回収工程と中間精製工程とをワンステップで行うことも可能である。 Next, in the intermediate purification process, impurities collected together with the target antibody in the collection process are removed. In this step, since the amount of the treatment solution is large, ion exchange chromatography having a large treatment amount is generally used. When the amount of the processing solution is small, the recovery step and the intermediate purification step can be performed in one step.
 最後の最終精製工程は、わずかに残存する夾雑物を高性能カラムを用いて分離し、最終的な精製抗体とするための工程である。抗体を目的とする最終精製工程では、高分離能なカラムによるゲルろ過クロマトグラフィーが一般的に用いられている。ゲルろ過クロマトグラフィーを用いることで、構造解析を阻害するレベルの低分子物質の除去とあわせて、バッファーの交換も行うことが可能である。 The final final purification step is a step for separating slightly remaining impurities using a high performance column to obtain a final purified antibody. In the final purification step aimed at antibodies, gel filtration chromatography using a column with high resolution is generally used. By using gel filtration chromatography, it is possible to exchange the buffer together with the removal of the low molecular weight substance that inhibits the structural analysis.
 また、バイオ医薬品製造においては、一般に容量が約10m3の培養槽を複数設置し、それら培養槽内で動物細胞を培養した後、バイオ医薬品(例えば、抗体)を含む大量の培養液(1バッチ10m3以上)を処理する。このような大量の培養液処理で特に問題となるのは、アフィニティークロマトグラフィーを用いた回収工程が挙げられる。アフィニティークロマトグラフィーで使用する、バイオ医薬品と特異的に結合するタンパク(例えば、Protein Aなど)は非常に高価である。したがって、当該タンパク質を用いたカラムは、培養バッチ毎に繰返し再利用される。しかし、カラムの再利用は、前回処理における各種成分が残存する可能性があり、また、カラム劣化の可能性もある。これらに起因して、培養バッチ間において、バイオ医薬品の精製品質が相違する可能性がある。 In the production of biopharmaceuticals, generally, a plurality of culture tanks having a capacity of about 10 m 3 are installed, and after culturing animal cells in these culture tanks, a large amount of culture solution containing biopharmaceuticals (eg, antibodies) (1 batch) 10m 3 or more). A particular problem with such a large amount of culture solution treatment is a recovery step using affinity chromatography. Proteins that specifically bind to biopharmaceuticals (such as Protein A) used in affinity chromatography are very expensive. Therefore, the column using the protein is repeatedly reused for each culture batch. However, when the column is reused, various components in the previous process may remain, and the column may be deteriorated. Due to these, the purification quality of biopharmaceuticals may differ between culture batches.
 また、一般に、バイオ医薬品製造用の精製アフィニティーカラムは、直径約1m、ベッド高数十cm程度と非常に大きく、設備としても場所を要する。一方、処理すべき培養液は10m3以上と大量であるため、上記大型精製カラムを使用したとしても、1バッチの培養液を処理するには回収工程を何度も繰り返す必要がある。回収工程には、(I)カラムの平衡化、(II)目的物質の吸着、(III)洗浄、(IV)目的物質の溶出、(V)カラムの再生の工程があるが、培養液を処理する工程は(II)目的物質の吸着の工程であり、(I)及び(III)~(V)の工程は、培養液を処理するための待ち時間の状態となる。大量の培養液を処理するために、上記(I)~(V)の回収工程を数多く繰り返さなくてはならず、待ち時間の状態が多くなる結果、回収工程における処理時間が増大することとなる。例えば、特許文献1には、待ち時間を解消するため、複数のカラムを設置し、各カラムでの回収工程をずらすことにより、培養液を処理する(II)目的物質の吸着工程を連続的に処理する方法が検討されている。しかしながら、この手法には、カラムを複数設置することから設備スペースをより広範に確保する必要があり、またカラム充填剤の費用が増大するといった問題があった。 In general, a purified affinity column for producing biopharmaceuticals is very large with a diameter of about 1 m and a bed height of about several tens of centimeters. On the other hand, since the culture solution to be processed is as large as 10 m 3 or more, even if the large purification column is used, it is necessary to repeat the collection step many times in order to process one batch of culture solution. The recovery process includes (I) equilibration of the column, (II) adsorption of the target substance, (III) washing, (IV) elution of the target substance, and (V) regeneration of the column. The step of performing (II) is the step of adsorption of the target substance, and the steps (I) and (III) to (V) are in a waiting state for treating the culture solution. In order to process a large amount of culture solution, the recovery steps (I) to (V) above must be repeated many times, resulting in an increase in waiting time, resulting in an increase in processing time in the recovery step. . For example, in Patent Document 1, in order to eliminate waiting time, a plurality of columns are installed, and the recovery process in each column is shifted to treat the culture solution. (II) The target substance adsorption process is continuously performed. Methods of processing are being considered. However, this method has a problem that it is necessary to secure a wider facility space because a plurality of columns are installed, and the cost of the column packing is increased.
特開2011-214837号公報JP 2011-214837 A
 以上のように、従来、分離対象の物質を含む移動相を固定相に通過させることで移動相から当該物質を分離する際に、大容量の移動相であっても低コスト且つ一定の精度に分離対象の物質を分離することができる分離装置及び分離方法を提供することを目的とする。 As described above, conventionally, when a mobile phase containing a substance to be separated is passed through a stationary phase, the substance is separated from the mobile phase at a low cost and with a certain accuracy even for a large volume mobile phase. It is an object of the present invention to provide a separation apparatus and a separation method capable of separating a substance to be separated.
 上述した目的を達成するため本発明者等が鋭意検討した結果、所定容量の移動相を処理するのに必要な容量の固定相を備えることで、固定相を交換することでバッチ毎に一定の精度で目的物質を分離することができ、また複数バッチを処理する際の処理時間を短縮することができることを見いだし、本発明を完成するに至った。 As a result of intensive studies by the present inventors in order to achieve the above-mentioned object, by providing a stationary phase having a capacity necessary for processing a predetermined capacity of the mobile phase, it is possible to change the stationary phase every batch. It has been found that the target substance can be separated with high accuracy and the processing time for processing a plurality of batches can be shortened, and the present invention has been completed.
 すなわち本発明は以下を包含する。
 (1)分離対象の物質を含む移動相の全量を処理可能な容量の固定相を備える分離カラムを備え、当該分離カラムが交換可能であり、1バッチ分の処理で上記固定相の使用回数が寿命回数となることを特徴とする分離装置。
 (2)上記分離カラムは、上記固定相を備える複数のカラムからなり、当該複数のカラムに充填された固定相の総量が、上記分離対象の物質を含む移動相の全量を処理可能な容量であることを特徴とする(1)記載の分離装置。
 (3)上記複数のカラムのそれぞれに対して連結された複数の配管と、当該複数の配管上にそれぞれ配設された複数のスイッチバルブと、当該複数のスイッチバルブによる各配管の連通を制御する制御装置とを更に備える(2)記載の分離装置。
 (4)上記複数のカラムのカラムベッド高さの合計は、上記容量の固定相を単一のカラムとしたときのカラムベッド高さであることを特徴とする(2)記載の分離装置。
 (5)上記固定相の容量は、移動相に含まれる分離対象の物質の総量、及び当該固定相の最大吸着容量に基づいて規定されることを特徴とする(1)記載の分離装置。
 (6)分離対象の物質を含む移動相の全量を処理可能な容量の固定相を備える分離カラムであって、当該分離カラムが交換可能であり、1バッチ分の処理で上記固定相の使用回数が寿命回数となる当該分離カラムに上記移動相を供給する工程と、
 上記移動相の全量を処理した後に上記固定相から上記分離対象の物質を回収する工程とを備え、
 上記回収工程の後に使用済みの分離カラムを交換することを特徴とする分離方法。
 (7)上記分離カラムは、上記固定相を備える複数のカラムからなり、当該複数のカラムに充填された固定相の総量が、上記分離対象の物質を含む移動相の全量を処理可能な容量であり、
 上記複数のカラムに対して上記移動相を順次供給することを特徴とする(6)記載の分離方法。
 (8)上記複数のカラムのそれぞれに対して複数の配管が連結され、当該複数の配管上にそれぞれ複数のスイッチバルブが配設され、当該複数のスイッチバルブによる各配管の連通を制御装置が制御することを特徴とする(7)記載の分離方法。
 (9)上記複数のカラムのカラムベッド高さの合計は、上記容量の固定相を単一のカラムとしたときのカラムベッド高さであることを特徴とする(7)記載の分離方法。
 (10)上記固定相の容量は、移動相に含まれる分離対象の物質の総量、及び当該固定相の最大吸着容量に基づいて規定されることを特徴とする(6)記載の分離方法。
 (11)分離対象の物質を含む移動相を溜めた槽と、
 上記槽に連結され、上記槽に溜められた上記移動相の全量を処理可能な容量の固定相を備える分離カラムを備え、当該分離カラムが交換可能であり、1バッチ分の処理で上記固定相の使用回数が寿命回数となることを特徴とする物質の製造装置。
 (12)上記分離カラムは、上記固定相を備える複数のカラムからなり、当該複数のカラムに充填された固定相の総量が、上記分離対象の物質を含む移動相の全量を処理可能な容量であることを特徴とする(11)記載の物質の製造装置。
 (13)上記複数のカラムのそれぞれに対して連結された複数の配管と、当該複数の配管上にそれぞれ配設された複数のスイッチバルブと、当該複数のスイッチバルブによる各配管の連通を制御する制御装置とを更に備える(12)記載の物質の製造装置。
 (14)上記複数のカラムのカラムベッド高さの合計は、上記容量の固定相を単一のカラムとしたときのカラムベッド高さであることを特徴とする(12)記載の物質の製造装置
 (15)上記固定相の容量は、移動相に含まれる分離対象の物質の総量、及び当該固定相の最大吸着容量に基づいて規定されることを特徴とする(11)記載の物質の製造装置。
That is, the present invention includes the following.
(1) A separation column having a stationary phase with a capacity capable of treating the entire amount of the mobile phase containing the substance to be separated is provided, the separation column is replaceable, and the number of times the stationary phase is used in one batch processing. Separation device characterized by the number of lifetimes.
(2) The separation column includes a plurality of columns including the stationary phase, and the total amount of the stationary phase packed in the plurality of columns is a capacity capable of processing the total amount of the mobile phase containing the substance to be separated. (1) The separation device according to (1).
(3) A plurality of pipes connected to each of the plurality of columns, a plurality of switch valves respectively disposed on the plurality of pipes, and communication of each pipe by the plurality of switch valves are controlled. The separation device according to (2), further comprising a control device.
(4) The separation apparatus according to (2), wherein the total column bed height of the plurality of columns is a column bed height when the stationary phase having the capacity is a single column.
(5) The separation apparatus according to (1), wherein the capacity of the stationary phase is defined based on the total amount of substances to be separated contained in the mobile phase and the maximum adsorption capacity of the stationary phase.
(6) A separation column having a stationary phase with a capacity capable of treating the entire mobile phase containing the substance to be separated, the separation column being exchangeable, and the number of times the stationary phase is used in one batch of treatment. Supplying the mobile phase to the separation column having a lifetime of
Recovering the substance to be separated from the stationary phase after treating the total amount of the mobile phase,
A separation method characterized by exchanging a used separation column after the recovery step.
(7) The separation column includes a plurality of columns including the stationary phase, and the total amount of the stationary phase packed in the plurality of columns is a capacity capable of processing the total amount of the mobile phase containing the substance to be separated. Yes,
The separation method according to (6), wherein the mobile phase is sequentially supplied to the plurality of columns.
(8) A plurality of pipes are connected to each of the plurality of columns, a plurality of switch valves are arranged on the plurality of pipes, and a control device controls communication of each pipe by the plurality of switch valves. (6) The separation method according to (7).
(9) The separation method according to (7), wherein the sum of the column bed heights of the plurality of columns is a column bed height when the stationary phase having the capacity is a single column.
(10) The separation method according to (6), wherein the capacity of the stationary phase is defined based on the total amount of substances to be separated contained in the mobile phase and the maximum adsorption capacity of the stationary phase.
(11) a tank storing a mobile phase containing a substance to be separated;
The separation column is connected to the tank and includes a stationary column having a volume capable of treating the entire amount of the mobile phase stored in the tank, and the separation column is replaceable. An apparatus for producing a substance, characterized in that the number of times of use becomes the number of lifetimes.
(12) The separation column includes a plurality of columns including the stationary phase, and the total amount of the stationary phase packed in the plurality of columns is a capacity capable of processing the total amount of the mobile phase including the substance to be separated. (11) The substance production apparatus according to (11).
(13) A plurality of pipes connected to each of the plurality of columns, a plurality of switch valves respectively disposed on the plurality of pipes, and communication of each pipe by the plurality of switch valves are controlled. The apparatus for producing a substance according to (12), further comprising a control device.
(14) The apparatus for producing a substance according to (12), wherein the sum of the column bed heights of the plurality of columns is a column bed height when the stationary phase having the capacity is a single column. (15) The capacity of the stationary phase is defined based on the total amount of substances to be separated contained in the mobile phase and the maximum adsorption capacity of the stationary phase, The substance production apparatus according to (11) .
 本発明に係る分離装置及び分離方法によれば、処理対象の移動相バッチ毎に一定の精度で目的物質を分離することができる。したがって、本発明に係る分離装置を利用することで、品質にばらつきの少ない高品質の目的物質を得ることができる。 According to the separation apparatus and the separation method of the present invention, the target substance can be separated with a certain accuracy for each mobile phase batch to be processed. Therefore, by using the separation apparatus according to the present invention, a high-quality target substance with little variation in quality can be obtained.
本発明を適用した分離装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the separation apparatus to which this invention is applied. 連続アフィニティー精製装置(3カラム)の構成図の例である。It is an example of the block diagram of a continuous affinity refinement | purification apparatus (3 columns). 連続アフィニティー精製装置(3カラム)の構成図の他の例である。It is another example of the block diagram of a continuous affinity refinement | purification apparatus (3 columns). 連続アフィニティー精製装置(2カラム)の構成図の例である。It is an example of the block diagram of a continuous affinity refinement | purification apparatus (2 columns). 連続アフィニティー精製装置(3カラム)の構成図の他の例である。It is another example of the block diagram of a continuous affinity refinement | purification apparatus (3 columns). 連続アフィニティー精製装置の処理工程の例を示す図である。It is a figure which shows the example of the process of a continuous affinity refinement | purification apparatus. カラムベッド高と線速度との関係を示す図である。It is a figure which shows the relationship between column bed height and a linear velocity. 動的結合容量の求め方を示す図である。It is a figure which shows how to obtain | require dynamic coupling capacity. カラムの分割例を示す図である。It is a figure which shows the example of a division | segmentation of a column. バイオ医薬品製造プラントへ適用した精製システムを示す図である。It is a figure which shows the refinement | purification system applied to the biopharmaceutical manufacturing plant.
 以下、本発明について詳細に説明する。
 本発明を適用した分離装置は、図1に示すように、内部に固定相を充填した分離カラムCを備えるものである。槽A内に溜められた溶液B(移動相)が分離カラムCに供給されると、溶液内に含まれる分離対象の物質が分離カラムC内の固定相に捕捉される。その後、分離カラムCに溶離液を供給すると、固定相に捕捉された物質が分離カラムCから回収される。分離カラムCに充填された固定相は、処理対象の溶液(移動相)の全量を処理可能な容量、すなわち1バッチ分の処理により寿命回数に達する容量である。したがって、本発明を適用した分離装置、処理対象の溶液Bのバッチ毎に分離カラムCを交換することで、複数バッチを処理する際の処理時間を短縮することができ、また、分離カラムCにおける固定相の劣化等に起因する分離精度のばらつきを抑えることができる。分離カラムと分離制御装置部分はカラム連結ジョイント部分で分けてあるため、分離カラムCの交換はカラム連結ジョイントを外すだけで容易に行うことができる。
Hereinafter, the present invention will be described in detail.
As shown in FIG. 1, the separation apparatus to which the present invention is applied comprises a separation column C filled with a stationary phase. When the solution B (mobile phase) stored in the tank A is supplied to the separation column C, the substance to be separated contained in the solution is captured by the stationary phase in the separation column C. Thereafter, when the eluent is supplied to the separation column C, the substance trapped in the stationary phase is recovered from the separation column C. The stationary phase packed in the separation column C has a capacity capable of processing the entire amount of the solution to be processed (mobile phase), that is, a capacity that reaches the number of lifetimes by processing for one batch. Therefore, by replacing the separation column C for each batch of the solution B to be treated, the separation apparatus to which the present invention is applied, the processing time when processing a plurality of batches can be shortened. Variations in separation accuracy caused by stationary phase degradation and the like can be suppressed. Since the separation column and the separation control device portion are separated by the column connection joint portion, the separation column C can be easily replaced by simply removing the column connection joint.
 ここで、1バッチ分の処理とは、例えば、細胞培養により目的物質を製造する場合、1回の回分培養により得られるような所定量の溶液を意味する。但し、1バッチ分の処理とは、1回の回分培養により得られた溶液の全量に限定されず、1回の回分培養により得られた溶液の半量としても良いし、1回の流加培養により得られた溶液、あるいは1回の流加培養により得られた溶液の半量としても良い。 Here, the treatment for one batch means, for example, a predetermined amount of solution obtained by one batch culture when the target substance is produced by cell culture. However, the treatment for one batch is not limited to the total amount of the solution obtained by one batch culture, and may be a half amount of the solution obtained by one batch culture, or one fed-batch culture. Or a half amount of the solution obtained by one fed-batch culture.
 ここで、固定相の寿命回数とは、当該固定相による目的物質の回収量が所定の割合まで低下する回数を意味し、例えば、目的物質の回収量が10%、20%、30%、40%、50%、60%、70%、80%、90%或いは95%まで低下する回数とすることができる。特に、目的物質の回収量が95%まで低下する回数を寿命回数とすることが好ましく、目的物質の回収量が90%まで低下する回数を寿命回数とすることがより好ましく、目的物質の回収量が80%まで低下する回数を寿命回数とすることが最も好ましい。 Here, the number of lifetimes of the stationary phase means the number of times that the recovery amount of the target substance by the stationary phase is reduced to a predetermined ratio. For example, the recovery amount of the target substance is 10%, 20%, 30%, 40 %, 50%, 60%, 70%, 80%, 90% or 95%. In particular, the number of times the recovery amount of the target substance is reduced to 95% is preferably the life cycle number, and the number of times the recovery amount of the target substance is reduced to 90% is more preferably the life cycle number. It is most preferable that the number of times the life is reduced to 80% be the life number.
 以下、本発明を適用した分離装置の一例をより具体的に説明する。なお、分離装置とは、上述のように、移動相を固定相に通過させて移動相内の特定の物質を固定相に捕捉することで、移動相内の他の物質から当該特定の物質を分離する装置を意味する。分離装置は、精製装置と呼称される場合もあり、また、所謂クロマトグラフィー装置と同義である。分離装置としては、いわゆる分配クロマトグラフィー、吸着クロマトグラフィー、分子排斥クロマトグラフィー、イオン交換クロマトグラフィー及びアフィニティークロマトグラフィーのいずれであっても良い。以下の例では、医薬等に利用される抗体を含むタンパク質を細胞培養液から分離する系を説明する。しかし、本発明に係る分離装置は、本例に限定されず、分離対象の物質としては如何なる物質であっても良い。 Hereinafter, an example of a separation apparatus to which the present invention is applied will be described more specifically. As described above, the separation device refers to the specific substance from other substances in the mobile phase by passing the mobile phase through the stationary phase and capturing the specific substance in the mobile phase in the stationary phase. Means a device to separate. The separation device may be referred to as a purification device, and is synonymous with a so-called chromatography device. The separation device may be any of so-called partition chromatography, adsorption chromatography, molecular exclusion chromatography, ion exchange chromatography, and affinity chromatography. In the following example, a system for separating a protein containing an antibody used in medicine or the like from a cell culture medium will be described. However, the separation apparatus according to the present invention is not limited to this example, and any substance may be used as the substance to be separated.
<分離装置>
 本発明に係る分離装置の好ましい実施形態を図2及び図3に示す。図2及び図3に示す分離装置は、分離対象の物質を含む溶液(移動相、サンプル溶液)を連続的に処理する3つのアフィニティー充填カラム1A、1B及び1C(分離カラム1A、1B及び1Cとも称す)と、分離処理に使用される各種溶液と、送液のためのポンプ等から構成されている。なお、分離装置において、充填カラムの数は3つに限定されず、図3に示すように必要に応じて2つ以上充填カラムがあれば構わない。ここでは、充填カラムが3つの場合(図2及び図3)の装置構成について詳細に述べる。
<Separator>
A preferred embodiment of the separation apparatus according to the present invention is shown in FIGS. The separation apparatus shown in FIGS. 2 and 3 includes three affinity packed columns 1A, 1B, and 1C ( separate columns 1A, 1B, and 1C) that continuously process a solution containing a substance to be separated (mobile phase, sample solution). And various solutions used in the separation process, a pump for feeding the liquid, and the like. In the separation apparatus, the number of packed columns is not limited to three, and there may be two or more packed columns as required as shown in FIG. Here, the apparatus configuration in the case of three packed columns (FIGS. 2 and 3) will be described in detail.
 図2に示す分離装置は、3本の直列に連結された分離カラム1A、1B及び1C、5台の送液用ポンプ3及び4、5つの溶液リザーバー5、6、7、8及び9、スイッチバルブ15(流路切り替え部位装置)、及びそれらをつなぐ配管より構成される。直列に連結されたカラムは、上流と下流が配管により連結されており、循環できるような構造である。各カラムの上流は、各種溶液リザーバーとスイッチバルブ15を通して通液できる。また、各カラムの下流には、スイッチバルブ41~43を通してスイッチバルブ38に通液できる構造であり、スイッチバルブ38から廃液用配管もしくは精製溶液用配管へつながる構造をしている。 The separation apparatus shown in FIG. 2 includes three separation columns 1A, 1B and 1C connected in series, five liquid- feeding pumps 3 and 4, five solution reservoirs 5, 6, 7, 8 and 9, and a switch. It is comprised from the valve | bulb 15 (flow-path switching site | part apparatus), and the piping which connects them. The columns connected in series have a structure in which the upstream and downstream are connected by piping and can be circulated. Upstream of each column can be passed through various solution reservoirs and a switch valve 15. Further, downstream of each column is a structure in which liquid can be passed through the switch valves 41 to 43 to the switch valve 38, and the switch valve 38 is connected to the waste liquid pipe or the purified solution pipe.
 リザーバー5、6、7、8及び9に入った各種溶液は送液用ポンプ3及び4を駆動することによりスイッチバルブ15まで送液される。スイッチバルブ15では、詳細を後述する図6に示す工程に従い、各種溶液が適切な分離カラム1A、1B及び1Cに送液されるように流路の切り替えを行う。すべての分離カラム1A、1B及び1Cを同時に処理するため、各種溶液と各分離カラム1A、1B及び1Cへの流路接続の1対1の組み合わせがすべて実行できるようにスイッチバルブ15は構成されている。ただし、各カラムに対して工程として送液されない溶液がある場合、送液しない(送液ポンプ3もしくは4を作動させない)溶液も存在する。 The various solutions that have entered the reservoirs 5, 6, 7, 8, and 9 are fed to the switch valve 15 by driving the liquid feeding pumps 3 and 4. The switch valve 15 switches the flow path so that various solutions are sent to appropriate separation columns 1A, 1B, and 1C according to the process shown in FIG. In order to process all the separation columns 1A, 1B and 1C simultaneously, the switch valve 15 is configured so that all the one-to-one combinations of various solutions and flow path connections to the separation columns 1A, 1B and 1C can be performed. Yes. However, when there is a solution that is not sent as a process to each column, there is also a solution that does not feed (does not operate the feed pump 3 or 4).
 各分離カラム1A、1B及び1Cから出てきた溶液は、溶出液により分離された目的物質の場合は、精製溶液として回収用配管を通して回収され、それ以外は廃液として、廃液用配管から回収される。各分離カラム1A、1B及び1Cと各配管(精製用及び廃液用配管)は、スイッチバルブ38によって、図6に示す工程に従って選択される。各分離カラム1A、1B及び1Cと各配管はすべての組み合わせの流路を実現するようにスイッチバルブ15及び38が構成されている。図6に示す工程に従って、ポンプ3及び4、スイッチバルブ15及び38等を制御するには、コンピュータ39に予め制御プログラムを格納し、当該制御プログラムに従って制御装置40により実行することができる。これにより、本分離装置を用いることによって、サンプル溶液を連続的に処理し、目的物質のみを連続的に回収することができる。目的物質が適切に回収されているかを確認するため、UV装置による吸光度で検出することもできる。 In the case of the target substance separated by the eluate, the solution coming out from each of the separation columns 1A, 1B, and 1C is recovered as a purified solution through a recovery pipe, and otherwise is recovered as a waste liquid from the waste liquid pipe. . Each separation column 1A, 1B and 1C and each pipe (purification and waste liquid pipe) are selected by the switch valve 38 according to the process shown in FIG. The switch valves 15 and 38 are configured so that each separation column 1A, 1B and 1C and each pipe realize all combinations of flow paths. In order to control the pumps 3 and 4, the switch valves 15 and 38, etc. according to the steps shown in FIG. 6, a control program can be stored in the computer 39 in advance and executed by the control device 40 in accordance with the control program. Thereby, by using this separation apparatus, a sample solution can be processed continuously and only a target substance can be collected continuously. In order to confirm whether the target substance is properly recovered, it can also be detected by absorbance with a UV device.
 本装置では、疑似移動床式プロセスを行うことができ、具体的な工程を以下に述べる。工程1:少なくとも1つの標的化合物を含む供給液(リザーバー5)を、分離カラム1Aを横断して通過させ、そして流出物を分離カラム1Aから分離カラム1Bへと移動させる。工程2:供給液(リザーバー5)が分離カラム1Bへと送液されるようにスイッチバルブ15を制御し、そして洗浄液(リザーバー6)を標的化合物が結合した分離カラム1Aを横断して通過させる。工程3:洗浄液流出物(分離カラム1A下流)を分離カラム1Cへと移動させ、そしてその後分離カラム1Bからの流出物を分離カラム1Cへと移動させる。工程4:分離カラム1Aを再生させる。工程5:供給液(リザーバー5)を分離カラム1Cへと振り向け、そして洗浄液(リザーバー6)を標的化合物が結合した分離カラム1Bを横断して通過させる。工程6:洗浄液流出物(分離カラム1B下流)を分離カラム1Aへと移動させ、そしてその後分離カラム1Cからの流出物を分離カラム1Aへと移動させる。工程7:分離カラム1Bを再生させる。工程8:供給液(リザーバー6)を分離カラム1Aへと振り向け、そして洗浄液(リザーバー6)を標的化合物が結合した分離カラム1Cを横断して通過させる。工程9:洗浄液流出物(分離カラム1C下流)を分離カラム1Bへと移動させ、そしてその後分離カラム1Aからの流出物を分離カラム1Bへと移動させる。工程10:分離カラム1Cを再生させる。そして、図6に示す工程に従って、工程2から工程10を繰り返す。ここで、少なくとも1つの分離対象の物質を工程4、工程7及び/又は工程10において回収する。 This device can perform a simulated moving bed process, and the specific steps are described below. Step 1: A feed solution (reservoir 5) containing at least one target compound is passed across the separation column 1A and the effluent is moved from the separation column 1A to the separation column 1B. Step 2: The switch valve 15 is controlled so that the feed solution (reservoir 5) is sent to the separation column 1B, and the washing solution (reservoir 6) is passed across the separation column 1A to which the target compound is bound. Step 3: The washing liquid effluent (downstream of the separation column 1A) is moved to the separation column 1C, and then the effluent from the separation column 1B is moved to the separation column 1C. Step 4: Regenerate the separation column 1A. Step 5: Direct feed solution (reservoir 5) to separation column 1C and pass wash solution (reservoir 6) across separation column 1B to which the target compound is bound. Step 6: The washing liquid effluent (downstream of the separation column 1B) is moved to the separation column 1A, and then the effluent from the separation column 1C is moved to the separation column 1A. Step 7: Regenerate the separation column 1B. Step 8: Direct feed solution (reservoir 6) to separation column 1A and pass wash solution (reservoir 6) across separation column 1C to which the target compound is bound. Step 9: The washing liquid effluent (downstream of the separation column 1C) is moved to the separation column 1B, and then the effluent from the separation column 1A is moved to the separation column 1B. Step 10: Regenerate the separation column 1C. Then, steps 2 to 10 are repeated according to the steps shown in FIG. Here, at least one substance to be separated is recovered in Step 4, Step 7, and / or Step 10.
 一方、図3に示すような分離装置であってもよい。3本の並列に連結された分離カラム1A、1B及び1C(直列に繋がれているカラムは1つのカラムとみなす)、5台の送液用ポンプ3及び4、5つの溶液リザーバー5、6、7、8及び9、スイッチバルブ15(流路切り替え部位装置)、及びそれらをつなぐ配管より構成される。リザーバー5、6、7、8及び9に入った各種溶液は送液用ポンプ3及び4を駆動することによりスイッチバルブ15まで送液される。スイッチバルブ15では、詳細を後述する図6に示す工程に従い、各種溶液が適切な分離カラム1A、1B及び1Cに送液されるように流路の切り替えを行う。すべての分離カラム1A、1B及び1Cを同時に処理するため、各種溶液と各分離カラム1A、1B及び1Cへの流路接続の1対1の組み合わせがすべて実行できるようにスイッチバルブ15は構成されている。ただし、各カラムに対して工程として送液されない溶液がある場合、送液しない(送液ポンプ3もしくは4を作動させない)溶液も存在する。 On the other hand, a separation apparatus as shown in FIG. 3 may be used. Three separation columns 1A, 1B and 1C connected in parallel (a column connected in series is regarded as one column), five liquid- feeding pumps 3 and 4, five solution reservoirs 5, 6, 7, 8 and 9, a switch valve 15 (flow path switching part device), and a pipe connecting them. The various solutions that have entered the reservoirs 5, 6, 7, 8, and 9 are fed to the switch valve 15 by driving the liquid feeding pumps 3 and 4. The switch valve 15 switches the flow path so that various solutions are sent to appropriate separation columns 1A, 1B, and 1C according to the process shown in FIG. In order to process all the separation columns 1A, 1B and 1C simultaneously, the switch valve 15 is configured so that all the one-to-one combinations of various solutions and flow path connections to the separation columns 1A, 1B and 1C can be performed. Yes. However, when there is a solution that is not sent as a process to each column, there is also a solution that does not feed (does not operate the feed pump 3 or 4).
 各分離カラム1A、1B及び1Cから出てきた溶液は、溶出液により分離された目的物質の場合は、精製溶液として回収用配管を通して回収され、それ以外は廃液として、廃液用配管から回収される。各分離カラム1A、1B及び1Cと各配管(精製用及び廃液用配管)は、スイッチバルブ38によって、図6に示す工程に従って選択される。各分離カラム1A、1B及び1Cと各配管はすべての組み合わせの流路を実現するようにスイッチバルブ15及び38が構成されている。図6に示す工程に従って、ポンプ3及び4、スイッチバルブ15及び38等を制御するには、コンピュータ39に予め制御プログラムを格納し、当該制御プログラムに従って制御装置40により実行することができる。これにより、本分離装置を用いることによって、サンプル溶液を連続的に処理し、目的物質のみを連続的に回収することができる。目的物質が適切に回収されているかを確認するため、UV装置による吸光度で検出することもできる。 In the case of the target substance separated by the eluate, the solution coming out from each of the separation columns 1A, 1B, and 1C is recovered as a purified solution through a recovery pipe, and otherwise is recovered as a waste liquid from the waste liquid pipe. . Each separation column 1A, 1B and 1C and each pipe (purification and waste liquid pipe) are selected by the switch valve 38 according to the process shown in FIG. The switch valves 15 and 38 are configured so that each separation column 1A, 1B and 1C and each pipe realize all combinations of flow paths. In order to control the pumps 3 and 4, the switch valves 15 and 38, etc. according to the steps shown in FIG. 6, a control program can be stored in the computer 39 in advance and executed by the control device 40 in accordance with the control program. Thereby, by using this separation apparatus, a sample solution can be processed continuously and only a target substance can be collected continuously. In order to confirm whether the target substance is properly recovered, it can also be detected by absorbance with a UV device.
 図4には、2つの分離カラム1A及び1Bを有する分離装置を示しており、また図5には、3つの分離カラム1A、1B及び1Cを有する分離装置であって3つの送液ポンプ3、4及び34を有する分離装置を例示している。 FIG. 4 shows a separation apparatus having two separation columns 1A and 1B, and FIG. 5 shows a separation apparatus having three separation columns 1A, 1B and 1C, and three liquid feed pumps 3, A separation device having 4 and 34 is illustrated.
 図4に示す分離装置は、2本の分離カラム(カラム1Aおよびカラム1B)、2台の送液用ポンプ(ポンプ3およびポンプ4)、溶液リザーバー(リザーバー5、リザーバー6、リザーバー7、リザーバー8、リザーバー9)、流路切り替え部位装置(スイッチバルブ10、スイッチバルブ11、スイッチバルブ12、スイッチバルブ13、選択バルブ14、選択バルブ15)、及びそれらをつなぐ配管より構成される。 4 includes two separation columns (column 1A and column 1B), two liquid-feeding pumps (pump 3 and pump 4), solution reservoirs (reservoir 5, reservoir 6, reservoir 7, and reservoir 8). , Reservoir 9), flow path switching site device (switch valve 10, switch valve 11, switch valve 12, switch valve 13, selection valve 14, selection valve 15), and piping connecting them.
 リザーバー5内に溜められた溶液は、ポンプ3により送液され、選択バルブ15の制御で、スイッチバルブ21の配管かスイッチバルブ22側の配管に送液することができる。リザーバー6、リザーバー7、リザーバー8、リザーバー9に溜められた溶液は、ポンプ4で送液することができ、選択バルブ14の制御で、ポンプ4につながる配管へ送液する溶液を選択することができる。ポンプ4へ送液された溶液は、選択バルブ15の制御により、スイッチバルブ23側の配管に送液するか又はスイッチバルブ24側の配管に送液するかを制御できる。選択バルブ15の選択において、ポンプ3側からの配管がスイッチバルブ21側に選択された場合は、ポンプ4側の配管がスイッチバルブ24側に同時に選択される、もしくは、ポンプ3側からの配管がスイッチバルブ22側に選択された場合は、ポンプ4側の配管がスイッチバルブ23側に同時に選択される。 The solution stored in the reservoir 5 is fed by the pump 3 and can be fed to the piping of the switch valve 21 or the piping of the switch valve 22 by the control of the selection valve 15. The solution stored in the reservoir 6, the reservoir 7, the reservoir 8, and the reservoir 9 can be fed by the pump 4, and the solution fed to the pipe connected to the pump 4 can be selected by the control of the selection valve 14. it can. By controlling the selection valve 15, it is possible to control whether the solution sent to the pump 4 is sent to the pipe on the switch valve 23 side or the pipe on the switch valve 24 side. In the selection of the selection valve 15, when the piping from the pump 3 side is selected to the switch valve 21 side, the piping on the pump 4 side is simultaneously selected to the switch valve 24 side, or the piping from the pump 3 side is When selected on the switch valve 22 side, the piping on the pump 4 side is simultaneously selected on the switch valve 23 side.
 また、スイッチバルブ10においては、カラム1A側の配管もしくは廃液側の配管のいずれかが選択され、スイッチバルブ11においては、カラム1B側の配管もしくは廃液側の配管のいずれかが選択される。カラム1Aは、スイッチバルブ10と反対側に配管を介してスイッチバルブ12と連結される。また、カラム1Bは、スイッチバルブ11反対側に配管を介してスイッチバルブ13と連結される。スイッチバルブ12及び13においては、回収容器25側の配管もしくは廃液側の配管のいずれかが選択される。 In the switch valve 10, either the column 1A side pipe or the waste liquid side pipe is selected, and in the switch valve 11, either the column 1B side pipe or the waste liquid side pipe is selected. The column 1A is connected to the switch valve 12 through a pipe on the opposite side to the switch valve 10. The column 1B is connected to the switch valve 13 via a pipe on the opposite side of the switch valve 11. In the switch valves 12 and 13, either the pipe on the collection container 25 side or the pipe on the waste liquid side is selected.
 上述した分離装置においては、すべてのポンプ及び流路切り替え装置(スイッチバルブ)が、あらかじめ送液タイミング、送液速度及び送液時間等の送液条件をプログラムした制御装置により制御される。すなわち、制御装置によりポンプ及び流路切り替え装置を所定の順番に従って作動することで、分離動作を自動的かつ連続的に行わせることができる。また、選択バルブ14により、ポンプ4につなげられるリザーバーの種類としては、図4の例では4種類としたが、これより多くても少なくても良い。 In the above-described separation device, all pumps and flow path switching devices (switch valves) are controlled by a control device in which liquid feeding conditions such as liquid feeding timing, liquid feeding speed and liquid feeding time are programmed in advance. That is, the separation operation can be performed automatically and continuously by operating the pump and the flow path switching device in a predetermined order by the control device. In addition, although the number of reservoirs connected to the pump 4 by the selection valve 14 is four in the example of FIG. 4, it may be more or less.
 図4において、カラム1A及び1Bのすぐ上流側に配設されたスイッチバルブ10と11は、それぞれカラム1A及び1Bに通液する溶液をあらかじめ廃液側に流し、カラム1A及び1Bに通じる溶液の切り替えの際、前後の溶液の混合を最小にすることができる。カラム1A及び1Bのすぐ下流側に配設されたスイッチバルブ12と13は、それぞれカラム1A及び1Bから出てくる溶液を廃液リザーバー用容器に通液するか、回収用容器25に通液するかを切り替えることができる。リザーバー5,リザーバー6,リザーバー7,リザーバー8,リザーバー9は各種溶液リザーバーで、リザーバー5には分離対象の物質を含む溶液(移動相)が入っており、送液ポンプ3を介して選択バルブ15に供給される。リザーバー6にはカラムの平衡化用溶液が、リザーバー7には洗浄用溶液が入っており、リザーバー8には溶出用溶液が、リザーバー9には再生用溶液が入っている。選択バルブ14は、リザーバー6,リザーバー7,リザーバー8,リザーバー9のいずれかを連通させるように切り替えて、送液ポンプ4を介して選択バルブ15に各種溶液を供給することができる。 In FIG. 4, switch valves 10 and 11 arranged immediately upstream of the columns 1A and 1B flow the solution flowing through the columns 1A and 1B to the waste liquid side in advance, respectively, and switch the solutions leading to the columns 1A and 1B. In this case, the mixing of the solution before and after can be minimized. The switch valves 12 and 13 disposed immediately downstream of the columns 1A and 1B allow the solution coming out of the columns 1A and 1B to pass through the waste reservoir container or the recovery container 25, respectively. Can be switched. Reservoir 5, reservoir 6, reservoir 7, reservoir 8, and reservoir 9 are various solution reservoirs. The reservoir 5 contains a solution (mobile phase) containing a substance to be separated, and a selection valve 15 via a liquid feed pump 3. To be supplied. The reservoir 6 contains a column equilibration solution, the reservoir 7 contains a washing solution, the reservoir 8 contains an elution solution, and the reservoir 9 contains a regeneration solution. The selection valve 14 can switch any one of the reservoir 6, the reservoir 7, the reservoir 8, and the reservoir 9 to communicate with each other, and can supply various solutions to the selection valve 15 via the liquid feeding pump 4.
 選択バルブ15は、ポンプ3側から流される溶液とポンプ4側から流される溶液を、カラム1Aもしくはカラム1Bに、互いに同時に同じカラムを選択しないように、流路を選択しながら切り替えるためのバルブである。例えば、ポンプ3側からの流れが、カラム1A側に流れるようにした場合は、ポンプ4側からの流れをカラム1B側に流れるように、スイッチバルブ21~24を制御する。また、ポンプ3側からの流れが、カラム1B側に流れるようにした場合は、ポンプ4側からの流れをカラム1A側に流れるように、スイッチバルブ21~24を制御する。カラム1Aもしくは1Bにより分離された精製タンパク質は、スイッチバルブ12,スイッチバルブ13で、回収したいときだけ回収用容器25に送ることにより、間歇的に回収することができる。なお、回収が正常に行われているかをモニターするために、回収ラインの途中に紫外線モニター26(UVモニター)を付けることにより、クロマトグラフィーのモニタリングを行うことができる。 The selection valve 15 is a valve for switching the solution flowing from the pump 3 side and the solution flowing from the pump 4 side to the column 1A or the column 1B while selecting the flow path so as not to select the same column at the same time. is there. For example, when the flow from the pump 3 side flows to the column 1A side, the switch valves 21 to 24 are controlled so that the flow from the pump 4 side flows to the column 1B side. Further, when the flow from the pump 3 side flows to the column 1B side, the switch valves 21 to 24 are controlled so that the flow from the pump 4 side flows to the column 1A side. The purified protein separated by the column 1A or 1B can be intermittently recovered by sending it to the recovery container 25 only when it is desired to recover it by the switch valve 12 and the switch valve 13. In addition, in order to monitor whether collection | recovery is performed normally, chromatography monitoring can be performed by attaching the ultraviolet monitor 26 (UV monitor) in the middle of a collection line.
 なお、リザーバー6、リザーバー7,リザーバー8,リザーバー9の4種類を使用する場合について図示したが、4種類以上の溶液を用いて、クロマトグラフィーを行うことも可能である。本例においては、吸着クロマトグラフィーにおいて必要とされる溶液としては、平衡化溶液、洗浄用溶液、溶出用溶液及び再生用溶液が必要であることから、最小単位の構成について記述している。4種類以上の溶液を使用する場合には、図4に示す構成に準じて、使用する溶液の数に応じたリザーバー及びスイッチバルブを使用すればよい。この場合でも、ポンプのオン/オフ制御、流速やバルブの切り替えなどは、あらかじめコンピュータ等の制御装置にて制御できる。従って、本装置を用いることにより、サンプルの送液を開始した後は、サンプルが尽きるまで、連続的に作動し、完全自動化により、タンパク質の精製を行うことができる。 Although the case where four types of reservoir 6, reservoir 7, reservoir 8, and reservoir 9 are used is shown in the figure, it is possible to perform chromatography using four or more types of solutions. In this example, as the solution required in the adsorption chromatography, an equilibration solution, a washing solution, an elution solution, and a regeneration solution are required, and therefore, the minimum unit configuration is described. When four or more types of solutions are used, a reservoir and a switch valve corresponding to the number of solutions to be used may be used in accordance with the configuration shown in FIG. Even in this case, on / off control of the pump, switching of the flow rate and valve, etc. can be controlled in advance by a control device such as a computer. Therefore, by using this apparatus, after starting the liquid feeding of the sample, it is continuously operated until the sample runs out, and the protein can be purified by full automation.
 また、図5に示す分離装置では、図4に示す分離装置と異なり、選択バルブ14及びポンプ4をリザーバー6及び7に充填された溶液を送液するものとしている。また、図5に示す分離装置は、リザーバー8及び9に充填された溶液を送液する選択バルブ33及びポンプ34と、分離カラム1Bへの送液に用いる選択バルブ35と、分離カラム1Cへの送液に用いる選択バルブ36と、分離カラム1Cへの送液を制御するためのスイッチバルブ37と、スイッチバルブ37と反対側に配管を介して分離カラム1Bと連結されたスイッチバルブ32とを備える以外は、図4に示す分離装置と同様な構成となっている。 Further, in the separation device shown in FIG. 5, unlike the separation device shown in FIG. 4, the solution filled in the reservoirs 6 and 7 is sent through the selection valve 14 and the pump 4. Further, the separation apparatus shown in FIG. 5 includes a selection valve 33 and a pump 34 for feeding the solution filled in the reservoirs 8 and 9, a selection valve 35 used for feeding the separation column 1B, and a separation column 1C. A selection valve 36 used for liquid feeding, a switch valve 37 for controlling liquid feeding to the separation column 1C, and a switch valve 32 connected to the separation column 1B via a pipe on the opposite side to the switch valve 37 are provided. Except for this, the configuration is the same as that of the separation apparatus shown in FIG.
<連続処理に向けたカラム設計および制御方法>
 例えば、アフィニティーカラムを用いた物質の分離・精製では、通常、(I)カラムの平衡化、(II)目的物質の吸着、(III)洗浄、(IV)目的物質の溶出、(V)カラムの再生の工程からなる。サンプル溶液は(II)目的物質の吸着で処理される。言い換えると、他の(I)、(III)、(IV)、(V)の工程はサンプル溶液を処理する工程ではない。本分離装置では、図6に示すように複数の充填カラムで、処理工程をずらすことにより、連続的にサンプル溶液を処理することができる。これにより、大量のサンプル溶液を短時間で効率よく処理することができ、目的とする物質の分離・精製を効率良く行うことができる。
 また、本分離装置では、同一の分離カラムを使用回数限度まで繰り返し使用することができる。
<Column design and control method for continuous processing>
For example, in the separation and purification of substances using an affinity column, (I) equilibration of the column, (II) adsorption of the target substance, (III) washing, (IV) elution of the target substance, (V) column It consists of a regeneration process. The sample solution is treated by (II) adsorption of the target substance. In other words, the other steps (I), (III), (IV), and (V) are not steps for processing the sample solution. In this separation apparatus, the sample solution can be processed continuously by shifting the processing steps in a plurality of packed columns as shown in FIG. Thereby, a large amount of sample solution can be processed efficiently in a short time, and the target substance can be separated and purified efficiently.
Moreover, in this separation apparatus, the same separation column can be repeatedly used up to the use frequency limit.
 さらに、分離カラムは、カラムベッド高さ(サンプル溶液の線流速方向)で複数に分割することで、各カラムにかかる圧力損失が低減し、カラムにかかる圧力負荷を低減させることができる。ここで、複数のカラムのカラムベッド高さの合計を、分離対象の物質を含む移動相の全量を処理可能な容量の固定相を単一のカラムとしたときのカラムベッド高さとする。これにより、大量のサンプル溶液を短時間で効率よく処理することができ、目的とする物質の分離・精製を効率良く行うことができる。 Furthermore, the separation column is divided into a plurality of columns at the column bed height (in the direction of the linear flow rate of the sample solution), so that the pressure loss applied to each column can be reduced and the pressure load applied to the column can be reduced. Here, the sum of the column bed heights of a plurality of columns is defined as the column bed height when the stationary phase having a capacity capable of processing the total amount of the mobile phase containing the substance to be separated is a single column. Thereby, a large amount of sample solution can be processed efficiently in a short time, and the target substance can be separated and purified efficiently.
 本分離装置において、2つ以上の分割カラムを用いる場合、各分離カラムは、処理するサンプル溶液の量や(I)から(V)の各工程の必要時間に依存し、これらを考慮して設計することが好ましい。具体的な設計方法を以下に述べる。 When two or more split columns are used in this separation device, each separation column depends on the amount of sample solution to be processed and the time required for each step (I) to (V). It is preferable to do. A specific design method is described below.
1.カラム数の決定方法
 培養液に含まれる物質を分離する処理(上記(I)~(V))を連続的に処理するためには、2つ以上のカラムを用いて、時間をずらして、(II)目的物質の吸着工程を行う必要がある(図6参照)。ここで、カラムの数:N、T1:カラムの平衡化の時間、T2:目的物質の吸着時間、T3:洗浄時間、T4:目的物質の溶出時間、T5:カラムの再生の時間とした場合、一般的に、式(1)を満たすようにカラム数を設けることで、培養液を連続的に処理することが可能となる。
1. How to determine the number of columns In order to continuously process the substances contained in the culture solution (above (I) to (V)), use two or more columns and shift the time ( II) It is necessary to carry out the adsorption process of the target substance (see Fig. 6). Here, when the number of columns is N, T1: column equilibration time, T2: target substance adsorption time, T3: washing time, T4: target substance elution time, T5: column regeneration time, Generally, by providing the number of columns so as to satisfy the formula (1), it is possible to continuously process the culture solution.
[数1]
       N×T2≧(T1+T2+T3+T4+T5)   式(1)
[Equation 1]
N × T2 ≧ (T1 + T2 + T3 + T4 + T5) Equation (1)
 一方、各(I)~(V)の時間は以下のようにして決定することができる。ただし、以下の方法は一例であり、他の基準で決定しても構わない。 On the other hand, the time of each (I) to (V) can be determined as follows. However, the following method is an example and may be determined based on other criteria.
カラムの平衡化の時間T1の決定方法
 カラムの平衡化の時間は、カラム平衡化において、溶出液の吸光度をモニタリングし、ベースラインが安定するまでに要する時間と定めることができる。一方、溶媒置換時の送液量が、カラム体積の10倍量となるまでに要する時間としても構わない。
Method for Determining Column Equilibration Time T1 The column equilibration time can be determined as the time required to stabilize the baseline by monitoring the absorbance of the eluate during column equilibration. On the other hand, it may be the time required for the amount of liquid fed at the time of solvent replacement to reach 10 times the column volume.
目的物質の吸着時間T2の決定方法
 カラムへ送液する線速度が決定すれば、目的物質の吸着に要する時間を以下の式2で決定することができる。
 (吸着時間)=(カラムのベッド高)/(線速度)
Determination method of target substance adsorption time T2 If the linear velocity of liquid delivery to the column is determined, the time required for adsorption of the target substance can be determined by the following equation 2.
(Adsorption time) = (Column bed height) / (Linear velocity)
 線速度は以下のようにして決定することができる。カラムベッド高と線速度は図7に示す関係があり、カラムの許容圧力以下の範囲(図中の曲線P以下)の条件を満たす必要がある。この範囲内で、カラムベッド高と線速度を様々に変えた条件で、抗体の回収率を実験により測定し、回収率が一定値(例えば95%)を維持するカラムベッド高、線速度で決定することができる。上記、回収率の測定の代わりに、以下に示す動的結合容量を計測しても構わない。 The linear velocity can be determined as follows. The column bed height and the linear velocity have the relationship shown in FIG. 7, and it is necessary to satisfy the condition of the range below the allowable pressure of the column (the curve P in the figure). Within this range, the antibody recovery rate is experimentally measured under various conditions of changing the column bed height and linear velocity, and determined by the column bed height and linear velocity that maintain a constant recovery rate (eg, 95%). can do. Instead of measuring the recovery rate, the dynamic binding capacity shown below may be measured.
 線速度測定の実験例を以下に示す。プロテインAカラムを用いて適切な線速度を検討した。様々な線速度の条件でIgGサンプルを添加後、300mM塩化ナトリウム溶液を含むリン酸ナトリウム(pH7.0)、1.88カラム容量(CV)で洗浄後、300mM塩化ナトリウム溶液を含む20mMリン酸ナトリウム(pH2.8)、6.31CVを用いてステップワイズ溶出を行った。各線速度におけるIgG回収量を定量し、添加IgGサンプル量との比をとることで、回収率を導出した。本実施例では回収率が90%以上を維持する線速度を適正線速度とした。 An example of linear velocity measurement is shown below. An appropriate linear velocity was examined using a protein A column. After adding an IgG sample under various linear velocity conditions, washing with sodium phosphate (pH 7.0) containing 300 mM sodium chloride solution and 1.88 column volume (CV), then 20 mM sodium phosphate containing 300 mM sodium chloride solution (pH 2) .8), Stepwise elution was performed using 6.31 CV. The recovery rate was derived by quantifying the amount of IgG recovered at each linear velocity and taking the ratio with the amount of added IgG sample. In this example, the linear velocity at which the recovery rate was maintained at 90% or higher was determined as the appropriate linear velocity.
 担体の結合容量には、最大結合容量と動的結合容量の2種類ある。前者は担体が目的分子を回収できる上限の量をあらわし、後者は精製するサンプルが流れている状態で、どのくらい効率よく回収できるかをあらわす数値である。動的結合容量が高い担体は高流速でたくさんの目的分子を回収できるため、短時間で効率よく目的の分子を精製できる。一方、最大結合容量は、標準タンパク質溶液をカラムに添加し、溶出液の吸光度をモニターする。溶出液の吸光度が添加サンプルと同じになるまで送液を続け、「溶出したタンパク質量」から結合量を求めることができる。最大結合容量は添加流速の影響は受けない。 There are two types of carrier binding capacity: maximum binding capacity and dynamic binding capacity. The former represents the upper limit of the amount by which the carrier can collect the target molecule, and the latter is a numerical value representing how efficiently the carrier can be collected in the state where the sample to be purified is flowing. Since the carrier having a high dynamic binding capacity can recover a large number of target molecules at a high flow rate, the target molecule can be purified efficiently in a short time. On the other hand, for the maximum binding capacity, a standard protein solution is added to the column, and the absorbance of the eluate is monitored. The liquid feeding is continued until the absorbance of the eluate becomes the same as that of the added sample, and the amount of binding can be determined from the “eluted protein amount”. The maximum binding capacity is not affected by the addition flow rate.
 動的結合容量測定の実験例を以下に示す。動的結合容量を以下の手順に従って測定した。PBSで希釈した10mg/mL濃度のIgGをシリンジポンプにて、500cm/hの線流速度で10mL送液した。流路の出口から溶液の吸光度を測定した。結果を図8に示す。動的結合容量は一般に、添加したサンプルの吸光度もしくはタンパク量の5 % の漏出が見られた時点の添加タンパク質量とされることが多いため、図8に示すように21.5mg/mLが動的結合容量であることがわかる。 An example of dynamic binding capacity measurement is shown below. The dynamic binding capacity was measured according to the following procedure. 10 mL of IgG diluted with PBS at a concentration of 10 mg / mL was sent with a syringe pump at a linear flow rate of 500 cm / h. The absorbance of the solution was measured from the outlet of the channel. The results are shown in FIG. In general, the dynamic binding capacity is often the amount of added protein at the time when the absorbance of the added sample or the leakage of 5% of the protein amount is observed, so 21.5 mg / mL is dynamic as shown in FIG. It can be seen that this is the binding capacity.
 なお、参考のため線流速(cm/h)の求め方を以下に示す。
 線流速(cm/h)=[流速(ml/min)]×60/[カラムの断面積(cm2)]=[Z×60×4]/[π×d2]
 (Z=流速、d = カラム内径(cm))
For reference, the method for obtaining the linear flow velocity (cm / h) is shown below.
Linear flow velocity (cm / h) = [flow velocity (ml / min)] x 60 / [column cross-sectional area (cm 2 )] = [Z x 60 x 4] / [π x d 2 ]
(Z = flow velocity, d = column inner diameter (cm))
洗浄時間T3の決定方法
 洗浄の効果は洗浄前後の圧力を測定することで確認することが可能である。例えば、溶出バッファーから洗浄液に置き換える前や洗浄液での洗浄後に、超純水に一度置換して超純水を流したときの圧力を比較し、圧力が下がるまでの時間を洗浄時間として決めることができる。別の方法としては、洗浄工程で溶出液の吸光度を測定し、ベースラインが安定するまでの時間を洗浄時間と定めることもできる。あるいは、カラム体積の一定倍数(例えば10倍)量の洗浄液が流れるまでに要する時間を洗浄時間として決めることもできる。
Method for determining cleaning time T3 The effect of cleaning can be confirmed by measuring the pressure before and after cleaning. For example, before replacing the elution buffer with the washing solution or after washing with the washing solution, compare the pressure when the ultrapure water is replaced once and flow the ultrapure water, and the time until the pressure drops can be determined as the washing time. it can. As another method, the absorbance of the eluate is measured in the washing step, and the time until the baseline is stabilized can be determined as the washing time. Alternatively, it is possible to determine the time required for the flow of the cleaning liquid of a fixed multiple (for example, 10 times) of the column volume as the cleaning time.
 カラムの洗浄は、製品の完全性/安全性、精製用担体の寿命を考慮して検討する必要がある。カラム洗浄を目的として、以下の洗浄剤が利用できる。ただし、これらの洗浄剤に限定されず、他の洗浄剤を用いることも可能である。すなわち、洗浄剤としては塩酸グアニジンを使用できる。塩酸グアニジンは疎水性相互作用を破壊し、沈殿・変性したタンパクを溶解する特徴がある。また、洗浄剤としては有機溶媒(イソプロパノールなど)を使用できる。有機溶剤は、脂質や疎水性の不純物を除去、沈殿した原料は除去困難といった特徴がある。さらに、洗浄剤としては水酸化ナトリウムを使用することができる。水酸化ナトリムは、沈殿タンパクを可溶化し、アルカリ加水分解により脂質を可溶化し、担体から核酸を除去し、殺菌作用があり、タンパクリガンドを劣化させるといった特徴がある。上記洗浄剤の中でも特に水酸化ナトリウムは洗浄、殺菌、パイロジェン不活化、ウイルス不活化に効果的であるため好ましい。 ¡Column washing needs to be considered in consideration of product integrity / safety and the lifetime of the purification carrier. For the purpose of column cleaning, the following cleaning agents can be used. However, it is not limited to these cleaning agents, and other cleaning agents can be used. That is, guanidine hydrochloride can be used as the cleaning agent. Guanidine hydrochloride is characterized by breaking hydrophobic interactions and dissolving precipitated and denatured proteins. An organic solvent (such as isopropanol) can be used as the cleaning agent. Organic solvents are characterized by the removal of lipids and hydrophobic impurities and the difficulty of removing precipitated raw materials. Furthermore, sodium hydroxide can be used as the cleaning agent. Sodium hydroxide solubilizes precipitated proteins, solubilizes lipids by alkaline hydrolysis, removes nucleic acids from the carrier, has a bactericidal action, and has the characteristics of degrading protein ligands. Among the above cleaning agents, sodium hydroxide is particularly preferable because it is effective for cleaning, disinfection, pyrogen inactivation, and virus inactivation.
目的物質の溶出時間T4
 カラムに抗体を吸着させておき、溶出液を流し始めてから、抗体溶出による吸光度が減少し、ベースラインに戻るまでの時間を溶出時間として定めることができる。
Elution time of target substance T4
The time from when the antibody is adsorbed to the column and the eluate starts to flow until the absorbance due to antibody elution is reduced and returned to the baseline can be determined as the elution time.
カラムの再生の時間T5
 一例として、10カラム体積(CV)の20mMリン酸バッファー、0.5MのNaCl溶液、50mMのEDTA溶液(pH7.4)を送液して金属イオンを除去した後、15CVの超純水を送液するのに要する時間をカラムの再生時間とすることができる。カラムの汚れがひどい場合は、さらに5CVの1MのNaOH溶液をゆっくりと送液して洗浄し、15CV以上の中性バッファーを送液してカラムを中性に戻すのに要する時間とすることができる。
Column regeneration time T5
As an example, 10 column volumes (CV) of 20 mM phosphate buffer, 0.5 M NaCl solution, and 50 mM EDTA solution (pH 7.4) are sent to remove metal ions, and then 15 CV ultrapure water is sent. The time required for this can be used as the column regeneration time. If the column is very dirty, it may be necessary to slowly feed 5CV of 1M NaOH solution and wash, and then add 15CV or more of neutral buffer to set the time required to return the column to neutrality. it can.
 酸やアルカリ溶液で洗浄した後に超純水を流しただけではカラム内に酸やアルカリが残存し担体へダメージを与えることがあるため、酸やアルカリによる洗浄後にNaClでの洗浄ステップを入れることで担体へのダメージを低減することができる。 If ultrapure water is flowed after washing with an acid or alkali solution, acid or alkali may remain in the column and damage the support, so a washing step with NaCl can be performed after washing with acid or alkali. Damage to the carrier can be reduced.
2.カラム容積の決定方法
 培養液中の目的物質濃度:Ct、1バッチあたりの培養液の容積:Vb、単位容量当りのカラムの目的物質動的吸着量:Am、1カラム当りの容量:Vc、カラムの数:N、カラムの再利用回数:Rとすると、式(2)の関係が成り立つ。
2. Determination method of column volume Concentration of target substance in culture solution: Ct, volume of culture solution per batch: Vb, target substance dynamic adsorption amount per unit volume: Am, capacity per column: Vc, column Assuming that the number of N is N and the number of column reuse times is R, the relationship of Equation (2) is established.
[数2]
Ct・Vb≦Am・Vc・R・N   式(2)
[Equation 2]
Ct ・ Vb ≦ Am ・ Vc ・ R ・ N Formula (2)
 カラム数Nを大きくすることで、式(1)(2)を満たすことができるが、カラム数Nが多くなるにつれ、精製装置の制御系が複雑になるため、式(1)(2)を満たし、カラム数Nが最小数となることが望ましい。カラム中の固定相は通常、繰り返し利用するが、再生工程でのNaOHなどのアルカリ処理で徐々に固定相でのプロテインAなどが劣化(脱離もしくは変性)し、徐々に目的物質の回収量が低下し、目的の回収量を得られなくなるまでの再利用回数を寿命(寿命回数)とする。固定相ごとに寿命が異なる場合は、使用毎に回収量をモニタリングしておき、ユーザーが決定する所定の回収量を得られなくなるまでを寿命とすることもできるし、メーカーが保障する再利用回数を寿命としてもよい。Rはカラムの再利用回数(寿命)であるため、カラム容量は通常のカラムの(1/R)となる。 By increasing the number of columns N, the equations (1) and (2) can be satisfied. However, as the number of columns N increases, the control system of the purification apparatus becomes more complicated. It is desirable that the number of columns N be the minimum. The stationary phase in the column is normally used repeatedly, but protein A in the stationary phase gradually deteriorates (desorbs or denatures) due to alkali treatment such as NaOH in the regeneration process, and the recovery amount of the target substance gradually increases. The number of reuse until the target recovery amount cannot be obtained is defined as the lifetime (the number of lifetimes). If the life varies depending on the stationary phase, the recovery amount can be monitored for each use, and the life until the specified recovery amount determined by the user cannot be obtained can be used. The number of reuses guaranteed by the manufacturer It is good also as lifetime. Since R is the number of column reuses (lifetime), the column capacity is (1 / R) of a normal column.
3.カラムの分割
 必要カラム容積は、1カラム当りの容量Vcとカラムの数Nの積である。Vc・Nの容積のカラムをN個に分割するが、カラムベッド高さを同じにして、カラム断面積を1/Nに分割したカラムは、圧損が分割前のカラムより大きくなる。そのため、カラムベッド高さ方向に少なくとも2分割以上にすることが望ましい。圧力損失が設計の上限値より小さくなるようにカラムベッド高さ、断面積を分割すればよい(図9参照)。図9(a)は、断面積は同じで、高さ方向に分割している。図9(b)は高さおよび断面積を分割しており、分割されたカラムが市販カラムの規格と一致した場合である。
3. Column splitting The required column volume is the product of the capacity Vc per column and the number N of columns. A column having a volume of Vc · N is divided into N columns. A column with the same column bed height and a column cross-sectional area divided into 1 / N has a larger pressure loss than the column before the division. Therefore, it is desirable that the column bed is divided into at least two parts in the height direction. What is necessary is just to divide the column bed height and cross-sectional area so that the pressure loss is smaller than the upper limit of the design (see FIG. 9). FIG. 9A has the same cross-sectional area and is divided in the height direction. FIG. 9B shows the case where the height and the cross-sectional area are divided, and the divided columns match the specifications of the commercial column.
4.カラム材質(充填剤およびカラムホルダー)
 上述のように、分離カラムは、処理対象の移動相の全量を処理できる量の固定相を充填している。よって、所定のバッチについて分離カラムを使用した後、当該分離カラム自体を交換して新たな分離カラムを用いて次のバッチを処理することができる。特に、上述のように、複数の分離カラムを使用する場合には、処理対象の移動相が大容量であっても、カラムにかかる圧力を低減することができる。よって、この場合、他分野でディスポーザブル素材として使用されているアクリルアミド、ポリプロピレン、高密度ポリエチレン、ポリエチレンテレフタレート等をカラムホルダーの材料とすることができる。なお、分離カラムとしては、従来使用されていたガラスやステンレスをカラムホルダーの材質としたものを使用することもできる。
4). Column material (filler and column holder)
As described above, the separation column is packed with an amount of stationary phase that can process the entire amount of mobile phase to be processed. Thus, after using a separation column for a given batch, the separation column itself can be replaced and the next batch can be processed using a new separation column. In particular, as described above, when a plurality of separation columns are used, the pressure applied to the column can be reduced even if the mobile phase to be processed has a large capacity. Therefore, in this case, acrylamide, polypropylene, high-density polyethylene, polyethylene terephthalate, or the like that is used as a disposable material in other fields can be used as a material for the column holder. In addition, as a separation column, what used conventionally used glass and stainless steel as the material of a column holder can also be used.
 また、固定相の母体としては、従来使用されている如何なる材料を使用することができる。例えば、アガロース、シリカゲルのいずれかもしくはその組み合わせを使用することができる。また、分離対象の物質を特異的に捕捉できるリガンドとしても特に限定されず、例えばProtein AやG、Thiophilic interactionを利用することができる。 Also, any conventionally used material can be used as the base of the stationary phase. For example, any of agarose and silica gel or a combination thereof can be used. In addition, the ligand that can specifically capture the substance to be separated is not particularly limited, and for example, Protein A, G, and Thiophilic interaction can be used.
<バイオ医薬品精製工程への適用例>
 本発明に係る分離装置をバイオ医薬品精製工程への適用したシステムを図10に示す。図10に示すシステムは、バイオ医薬品である例えば抗体を分泌生産する細胞を培養した培養液を充填した培地受けタンク101と、分離対象の抗体を特異的に捕捉する固定相を有するアフィニティーカラム102と、固定相に捕捉された抗体を溶出する溶離液が充填された溶離液タンク106とを備えている。また、図10に示すシステムにおいて、アフィニティーカラム102の下流に、画分タンク109、UF濾過装置105、除菌フィルター108、受けタンク110、陰イオン交換カラム103、画分タンク109、陽イオン交換カラム104、画分タンク109が順に設置されている。また図10に示すシステムにおいて、アフィニティーカラム102の上流に冷却装置107が配設されている。
<Application example for biopharmaceutical purification process>
FIG. 10 shows a system in which the separation apparatus according to the present invention is applied to a biopharmaceutical purification process. The system shown in FIG. 10 includes a medium receiving tank 101 filled with a culture solution in which cells that secrete and produce antibodies such as biopharmaceuticals are cultured, and an affinity column 102 having a stationary phase that specifically captures the antibody to be separated. And an eluent tank 106 filled with an eluent that elutes the antibody captured in the stationary phase. In the system shown in FIG. 10, downstream of the affinity column 102 are a fraction tank 109, a UF filtration device 105, a sterilization filter 108, a receiving tank 110, an anion exchange column 103, a fraction tank 109, a cation exchange column. 104 and the fraction tank 109 are installed in order. Further, in the system shown in FIG. 10, a cooling device 107 is disposed upstream of the affinity column 102.
 先ず、抗体等のバイオ医薬品を含む培養液は、遠心処理等により細胞等の成分が取り除かれ清澄化される。その後、図10に示すシステムを利用して目的とする抗体等のバイオ医薬品を回収する。この回収工程において、アフィニティーカラム102は、図6に示すような工程表に従い、培養液を連続的に処理する。この間、アフィニティーカラム102の充填剤は図6に示すような工程表に従い再利用することができる。アフィニティーカラム102に充填された固定相は、培養液の全量を処理可能な容量であり、好ましくは培養液の全量が利用上限量となる。ここで利用上限量とは、固定相の分離性能を維持できる、移動相の最大通過量である。 First, a culture solution containing a biopharmaceutical such as an antibody is clarified by removing components such as cells by centrifugation or the like. Thereafter, a target biopharmaceutical such as an antibody is collected using the system shown in FIG. In this recovery step, the affinity column 102 continuously processes the culture solution according to the process chart shown in FIG. During this time, the packing material of the affinity column 102 can be reused according to the process chart shown in FIG. The stationary phase packed in the affinity column 102 has a capacity capable of processing the entire amount of the culture solution, and preferably the total amount of the culture solution is the upper limit of use. Here, the use upper limit amount is the maximum amount of mobile phase that can maintain the separation performance of the stationary phase.
 そして、回収工程を経た培養サンプル液は、中間精製、最終精製を経て、バイアルに充填される。培養液について1バッチが終了した後、アフィニティーカラム102を取り外し、そのまま焼却処分を行うことができる。次の培養液については、新しいアフィニティーカラム102をラインにつなげることで、容易に次の準備を行うことができる。このように、本発明を適用することによって、カラムの劣化が生じた場合に充填剤の交換を行う必要がなく処理時間を短縮することができる。また、本発明を適用することによって、大量の充填剤を大型のカラムに充填するための特別な装置や手技を必要とせず、極めて容易に多くの培養液を処理することができる。 Then, the culture sample solution that has undergone the recovery step is filled into a vial through intermediate purification and final purification. After one batch of the culture solution is completed, the affinity column 102 can be removed and incinerated as it is. About the next culture solution, the next preparation can be easily performed by connecting the new affinity column 102 to the line. Thus, by applying the present invention, it is not necessary to replace the packing material when the column is deteriorated, and the processing time can be shortened. In addition, by applying the present invention, a large number of culture solutions can be processed very easily without requiring a special apparatus or technique for packing a large amount of packing material into a large column.
1…カラム、2…カラム、3…送液用ポンプ、4…送液用ポンプ、5~9…リザーバー、10~13…スイッチバルブ、14~15…選択バルブ、21~24…スイッチバルブ、31…カラム、32…スイッチバルブ、33…選択バルブ、34…送液用ポンプ、35~36…選択バルブ、37…スイッチバルブ、38…スイッチバルブ、39…コンピュータ、40…制御装置、41~43…スイッチバルブ、44~46…UV検出器、制御装置、101…培地受けタンク、102…アフィニティーカラム、103…陰イオン交換カラム、104…陽イオン交換カラム、105…UF濾過装置、106…溶離液タンク、107…冷却装置、108…除菌フィルター、109…画分タンク、110…受けタンク DESCRIPTION OF SYMBOLS 1 ... Column, 2 ... Column, 3 ... Liquid feeding pump, 4 ... Liquid feeding pump, 5-9 ... Reservoir, 10-13 ... Switch valve, 14-15 ... Selection valve, 21-24 ... Switch valve, 31 ... Column, 32 ... Switch valve, 33 ... Selection valve, 34 ... Liquid feed pump, 35-36 ... Selection valve, 37 ... Switch valve, 38 ... Switch valve, 39 ... Computer, 40 ... Control device, 41-43 ... Switch valve, 44 to 46 ... UV detector, control device, 101 ... Medium receiving tank, 102 ... Affinity column, 103 ... Anion exchange column, 104 ... Cation exchange column, 105 ... UF filtration device, 106 ... Eluent tank 107 ... Cooling device 108 ... Disinfecting filter 109 ... Fraction tank 110 ... Receiving tank

Claims (5)

  1.  分離対象の物質を含む移動相の全量を処理可能な容量の固定相を備える分離カラムを備え、当該分離カラムが交換可能であり、
     1バッチ分の処理で上記固定相の使用回数が寿命回数となることを特徴とする分離装置。
    A separation column having a stationary phase with a capacity capable of processing the entire amount of the mobile phase containing the substance to be separated, and the separation column is replaceable;
    Separation apparatus characterized in that the number of times the stationary phase is used becomes the number of lifetimes in one batch of processing.
  2.  上記分離カラムは、上記固定相を備える複数のカラムからなり、当該複数のカラムに充填された固定相の総量が、上記分離対象の物質を含む移動相の全量を処理可能な容量であることを特徴とする請求項1記載の分離装置。 The separation column is composed of a plurality of columns including the stationary phase, and the total amount of the stationary phase packed in the plurality of columns is a capacity capable of processing the total amount of the mobile phase containing the substance to be separated. The separation device according to claim 1, wherein
  3.  上記複数のカラムのそれぞれに対して連結された複数の配管と、当該複数の配管上にそれぞれ配設された複数のスイッチバルブと、当該複数のスイッチバルブによる各配管の連通を制御する制御装置とを更に備える請求項2記載の分離装置。 A plurality of pipes connected to each of the plurality of columns, a plurality of switch valves respectively disposed on the plurality of pipes, and a control device for controlling communication of the pipes by the plurality of switch valves; The separation apparatus according to claim 2, further comprising:
  4.  上記複数のカラムのカラムベッド高さの合計は、上記容量の固定相を単一のカラムとしたときのカラムベッド高さであることを特徴とする請求項2記載の分離装置。 3. The separation apparatus according to claim 2, wherein the total of the column bed heights of the plurality of columns is a column bed height when the stationary phase having the capacity is a single column.
  5.  上記固定相の容量は、移動相に含まれる分離対象の物質の総量、及び当該固定相の最大吸着容量に基づいて規定されることを特徴とする請求項1記載の分離装置。 The separation apparatus according to claim 1, wherein the capacity of the stationary phase is defined based on the total amount of substances to be separated contained in the mobile phase and the maximum adsorption capacity of the stationary phase.
PCT/JP2014/066232 2013-07-05 2014-06-19 Separation device and separation method WO2015001963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14820358.1A EP3018475B1 (en) 2013-07-05 2014-06-19 Separation method
US14/897,844 US10086313B2 (en) 2013-07-05 2014-06-19 Separation device and separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-142061 2013-07-05
JP2013142061A JP6203557B2 (en) 2013-07-05 2013-07-05 Separation apparatus and separation method

Publications (1)

Publication Number Publication Date
WO2015001963A1 true WO2015001963A1 (en) 2015-01-08

Family

ID=52143541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066232 WO2015001963A1 (en) 2013-07-05 2014-06-19 Separation device and separation method

Country Status (4)

Country Link
US (1) US10086313B2 (en)
EP (1) EP3018475B1 (en)
JP (1) JP6203557B2 (en)
WO (1) WO2015001963A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6790963B2 (en) * 2017-03-30 2020-11-25 株式会社島津製作所 Liquid chromatograph
CN109669033A (en) * 2017-10-17 2019-04-23 普瑞邦(北京)科技有限公司 A kind of immune affinity column operating device
JP7262472B2 (en) * 2018-09-21 2023-04-21 株式会社日立ハイテク Analysis apparatus having liquid chromatograph and liquid chromatograph analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618504A (en) * 1992-06-30 1994-01-25 Kyoto Daiichi Kagaku:Kk Method for stabilizing measured value of high speed liquid chromatography
JPH06324027A (en) * 1993-05-12 1994-11-25 Hitachi Ltd Automatic liquid chromatography
JP2010271300A (en) * 2009-04-23 2010-12-02 National Institute Of Advanced Industrial Science & Technology Protein separating and refining device using liquid chromatography
JP2011214837A (en) 2010-03-31 2011-10-27 National Institute Of Advanced Industrial Science & Technology Liquid chromatography apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422881A (en) * 1980-10-29 1983-12-27 Roquette Freres Installation and process for the continuous separation of mixtures of sugars and/or of polyols by selective adsorption
US4764276A (en) * 1984-07-30 1988-08-16 Advanced Separation Technologies Incorporated Device for continuous contacting of fluids and solids
JPS62138753A (en) * 1985-12-12 1987-06-22 Hitachi Ltd Method and apparatus for fractionating and dispesing by liquid chromatography
US6080318A (en) * 1996-09-25 2000-06-27 Analyticon Ag Biotechnologie Pharmazie HPLC-based device and method for separating high complex substance mixtures
JP5140721B2 (en) 2007-04-17 2013-02-13 イクスエンド、ホールディング、ベスローテン、フェンノートシャップ Continuous membrane adsorption method and apparatus
WO2008153472A1 (en) * 2007-06-15 2008-12-18 Ge Healthcare Bio-Sciences Ab Chromatography method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618504A (en) * 1992-06-30 1994-01-25 Kyoto Daiichi Kagaku:Kk Method for stabilizing measured value of high speed liquid chromatography
JPH06324027A (en) * 1993-05-12 1994-11-25 Hitachi Ltd Automatic liquid chromatography
JP2010271300A (en) * 2009-04-23 2010-12-02 National Institute Of Advanced Industrial Science & Technology Protein separating and refining device using liquid chromatography
JP2011214837A (en) 2010-03-31 2011-10-27 National Institute Of Advanced Industrial Science & Technology Liquid chromatography apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018475A4

Also Published As

Publication number Publication date
US20160136543A1 (en) 2016-05-19
EP3018475B1 (en) 2022-06-22
US10086313B2 (en) 2018-10-02
JP6203557B2 (en) 2017-09-27
EP3018475A4 (en) 2017-03-15
EP3018475A1 (en) 2016-05-11
JP2015014539A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP2015052533A (en) Chromatography device and chromatography method
US10865224B2 (en) Purification of biological molecules
JP6743074B2 (en) Method for reducing the level of one or more impurities in a sample during protein purification
CN1777435B (en) Method of purifying polypeptides by simulated moving bed chromatography
KR101974676B1 (en) Method and apparatus for chromatographic purification
EP2675540A1 (en) System and process for biopolymer chromatography
CA2799502A1 (en) Apparatus and process for purification of proteins
KR20070065896A (en) Method and apparatus for separating a target molecule from a liquid mixture
US7413660B2 (en) Single pass method and apparatus for separating a target molecule from a liquid mixture
JP6203557B2 (en) Separation apparatus and separation method
Ramos et al. Fully integrated downstream process to enable next‐generation manufacturing
US20220275024A1 (en) Process for Purifying Monoclocal Antibodies
US20220333060A1 (en) Process for Purifying Target Substances
JP2022513463A (en) Volumetric In-line Product Concentration to Reduce Loading Flow Rate and Increase Productivity for Binding and Elution Chromatographic Purification
US20220168668A1 (en) End-to-End Continuous Purification System
Tabassum et al. PURIFICATION OF THERAPEUTIC MONOCLONAL ANTIBODIES (mABs)–A REVIEW
CN117980740A (en) Method for monitoring chromatographic resin during continuous chromatographic operation
CN117957050A (en) Integrated solution for process enhancement using in-line constant pressure tank &#34;ICPT
Mora et al. Membrane chromatography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014820358

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE