JP2010112960A - Liquid chromatography apparatus and analysis program - Google Patents
Liquid chromatography apparatus and analysis program Download PDFInfo
- Publication number
- JP2010112960A JP2010112960A JP2010007678A JP2010007678A JP2010112960A JP 2010112960 A JP2010112960 A JP 2010112960A JP 2010007678 A JP2010007678 A JP 2010007678A JP 2010007678 A JP2010007678 A JP 2010007678A JP 2010112960 A JP2010112960 A JP 2010112960A
- Authority
- JP
- Japan
- Prior art keywords
- analysis
- column
- program
- injection
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本発明は、液体クロマトグラフ分析法に関する。 The present invention relates to a liquid chromatographic analysis method.
液体クロマトグラフ装置の一例として、高速アミノ酸分析計を用いて説明する。アミノ酸分析計は大別して、タンパク質加水分解物アミノ酸約20成分を対象とした標準分析法と、生体液アミノ酸類縁物質約40成分またはそれ以上の成分を対象とした生体液分析法を行うものに分類できる。 As an example of the liquid chromatograph apparatus, a high-speed amino acid analyzer will be described. Amino acid analyzers can be broadly classified into standard analysis methods that target about 20 amino acids of protein hydrolysates and biological fluid analysis methods that target about 40 or more components of biological fluid amino acids. it can.
生体液分析法の例としては、特開昭53−60291号公報,特開昭59−10849号公報,特開平4−194570号公報,特開平9−80037号公報,特開2002−71660号公報がある。また、報告文として、Journal of Chromatography, 224; 315-321(1981)“Resolution of 52 ninhydrin-positive compounds with a High-speed amino acid analyzer”,Clinical Chemistry 43; 8, 1421-1428(1997)“Amino Acid determination in biological fluids by automated ion-exchange chromatography: performance of Hitachi L-8500A”がある。 Examples of biological fluid analysis methods include JP-A-53-60291, JP-A-59-10849, JP-A-4-194570, JP-A-9-80037, JP-A-2002-71660. There is. The report includes Journal of Chromatography, 224; 315-321 (1981) “Resolution of 52 ninhydrin-positive compounds with a High-speed amino acid analyzer”, Clinical Chemistry 43; 8, 1421-1428 (1997) “Amino” Acid determination in biological fluids by automated ion-exchange chromatography: performance of Hitachi L-8500A ”.
液体クロマトグラフ分析法では、高速に分析することがひとつの重要課題である。一般に液体クロマトグラフィーでは、第一溶離液によりカラムを十分に平衡化してからサンプルを注入しクロマトグラムを得る。これは、カラムが十分に平衡化していない場合、各成分の保持時間が不安定になり、結果的には良好な定量再現性が得られないことになってしまうからである。 In liquid chromatographic analysis, high speed analysis is an important issue. In general, in liquid chromatography, a column is sufficiently equilibrated with a first eluent, and then a sample is injected to obtain a chromatogram. This is because when the column is not sufficiently equilibrated, the retention time of each component becomes unstable, and as a result, good quantitative reproducibility cannot be obtained.
本発明は、分析サイクル時間を短縮化と、2種の異なる分析法プログラムを速く接続すること等に関する。 The present invention relates to shortening of analysis cycle time, fast connection of two different analysis method programs, and the like.
本発明は、液体クロマトグラフ分析において、試料注入から次の試料注入までのサイクル時間を一定とし、カラムが溶離液により平衡化する前に試料を注入することに関する。各注入分析サイクルにおける溶離液の切り替えタイミングおよびサンプル注入のタイミングを同期させることにより、カラムが必ずしも平衡状態に至らなくとも、各成分ピークの保持時間が比較的再現性良く溶出される性質を応用したものである。 The present invention relates to injecting a sample before equilibrating a column with an eluent in a liquid chromatographic analysis, with a constant cycle time from sample injection to the next sample injection. By synchronizing the eluent switching timing and sample injection timing in each injection analysis cycle, we applied the property that the retention time of each component peak is eluted with relatively reproducibility even if the column does not necessarily reach equilibrium. Is.
好ましくは、保持時間が不安定になることを防止するために、ステップワイズ溶出法またはグラジエント溶出法の溶離液切り替えタイミングを一定間隔とし、なおかつサンプル注入の間隔を溶出法の溶離液切り替えタイミングに同期させる。 Preferably, in order to prevent the retention time from becoming unstable, the eluent switching timing of the stepwise elution method or gradient elution method is set to a constant interval, and the sample injection interval is synchronized with the eluent switching timing of the elution method. Let
また、好ましくは、2種の異なる分析法プログラムの接続において、前に実行するプログラムの末尾と、後に実行するプログラムの先端の要素を取り上げ、最速接続用中間プログラムを作成する。最速接続用中間プログラムは、前の実行プログラムが分析対象となる最終ピークを溶出した時点で、前の実行プログラムを終了する。即、後方プログラムの末尾部分を切り出し送液する。最速接続用中間プログラムは、この前方プログラムの中断終了から後方プログラムの末尾の切り出しプログラムとの間に挿入される。 Preferably, in the connection of two different analysis method programs, the end of the program to be executed before and the leading end element of the program to be executed later are taken up to create the fastest connection intermediate program. The intermediate program for the fastest connection ends the previous execution program when the previous execution program elutes the final peak to be analyzed. Immediately, the tail part of the backward program is cut out and sent. The intermediate program for fastest connection is inserted between the end of interruption of the front program and the cut-out program at the end of the rear program.
分析サイクル時間の短縮化について、カラムが第一溶離液に十分置き換わらなくとも、切り替え時間を一定にすることにより、溶離液の置き換わりの程度は一定に繰り返されることで、各成分の保持時間再現性が良好に得られる。良好な保持時間再現性が得られれば、結果として溶離液切り替えおよび注入タイミングの同期は良好な定量再現性も得られる効果がある。 Reducing the analysis cycle time, even if the column is not sufficiently replaced with the first eluent, the retention time of each component is reproduced by repeating the degree of eluent replacement by making the switching time constant. Good properties can be obtained. If good retention time reproducibility is obtained, as a result, the eluent switching and the injection timing synchronization have an effect of obtaining good quantitative reproducibility.
2種の異なる分析法プログラムの接続については、効率よく、前方プログラムを終了し、後方プログラムの末尾を立ち上げることにより、最速な分析法の遷移を実現することができる。 For the connection of two different analysis method programs, the fastest analysis method transition can be realized by efficiently terminating the forward program and starting the end of the backward program.
以下、上記及びその他の本発明の新規な特徴と効果について、図面を参酌して説明する。 The above and other novel features and effects of the present invention will be described below with reference to the drawings.
図1は、本実施例のアミノ酸分析計の装置構成及び流路説明図である。1〜4はそれぞれ第1〜第4緩衝液、5はカラム再生液である。この中から電磁弁シリーズ6によって何れかの緩衝液が選ばれ、緩衝液ポンプ7によってアンモニアフィルタカラム8,オートサンプラ9によって導入されたアミノ酸試料は分離カラム10で分離される。ここで分離したアミノ酸は、ニンヒドリンポンプ12によって送られてきたニンヒドリン試薬11とミキサ13で混合し、加熱された反応カラム14で反応する。反応によって発色したアミノ酸(ルーエマン パープル)は検出器15で連続的に検知され、データ処理装置16によってクロマトグラム及びデータとして出力され、記録、保存される。
FIG. 1 is an apparatus configuration and flow path explanatory diagram of the amino acid analyzer of this example. 1 to 4 are first to fourth buffer solutions, and 5 is a column regeneration solution. Among these, a buffer solution is selected by the solenoid valve series 6, and the amino acid sample introduced by the ammonia filter column 8 and the autosampler 9 is separated by the
(分析サイクル時間の短縮化に関して)
従来からイオン交換クロマトグラフィーを用いるアミノ酸分析法では、イオン交換カラムを約0.1mol/Lの水酸化ナトリウムもしくは水酸化リチウムの再生液で洗浄した後、クエン酸ナトリウムか、またはクエン酸リチウム溶離液を十分な時間を送液して、カラムを平衡化していた。再生液から溶離液に切り替えてサンプルを注入するまでの、所謂、カラム平衡化液量は、表1に示すように従来例PF−94法では9.5ml(流量:0.56ml/min、送時間:17分間)であった。カラムは、内径5.4mm長さ50mm相当であり、容積は1.1mlとなる。平衡化液量は、カラム容積で規格化すると、カラム容積の8.4倍量を送液している換算になる。イオン交換樹脂の場合、充填剤内部まで溶離液が浸透するため、カラム内の空隙率は考慮しないものとする。カラム容器中の再生液を溶離液の送液により置き換えていく場合、送り込んだ溶離液が速やかにカラム容器内で一様になるモデルでは、自然対数の底eの累乗に反比例した比率で再生液が残る。即ち、前述の例では、カラム容積の8.4倍量を送液すれば、e-8.4=0.000225=0.0225%の再生液しかカラム内に残っていない計算になる。
(Reducing analysis cycle time)
In the conventional amino acid analysis using ion exchange chromatography, an ion exchange column is washed with about 0.1 mol / L of sodium hydroxide or lithium hydroxide regeneration solution, and then sodium citrate or lithium citrate eluent. For a sufficient period of time to equilibrate the column. The so-called column equilibration liquid amount from the regenerating solution to the eluent before the sample is injected is 9.5 ml (flow rate: 0.56 ml / min, flow rate) in the conventional PF-94 method as shown in Table 1. Time: 17 minutes). The column has an inner diameter of 5.4 mm and a length of 50 mm, and has a volume of 1.1 ml. When the equilibration liquid amount is normalized by the column volume, it becomes a conversion in which 8.4 times the column volume is fed. In the case of an ion exchange resin, since the eluent penetrates into the packing material, the porosity in the column is not considered. When the regenerant in the column container is replaced by feeding the eluent, in the model in which the sent eluent is quickly uniform in the column container, the regenerant is in proportion to the power of the natural logarithm base e. Remains. In other words, in the above-described example, if 8.4 times the column volume is fed, it is calculated that only e −8.4 = 0.0000225 = 0.0225% of the regenerated solution remains in the column.
本実施例では、カラム平衡化液量を従来のカラム容積7倍量に比べ、保持時間やピーク面積の変動・ばらつきを極限まで許容して、何倍量まで低減することできるかが重要になる。 In this embodiment, it is important how much the column equilibration liquid can be reduced by allowing the fluctuation and variation of the retention time and peak area to the limit as compared with the conventional column volume of 7 times. .
本実施例のアミノ酸分析方法であるPFS−75法と従来技術を備えたアミノ酸分析法であるPFS−94法を比較する。PFS−94法及びPFS−75法は、分析サイクル時間がそれぞれ94分間と75分間であり、カラム再生液の送液時間と第1緩衝液による平衡化時間のみが異なる。以上の分析法及び従来のタンパク質加水分解物分析法(以下PH)と生体液分析法(以下PF)について、カラム内の液体を再生液から第1緩衝液に置き換えたときの、再生液残存率を表1に示す。尚、カラム内体積をV(mL)、カラム再生後次の試料注入までに送液される第1緩衝液の送液体積をVRI(mL)とあらわすとき、カラム内の再生液残存率R(%)は数式1で示される。また、PFS−75法、及びPFS−94法で使用する緩衝液のリチウムイオン濃度及びpH等を表2に示す。
The PFS-75 method, which is an amino acid analysis method of this example, is compared with the PFS-94 method, which is an amino acid analysis method equipped with a conventional technique. In the PFS-94 method and the PFS-75 method, the analysis cycle time is 94 minutes and 75 minutes, respectively, and only the column regeneration solution feeding time and the equilibration time by the first buffer solution are different. Regarding the above analysis method and the conventional protein hydrolyzate analysis method (hereinafter referred to as PH) and biological fluid analysis method (hereinafter referred to as PF), the remaining ratio of the regenerated solution when the liquid in the column is replaced with the first buffer solution. Is shown in Table 1. When the volume in the column is V (mL) and the volume of the first buffer solution sent from the column regeneration to the next sample injection is VRI (mL), the remaining ratio R of the regeneration solution in the column R ( %) Is expressed by
表1から、本実施例の分析法における再生液残存率Rは従来技術のPF法における再生液残存率Rの600倍であり、本実施例である分析法の再生液残存率Rはこれまでのどの分析法と比較しても遥かに大きい値である。換言すれば、従来はカラム内の液体を第1緩衝液に十分置換し、カラムを平衡化した後に試料を注入していた。一方、本実施例では、液体置換が不十分であり、1%オーダーの再生液がカラム内に残存している状態で試料を注入する方法を採用している。つまり、従来法では十分なカラム平衡化の後に試料注入することで、良好な保持時間の再現性を得ていたと考えられる。しかし、本実施例では、再現性を若干低下させてでも高速に分析することを優先し、カラム平衡化がやや不十分な状態にもかかわらず試料注入する方法をとったといえる。なお、数式1よりRが1%のときは、VRI/V比は4.6であることがわかる。
From Table 1, the regenerated liquid remaining rate R in the analytical method of this example is 600 times the regenerated liquid remaining rate R in the conventional PF method, and the regenerated liquid remaining rate R of the analytical method of this example has so far been This is far greater than any other analysis method. In other words, conventionally, the liquid in the column is sufficiently replaced with the first buffer, and the sample is injected after the column is equilibrated. On the other hand, in this embodiment, a method of injecting the sample in a state where the liquid replacement is insufficient and the regenerated solution of 1% order remains in the column is adopted. In other words, in the conventional method, it is considered that good holding time reproducibility was obtained by injecting the sample after sufficient column equilibration. However, in this example, it can be said that priority was given to high-speed analysis even if the reproducibility was slightly reduced, and the sample injection method was adopted despite the state where the column equilibration was slightly insufficient. It can be seen from
PFS−94は第1緩衝液から第4緩衝液までの分析プログラムは共通しているが、カラム再生液と平衡化のための第1緩衝液を送液する部分のプログラムが異なる。PFS−94,PFS−75はそれぞれ1分析あたりの所要時間が94分,75分の分析法である。 PFS-94 has the same analysis program from the first buffer solution to the fourth buffer solution, but the program for the portion that sends the column regeneration solution and the first buffer solution for equilibration is different. PFS-94 and PFS-75 are analysis methods in which the required time per analysis is 94 minutes and 75 minutes, respectively.
図2,図3はそれぞれPFS−94法、及びPFS−75法について、各分析法を用いてRGスタートなしで分析を開始したときの第1注入分析と第2注入分析でのクロマトグラムを比較したものである。図3のPFS−75法では第1注入分析と第2注入分析のクロマトグラムにおいて、成分の保持時間が一致していないが、図2のPFS−94法では保持時間が一致している。 FIGS. 2 and 3 compare the chromatograms of the first injection analysis and the second injection analysis for the PFS-94 method and the PFS-75 method, respectively, when analysis is started without RG start using each analysis method. It is a thing. In the PFS-75 method of FIG. 3, the retention times of the components do not match in the chromatograms of the first injection analysis and the second injection analysis, but in the PFS-94 method of FIG. 2, the retention times match.
従来から、同一のタイムウィンドウでピーク同定できるようにするため、即ち第1注入分析と第2注入分析において各成分の保持時間が極力一致するように、カラムを十分に平衡化してきた。PFS−94法では、サイクル中のピーク同定に関して、VRI/V比で8.4、再生液残存率0.0225%で、従来の通り十分、平衡化し、保持時間を一致させている。今回、第1注入分析の後にカラムを第1緩衝液で十分平衡化するという従来の手法にとらわれず、保持時間を一致させる別の方法を検討した。 Conventionally, the column has been sufficiently equilibrated so that peaks can be identified in the same time window, that is, the retention times of each component are matched as much as possible in the first injection analysis and the second injection analysis. In the PFS-94 method, regarding the peak identification during the cycle, the VRI / V ratio was 8.4 and the regenerated solution remaining rate was 0.0225%, which was sufficiently equilibrated as before and the retention times were matched. This time, another method of matching the retention time was examined without being bound by the conventional method of sufficiently equilibrating the column with the first buffer after the first injection analysis.
今回、カラム平衡化時間にとらわれることなく、再生液残存率がたとえ1%以上であっても、すなわち、VRI/V比が4.6以下であっても、注入間隔サイクルを一定にすることにより保持時間を一致させることができる方法を見つけた。第1緩衝液を十分送液しなくとも、注入間隔を時間短縮することができるため、分析を高速化することが可能となった。必ず先にカラム再生(RG)工程から分析を開始するRGスタートの場合のデータを用いることとすれば、図3の第2注入クロマトグラムの保持時間が得られる。RGスタートを用いるかあるいは第2以降の注入分析からのデータを用いることにより、分析サイクルの高速化は可能である。本実施例として、PFS−75法はVRI/V比が2.5(表1参照)であるにもかかわらず、第1注入分析と第2注入分析での保持時間を一致させることができた。 This time, regardless of the column equilibration time, even if the residual ratio of the regenerated solution is 1% or more, that is, the VRI / V ratio is 4.6 or less, the injection interval cycle is made constant. I found a way to match the retention time. Since the injection interval can be shortened without sufficiently feeding the first buffer solution, it is possible to speed up the analysis. If the data in the case of RG start in which the analysis is started first from the column regeneration (RG) step is always used, the retention time of the second injection chromatogram in FIG. 3 can be obtained. The analysis cycle can be speeded up by using RG start or using data from the second and subsequent injection analyses. In this example, although the PFS-75 method had a VRI / V ratio of 2.5 (see Table 1), the retention times in the first injection analysis and the second injection analysis could be matched. .
また、タンパク質加水分解物(PH)法においても、従来の通り、VRI/V比は、6.8と大きい(表1参照)。 Also in the protein hydrolyzate (PH) method, the VRI / V ratio is as large as 6.8 (see Table 1) as before.
(2種の異なる分析法プログラムの接続に関して)
分析プログラムはカラムに吸着した成分を分離する溶出工程,強アルカリの再生液によってカラムを再生するカラム再生工程,引き続き行われる分析に備えるための第1緩衝液でカラムを平衡化するカラム平衡化工程から構成される。また、分析プログラムはポンプの流速,カラムオーブンの温度等も時間軸に沿って指定するものである。
(Regarding the connection of two different analytical method programs)
The analysis program consists of an elution step that separates the components adsorbed on the column, a column regeneration step that regenerates the column with a strong alkali regeneration solution, and a column equilibration step that equilibrates the column with a first buffer solution for subsequent analysis. Consists of The analysis program also specifies the pump flow rate, column oven temperature, etc. along the time axis.
ここで、2種類の分析プログラムを用いて連続分析する場合を考える。2種類の分析プログラムの例として分析プログラムA(図4)と分析プログラムB(図5)を例に挙げる。同一の分析プログラムを用いた試料中の連続成分分析を効率よく行うにはRGスタートが有効である。RGスタートとは第1分析によって得られるクロマトグラムにおける成分ピークの保持時間と、第2分析以降に得られるクロマトグラムにおける成分ピークの保持時間のずれを解消する方法である。 Here, consider the case of continuous analysis using two types of analysis programs. As an example of two types of analysis programs, an analysis program A (FIG. 4) and an analysis program B (FIG. 5) are taken as examples. RG start is effective for efficiently performing continuous component analysis in a sample using the same analysis program. The RG start is a method for eliminating the difference between the retention time of the component peak in the chromatogram obtained by the first analysis and the retention time of the component peak in the chromatogram obtained after the second analysis.
ところが、分析プログラムAの後に分析プログラムBを用いて試料中の成分を分析する場合、分析プログラムAに引き続き連続して分析プログラムBを実行すると、分析プログラムBの第1分析で得られるクロマトグラムにおける成分ピークの保持時間と第2分析以降で得られるクロマトグラムにおける成分ピークの保持時間の再現性が低下する。分析プログラムAの最終成分であるアルギニン(Arg)の溶出直後にプログラムを途中で中断し、分析プログラムAによる再生液送液工程を実施することなく、分析プログラムB専用のRGスタートを挿入することによってこの現象を回避することができる。しかし、分析プログラムAと分析プログラムB用のRGスタートの繋ぎ目で以下の不具合が生じる。 However, when analyzing the components in the sample using the analysis program B after the analysis program A, if the analysis program B is executed subsequently to the analysis program A, the chromatogram obtained in the first analysis of the analysis program B The reproducibility of the retention time of the component peak and the retention time of the component peak in the chromatogram obtained after the second analysis is lowered. By interrupting the program immediately after elution of arginine (Arg), which is the final component of analysis program A, and inserting the RG start dedicated to analysis program B without carrying out the regenerative liquid feeding step by analysis program A This phenomenon can be avoided. However, the following problems occur at the joint between the RG start for the analysis program A and the analysis program B.
(1)2つの分析プログラム間でポンプ流速の設定値が等しくない場合、分析プログラムの繋ぎ目で圧力変動が起こる。これはカラム寿命に対して負の方向に作用する。(2)分析プログラムの繋ぎ目でカラムオーブンの温度設定値が一致しない場合、カラムがカラム外から受け取るエンタルピー量の再現性が低下するため、成分ピークの保持時間再現性が低下する。 (1) When the set value of the pump flow rate is not equal between the two analysis programs, pressure fluctuation occurs at the joint of the analysis programs. This has a negative effect on the column life. (2) If the temperature setting value of the column oven does not match at the joint of the analysis program, the reproducibility of the amount of enthalpy received by the column from the outside of the column decreases, so the reproducibility of the component peak retention time decreases.
これらの問題を解決するため、図6に示すようにプログラムの繋ぎ目に両プログラムを円滑に繋ぐような接続プログラムを挿入する。また、図7に、図2及び図3に示した分析プログラムA及び分析プログラムBに対応させた最速接続中間プログラムを示す。図7に示した最速接続用中間プログラムでは、カラムオーブン温度値に関しては分析プログラムBのRG工程における、最初のカラムオーブン温度となるように設定した。ポンプの流速設定値に関しては、分析プログラムAの最下段の設定値と分析プログラムBのRG工程の初段の設定とを滑らかに繋げるよう、つまり、ポンプ1の流速設定値を0.500mL/minから0.400mL/minへ、ポンプ2の流速設定値を0.400mL/minから0.350mL/minへリニアグラジエントによって繋いだ。この接続プログラムを挿入することによって、分析プログラムBのRGが実行される前に、ポンプの流速及びカラムオーブン温度が分析プログラムBのRG工程初段のポンプ流速設定値、及びカラムオーブン温度設定値へとリニアグラジエントプログラムを用いて直線的に接続され、正常な状態で分析プログラムBをRGスタートすることによって、再現性よく連続分析することが可能となる。
In order to solve these problems, as shown in FIG. 6, a connection program that smoothly connects both programs is inserted at the joint of the programs. FIG. 7 shows the fastest connection intermediate program corresponding to the analysis program A and the analysis program B shown in FIGS. In the intermediate program for fastest connection shown in FIG. 7, the column oven temperature value was set to be the first column oven temperature in the RG step of the analysis program B. Regarding the flow rate setting value of the pump, the setting value of the lowest stage of the analysis program A and the setting of the first stage of the RG process of the analysis program B are smoothly connected. The flow rate setting value of the
1…第1緩衝液、2…第2緩衝液、3…第3緩衝液、4…第4緩衝液、5…カラム再生液、6…電磁弁シリーズ、7…緩衝液ポンプ、8…アンモニアフィルタカラム、9…オートサンプラ、10…アミノ酸試料は分離カラム、11…ニンヒドリン試薬、12…ニンヒドリンポンプ、13…ミキサ、14…反応カラム、15…検出器、16…データ処理装置。
DESCRIPTION OF
Claims (2)
第一グラジエント溶出プログラムから第二グラジエント溶出プログラムに移行する間に挿入する接続用グラジエント溶出プログラムに、第一グラジエント溶出プログラムおよび第二グラジエント溶出プログラムそれぞれの構成要素を含めた接続用グラジエント溶出プログラムを備えることを特徴とする液体クロマトグラフ装置。 A liquid chromatograph apparatus comprising:
Gradient elution program for connection including the components of the first gradient elution program and second gradient elution program is included in the connection gradient elution program inserted during the transition from the first gradient elution program to the second gradient elution program. A liquid chromatograph apparatus characterized by that.
第一グラジエント溶出プログラムから第二グラジエント溶出プログラムに移行する間に挿入する接続用グラジエント溶出プログラムと、
第一グラジエント溶出プログラムおよび第二グラジエント溶出プログラムそれぞれの構成要素を含めた接続用グラジエント溶出プログラムとを含む分析用プログラム。 An analysis program for use in a liquid chromatograph device,
A gradient elution program for connection to be inserted during the transition from the first gradient elution program to the second gradient elution program;
A program for analysis including a gradient elution program for connection including components of each of the first gradient elution program and the second gradient elution program.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010007678A JP5002659B2 (en) | 2010-01-18 | 2010-01-18 | Liquid chromatograph apparatus and analysis program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010007678A JP5002659B2 (en) | 2010-01-18 | 2010-01-18 | Liquid chromatograph apparatus and analysis program |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005226087A Division JP2007040857A (en) | 2005-08-04 | 2005-08-04 | Liquid chromatographic analytical method, liquid chromatograph unit, and analytical program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010112960A true JP2010112960A (en) | 2010-05-20 |
JP5002659B2 JP5002659B2 (en) | 2012-08-15 |
Family
ID=42301596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010007678A Expired - Fee Related JP5002659B2 (en) | 2010-01-18 | 2010-01-18 | Liquid chromatograph apparatus and analysis program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5002659B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011144976A1 (en) | 2010-05-17 | 2011-11-24 | Nissan Motor Co., Ltd. | Vehicle collision protection apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS586465A (en) * | 1981-07-03 | 1983-01-14 | Sekisui Chem Co Ltd | Eluting method |
JPS60257357A (en) * | 1984-06-04 | 1985-12-19 | Shimadzu Corp | High-speed liquid chromatograph instrument for analysis of peptide protein |
JPS6214059A (en) * | 1985-07-11 | 1987-01-22 | Koken:Kk | Separation refining system appatatus for substance by liquid chromatography |
JP2000356629A (en) * | 1999-06-15 | 2000-12-26 | Yamazen Kk | Controller and controlling method for liquid chromatograph, and storage medium recording control program |
JP2002303613A (en) * | 2001-04-04 | 2002-10-18 | Moore Kk | Method and system for high-precision high-pressure gradient |
JP2003107069A (en) * | 2001-09-28 | 2003-04-09 | Sekisui Chem Co Ltd | Method for measuring hemoglobins |
-
2010
- 2010-01-18 JP JP2010007678A patent/JP5002659B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS586465A (en) * | 1981-07-03 | 1983-01-14 | Sekisui Chem Co Ltd | Eluting method |
JPS60257357A (en) * | 1984-06-04 | 1985-12-19 | Shimadzu Corp | High-speed liquid chromatograph instrument for analysis of peptide protein |
JPS6214059A (en) * | 1985-07-11 | 1987-01-22 | Koken:Kk | Separation refining system appatatus for substance by liquid chromatography |
JP2000356629A (en) * | 1999-06-15 | 2000-12-26 | Yamazen Kk | Controller and controlling method for liquid chromatograph, and storage medium recording control program |
JP2002303613A (en) * | 2001-04-04 | 2002-10-18 | Moore Kk | Method and system for high-precision high-pressure gradient |
JP2003107069A (en) * | 2001-09-28 | 2003-04-09 | Sekisui Chem Co Ltd | Method for measuring hemoglobins |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011144976A1 (en) | 2010-05-17 | 2011-11-24 | Nissan Motor Co., Ltd. | Vehicle collision protection apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5002659B2 (en) | 2012-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaiser et al. | Capillary electrophoresis coupled to mass spectrometry to establish polypeptide patterns in dialysis fluids | |
Kilár | Recent applications of capillary isoelectric focusing | |
Bladergroen et al. | Solid‐Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High‐Throughput Mass Spectrometry‐Based Proteomics | |
JP2006284188A (en) | Multi-dimensional liquid chromatograph, and analysis method using it | |
Baghdady et al. | Online comprehensive high pH reversed phase× low pH reversed phase approach for two-dimensional separations of intact proteins in top-down proteomics | |
JPS594664B2 (en) | Ion exchange chromatography | |
WO2017037829A1 (en) | Method for quantitative analysis of high-molecular-weight compound, and data processing device for said quantitative analysis | |
Kohler et al. | The rise of hydrophilic interaction chromatography in untargeted clinical metabolomics | |
JPWO2018167986A1 (en) | Chromatographic data processor | |
Cassiano et al. | Direct bioanalytical sample injection with 2D LC–MS | |
JP6711087B2 (en) | Background correction method by section division | |
JP2008309699A (en) | Two-dimensional liquid chromatograph of ion exchange and normal phase column | |
JP5002659B2 (en) | Liquid chromatograph apparatus and analysis program | |
JP2007040857A (en) | Liquid chromatographic analytical method, liquid chromatograph unit, and analytical program | |
Ribeiro et al. | Recent stationary phase‐based fractionation strategies in proteomic analysis | |
JP2007085749A (en) | Liquid chromatographic analysis method and liquid chromatograph device | |
CN103792315A (en) | Quantifying method for human albumin inorganic mass spectrum coupling technique | |
EP0359322A2 (en) | Liquid chromatography | |
Hooijschuur et al. | In‐line sample trap columns with diatomite for large‐volume injection in CZE–IM–MS | |
JP6435165B2 (en) | Liquid chromatography measurement method, liquid chromatography measurement device, and liquid chromatography measurement program | |
JP2009085747A (en) | Method and apparatus for amino acid analysis | |
JP4498186B2 (en) | Liquid chromatographic analysis method and apparatus | |
JP2008304435A (en) | Method and apparatus for multiple component analysis | |
US10527594B2 (en) | Liquid chromatography measurement method, liquid chromatography measurement instrument, and liquid chromatography measurement program storage medium | |
Henzel et al. | Reversed‐phase isolation of peptides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120424 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120521 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5002659 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150525 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |